JP2857687B2 - Power line carrier signal transmission method and apparatus - Google Patents

Power line carrier signal transmission method and apparatus

Info

Publication number
JP2857687B2
JP2857687B2 JP27121191A JP27121191A JP2857687B2 JP 2857687 B2 JP2857687 B2 JP 2857687B2 JP 27121191 A JP27121191 A JP 27121191A JP 27121191 A JP27121191 A JP 27121191A JP 2857687 B2 JP2857687 B2 JP 2857687B2
Authority
JP
Japan
Prior art keywords
voltage
zero
phase
transmission
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27121191A
Other languages
Japanese (ja)
Other versions
JPH05110478A (en
Inventor
満 中村
照信 宮崎
栄三郎 酒匂
一夫 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27121191A priority Critical patent/JP2857687B2/en
Publication of JPH05110478A publication Critical patent/JPH05110478A/en
Application granted granted Critical
Publication of JP2857687B2 publication Critical patent/JP2857687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高圧配電線を信号伝送
路とする電力線搬送信号伝送方法及び装置に係り、特に
高圧配電線の対地インピーダンスが絶縁劣化や塩害等に
より変動して、信号非送信時でも零相電圧が変化するよ
うな系統状態においても安定した信号伝送を行なうこと
が可能な電力線搬送信号伝送方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for transmitting a power line carrier signal using a high-voltage distribution line as a signal transmission path. The present invention relates to a power line carrier signal transmission method and apparatus capable of performing stable signal transmission even in a system state in which a zero-phase voltage changes even during transmission.

【0002】[0002]

【従来の技術】従来の電力線搬送信号伝送装置として
は、特開昭62-171236号公報「電力線搬送伝送装置」に
記載されているように信号送信時の三相高圧配電線にお
ける零相電圧変化分の大きさが完全地絡発生時の1%程
度となるように、零相電圧発生回路のインピーダンス素
子を切り換えるものがあった。また特開平2-72728号公
報「電力線搬送信号伝送装置」に記載されているように
零相電圧変化分から送信された信号を再生する復調回路
が提案されており、残留零相電圧、低次周波数や高次周
波数にも影響されないようにしていた。
2. Description of the Related Art As a conventional power line carrier signal transmission device, a zero-phase voltage change in a three-phase high-voltage distribution line at the time of signal transmission as described in Japanese Patent Application Laid-Open No. Sho 62-171236, "Power Line Carrier Transmission Device". In some cases, the impedance element of the zero-sequence voltage generating circuit is switched so that the size of the minute is about 1% of that at the time of occurrence of a complete ground fault. A demodulation circuit for reproducing a signal transmitted from a zero-sequence voltage change as described in JP-A-2-72728 "Power line carrier signal transmission device" has been proposed. Or higher order frequencies.

【0003】[0003]

【発明が解決しようとする課題】配電線対地インピーダ
ンスが安定している場合には、0.1から0.3%程度でも通
信が可能である亊から必要最小限のレベルの零相電圧を
発生させて通信する方法が考えられる。しかし、従来技
術により零相電圧のレベルを下げようとすると次のよう
な問題が生じた。すなわち、配電線において塩害が発生
し、碍子が絶縁劣化すると、対地インピーダンスが変動
する。この場合に非同期で配電線の零相電圧が変動する
ため、その零相電圧の変化分を検出するフィルタ回路の
出力信号も非同期で変化する。
When the impedance of the distribution line to the ground is stable, communication is possible even at about 0.1 to 0.3%. A method is conceivable. However, when trying to lower the level of the zero-sequence voltage by the conventional technique, the following problem occurs. That is, when salt damage occurs in the distribution line and the insulation of the insulator deteriorates, the ground impedance fluctuates. In this case, since the zero-phase voltage of the distribution line fluctuates asynchronously, the output signal of the filter circuit that detects the change in the zero-phase voltage also fluctuates asynchronously.

【0004】このように配電線に塩害が発生すると、碍
子の絶縁劣化に起因して対地インピーダンスが変動し、
配電線から検出される零相電圧の変化分出力に恒久的ノ
イズが発生する。このような系統状態で零相キャリア信
号によりデータの送受信を行なうと、信号成分波形がそ
の影響を受け、送信データを正しく再生することができ
なくなる恐れがある。
[0004] When salt damage occurs in the distribution line in this way, the impedance to ground fluctuates due to insulation deterioration of the insulator,
Permanent noise is generated in the output of the change in the zero-phase voltage detected from the distribution line. If data transmission / reception is performed using a zero-phase carrier signal in such a system state, the signal component waveform may be affected by the transmission / reception, and transmission data may not be correctly reproduced.

【0005】図5に従来の電力線搬送信号伝送装置にお
ける復調回路出力である零相電圧の変化分出力実測波形
例を示す。同図(a)は、対地インピーダンスが安定し
ている時の変化分出力であり、信号送信時の変化分出力
k2とノイズ成分k1との比(k2/k1)、すなわちS/
N比が約10の出力波形である。また、同図(b)は、
対地インピーダンスが変動し、S/N比が3〜4に低下
し、零相電圧の変化分出力がノイズ成分の影響を受けた
時の出力波形である。
FIG. 5 shows an example of an actually measured waveform of a change in the zero-phase voltage which is the output of the demodulation circuit in the conventional power line carrier signal transmission device. FIG. 7A shows a variation output when the impedance to the ground is stable. The ratio (k2 / k1) between the variation output k2 and the noise component k1 during signal transmission, that is, S /
The output waveform has an N ratio of about 10. Also, FIG.
This is an output waveform when the ground impedance fluctuates, the S / N ratio drops to 3 to 4, and the output of the change in the zero-sequence voltage is affected by the noise component.

【0006】このように対地インピーダンスの変動によ
る非送信時の変化分出力レベル(ノイズ成分)が大きく
なると、従来装置では図5(a)及び図5(b)の変化
分k2,k2’が一定値となるように管理しているため、
同図(b)のように、ノイズ成分k1'が大きくなると、
S/N比が低下し、伝送信頼度が悪化するという問題が
あった。
As described above, when the output level (noise component) at the time of non-transmission due to the change in the ground impedance becomes large, the change k2, k2 'in FIGS. 5A and 5B is constant in the conventional apparatus. Because it is managed to be a value,
When the noise component k1 'increases as shown in FIG.
There is a problem that the S / N ratio is reduced and the transmission reliability is deteriorated.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、配電線に塩害が発生して対地インピーダン
スが変動しても高い伝送信頼度を維持することができる
電力線搬送信号伝送方法及び装置を提供することを目的
とする。
The present invention has been made in view of such circumstances, and a power line carrier signal transmission method and method capable of maintaining high transmission reliability even when the ground impedance fluctuates due to salt damage to a distribution line. It is intended to provide a device.

【0008】[0008]

【課題を解決するための手段】本発明の電力線搬送信号
伝送方法は、配電用変電所に設置される親局と、配電用
変電所からの三相高圧配電線上の任意の位置に親局と同
一の構成を有する子局を設け、三相高圧配電線を伝送路
とし、かつ三相高圧配電線上の零相電圧の変化を伝送信
号として信号送信側の局が、三相高圧配電線上における
零相電圧を変化させることにより親局と子局との間で信
号伝送を行なう電力線搬送信号伝送方法において、親局
は、信号非送信時の三相高圧配電線上における零相電圧
の変動であるノイズ成分のレベルを測定し、ノイズ成分
のレベルに基づいて予め設定されたS/N比となるよう
に信号送信時の信号成分のレベルを算出し、この信号成
分のレベルに応じて三相高圧配電線上における零相電圧
を変化させることを特徴とする。
SUMMARY OF THE INVENTION A power line carrier signal transmission method according to the present invention comprises a master station installed in a distribution substation, and a master station located at an arbitrary position on a three-phase high-voltage distribution line from the distribution substation. A slave station having the same configuration is provided, a three-phase high-voltage distribution line is used as a transmission line, and a change in the zero-phase voltage on the three-phase high-voltage distribution line is used as a transmission signal, so that the signal transmitting station transmits a zero-phase voltage on the three-phase high-voltage distribution line. In a power line carrier signal transmission method in which a signal is transmitted between a master station and a slave station by changing a phase voltage, the master station generates noise, which is fluctuation of a zero-phase voltage on a three-phase high-voltage distribution line when a signal is not transmitted. The level of the component is measured, and the level of the signal component at the time of signal transmission is calculated based on the level of the noise component so as to have a preset S / N ratio, and the three-phase high-voltage distribution is performed according to the level of the signal component. Changing the zero-sequence voltage on the line And it features.

【0009】また本発明の電力線搬送信号伝送方法で
は、親局は、信号送信時に三相高圧配電線上から得られ
る信号成分と信号非送信時に三相高圧配電線上から得ら
れるノイズ成分との比である、S/N比を定める設定値
を予め複数、用意し、信号送信時の信号成分のレベルを
算出する際に信号伝送の目的に応じて上記複数の設定値
のうちのいずれかを選択して演算することを特徴とす
る。
In the power line carrier signal transmission method according to the present invention, the master station determines a ratio of a signal component obtained from the three-phase high-voltage distribution line when the signal is transmitted to a noise component obtained from the three-phase high-voltage distribution line when the signal is not transmitted. A plurality of set values for determining an S / N ratio are prepared in advance, and when calculating the level of a signal component at the time of signal transmission, one of the plurality of set values is selected according to the purpose of signal transmission. Is calculated.

【0010】更に本発明の電力線搬送信号伝送装置は、
配電用変電所からの三相高圧配電線のうち、一相を基準
とし、この基準相の対地インピーダンスを変化させるた
めに三相高圧配電線と対地間に切換手段を介して接続さ
れる複数のインピーダンス素子を有する零相電圧発生回
路と、三相高圧配電線の各相の対地間電圧を取り出し、
この対地間電圧から系統零相電圧を検出してこの系統零
相電圧の変化をとらえ復号化する復調回路と、この系統
零相電圧の変化分を計測する計測回路とを有する親局を
配電用変電所に設置し、かつこの配電用変電所からの三
相高圧配電線上の任意の位置に前記親局と同一の構成を
有する子局を設置すると共に、三相高圧配電線を伝送路
として上記零相電圧発生回路により系統に生成される零
相電圧の変化を伝送信号とする電力線搬送信号伝送装置
において、親局は、計測回路の出力信号を取り込み、非
送信時における計測回路出力から零相電圧の変動による
ノイズ成分のレベルを測定し、このノイズ成分のレベル
に基づいて予め設定されたS/N比となるように送信時
の信号成分のレベルを算出し、この信号成分のレベルに
応じて零相電圧発生回路の零相電圧発生用のインピーダ
ンス素子を選択する制御手段を有することを特徴とす
る。
[0010] Furthermore, the power line carrier signal transmission device of the present invention further comprises:
Among the three-phase high-voltage distribution lines from the distribution substation, one phase is used as a reference, and a plurality of three-phase high-voltage distribution lines connected to the ground via switching means in order to change the ground impedance of this reference phase. A zero-phase voltage generation circuit having an impedance element, and a ground-to-ground voltage of each phase of a three-phase high-voltage distribution line are taken out.
A master station having a demodulation circuit for detecting a system zero-phase voltage from the voltage between the ground and detecting and decoding a change in the system zero-phase voltage and a measurement circuit for measuring a change in the system zero-phase voltage is used for power distribution. A substation having the same configuration as the master station is installed at an arbitrary position on the three-phase high-voltage distribution line from the distribution substation, and the three-phase high-voltage distribution line is used as a transmission line. In a power line carrier signal transmission device in which a change in a zero-phase voltage generated in a system by a zero-phase voltage generation circuit is used as a transmission signal, a master station takes in an output signal of a measurement circuit, and outputs a zero-phase signal from a measurement circuit output during non-transmission. The level of the noise component due to the voltage fluctuation is measured, and the level of the signal component at the time of transmission is calculated based on the level of the noise component so as to have a preset S / N ratio. Zero phase voltage Characterized in that it has a control means for selecting an impedance element for zero-phase voltage generation circuit.

【0011】また本発明の電力線搬送信号伝送装置で
は、上記制御手段は、送信時における上記計測回路出力
から得られる信号成分と非送信時に計測回路出力から得
られるノイズ成分との比である、S/N比を定める設定
値を予め複数、用意し、送信時の信号成分のレベルを算
出する際に信号伝送の目的に応じて上記複数の設定値の
うちのいずれかを選択して演算することを特徴とする。
Further, in the power line carrier signal transmission device of the present invention, the control means includes a ratio of a signal component obtained from the output of the measurement circuit during transmission to a noise component obtained from the output of the measurement circuit during non-transmission. Preparing a plurality of set values for determining the / N ratio in advance, and selecting and calculating one of the plurality of set values according to the purpose of signal transmission when calculating the level of a signal component during transmission It is characterized by.

【0012】[0012]

【作用】上記構成の電力線搬送信号伝送方法及び装置に
おいては、親局により非送信時の三相高圧配電線上にお
ける零相電圧の変動であるノイズ成分のレベルが測定さ
れ、このノイズ成分のレベルに基づいて予め設定された
S/N比となるように送信時の信号成分のレベルが算出
され、この信号成分のレベルに応じて三相高圧配電線上
における零相電圧が変化させられる。
In the power line carrier signal transmission method and apparatus having the above configuration, the master station measures the level of the noise component, which is the fluctuation of the zero-phase voltage on the three-phase high-voltage distribution line during non-transmission, and determines the level of this noise component. Based on this, the level of the signal component at the time of transmission is calculated so as to have a preset S / N ratio, and the zero-phase voltage on the three-phase high-voltage distribution line is changed according to the level of the signal component.

【0013】また上記構成の電力線搬送信号伝送方法及
び装置においては、親局により送信時に三相高圧配電線
上から得られる信号成分と信号非送信時に三相高圧配電
線上から得られるノイズ成分との比である、S/N比を
定める設定値が予め複数、用意され、送信時の信号成分
のレベルを算出する際に信号伝送の目的に応じて上記複
数の設定値のうちのいずれかが選択され、この選択され
た設定値に基づいて演算される。
In the power line carrier signal transmission method and apparatus having the above configuration, the ratio of the signal component obtained from the three-phase high-voltage distribution line when the master station transmits the signal to the noise component obtained from the three-phase high-voltage distribution line when the signal is not transmitted is transmitted. A plurality of setting values for determining the S / N ratio are prepared in advance, and one of the plurality of setting values is selected according to the purpose of signal transmission when calculating the level of the signal component at the time of transmission. Is calculated based on the selected set value.

【0014】したがって本発明によれば、配電線に塩害
が発生して対地インピーダンスが変動しても高い伝送信
頼度を維持することができる。
Therefore, according to the present invention, high transmission reliability can be maintained even if salt damage occurs to the distribution line and the ground impedance fluctuates.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1には本発明に係る電力線搬送信号伝送装置の
一実施例の構成が示されている。同図において、電力線
搬送信号伝送装置は、親局装置10と、子局装置20と
を有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an embodiment of a power line carrier signal transmission device according to the present invention. In FIG. 1, the power line carrier signal transmission device includes a master station device 10 and a slave station device 20.

【0016】配電用変電所内の主変圧器1側に設置され
た親局装置10は、系統に零相電圧を発生させるための
零相電圧発生回路11と、高圧配電線2から零相電圧
(V0)と基準相電圧(VA)を取り出すための零相受
信分圧回路12と、子局装置20に対して制御指令や計
測指令を送信し、子局装置20からの返信情報を受信
し、かつ処理する低圧制御部13とから構成されてい
る。
The master station device 10 installed on the side of the main transformer 1 in the distribution substation includes a zero-phase voltage generating circuit 11 for generating a zero-phase voltage in the system, and a zero-phase voltage ( V0) and a zero-phase reception voltage dividing circuit 12 for extracting a reference phase voltage (VA), a control command and a measurement command are transmitted to the slave station device 20, and return information from the slave station device 20 is received. And a low-pressure controller 13 for processing.

【0017】また低圧制御部13は、復調回路14と、
計測回路15と、親局送受信制御回路16とから構成さ
れている。
The low-voltage control unit 13 includes a demodulation circuit 14
It comprises a measurement circuit 15 and a master station transmission / reception control circuit 16.

【0018】一方、高圧配電線2の任意の位置に設置さ
れる子局装置20は、零相電圧発生回路11と同一構成
の零相電圧発生回路21と、零相受信分圧回路12と同
一構成の零相受信分圧回路22と、親局装置10からの
制御指令や計測指令を受信し、制御、計測を行ない、親
局装置10に返信処理を行なう低圧制御部23とから構
成されている。
On the other hand, the slave station device 20 installed at an arbitrary position on the high-voltage distribution line 2 has the same structure as the zero-phase voltage generation circuit 11 and the zero-phase reception voltage dividing circuit 12. It is composed of a zero-phase reception voltage dividing circuit 22 having a configuration, and a low-voltage control unit 23 that receives a control command and a measurement command from the master station device 10, performs control and measurement, and performs a return process to the master station device 10. I have.

【0019】また低圧制御部23は、復調回路25と、
子局送受信制御回路24とから構成されている。復調回
路14(復調回路25)は、図2に示すように入力され
る基準相電圧VA及び零相電圧V0から基本波成分を取
り出すバンドパスフィルタ(BPF1)30,バンドパ
スフィルタ(BPF2)31と、乗算回路32と、2倍
の周波数成分を除去し、直流分を取り出す第1のフィル
タ回路33と、この直流電圧の変化分を検出する第2の
フィルタ回路34と、第2のフィルタ回路34の出力信
号から2値信号であるディジタルの「1」,「0」デー
タ(RD)を再生し、出力する波形整形回路35とから
構成されている。
The low voltage control unit 23 includes a demodulation circuit 25,
And a slave station transmission / reception control circuit 24. The demodulation circuit 14 (demodulation circuit 25) includes a band-pass filter (BPF1) 30, a band-pass filter (BPF2) 31 for extracting a fundamental wave component from the input reference phase voltage VA and zero-phase voltage V0 as shown in FIG. , A multiplying circuit 32, a first filter circuit 33 for removing a double frequency component and extracting a DC component, a second filter circuit 34 for detecting a change in the DC voltage, and a second filter circuit 34. And a waveform shaping circuit 35 that reproduces and outputs digital "1" and "0" data (RD) as binary signals from the output signal of.

【0020】上記構成からなる電力線搬送信号伝送装置
の動作を図3を参照して説明する。親局装置10の低圧
制御部13には高圧配電線2の基準相電圧VAの分圧出
力が入力され、これに同期して親局送受信制御回路16
は、零相電圧発生回路11のスイッチSW0を送信デー
タに従ってON,OFF制御する。スイッチSW0をO
N,OFF制御することによりコンデンサC1〜C3の
いずれかが対地間に挿入され、系統には基準相と逆相の
零相電圧が発生する。
The operation of the power line carrier signal transmission device having the above configuration will be described with reference to FIG. The divided output of the reference phase voltage VA of the high-voltage distribution line 2 is input to the low-voltage control unit 13 of the master station device 10, and in synchronization with this, the master-station transmission and reception control circuit 16
Controls ON / OFF of the switch SW0 of the zero-phase voltage generation circuit 11 according to the transmission data. Switch SW0 to O
By performing N and OFF control, any one of the capacitors C1 to C3 is inserted between the ground and a zero-phase voltage having a phase opposite to that of the reference phase is generated in the system.

【0021】一方、子局装置20の低圧制御部23に
は、基準相電圧(VA)と零相電圧(V0)とが零相受
信分圧回路22を介して入力される。今、図3(A)に
示すような基準相電圧信号VAに対し、図3(B)に示
すように零相電圧発生回路11のスイッチSW0をO
N,OFF制御することによりデータ送信すると、零相
電圧V0が発生する(図3(C))。子局装置20の復
調回路25では乗算回路32がバンドパスフィルタ(B
PF1)30,バンドパスフィルタ(BPF2)31を
介して基準相電圧信号VA,零相電圧信号V0を取り込
み、これらの信号の2倍の周波数成分及び直流分を含む
信号を出力する(図3(D))。ここで乗算回路32で
は基準相電圧信号VAが負入力端子に、零相電圧信号V
0が正入力端子に入力されるようになっており、零相電
圧信号の「有」、「無」が直流成分の「有」、「無」に
対応するようになっている。乗算回路32の出力信号は
第1のフィルタ回路33で直流分のみが抽出され、零相
電圧信号V0の有、無に対応した直流分出力を得る。
(図3(E))。次いで第2のフィルタ回路34ではこ
の直流分、すなわち零相電圧信号の変化分に比例した出
力信号を得る(図3(F))。第2のフィルタ回路34
の出力信号は波形整形回路35で正負の検出レベルL
1,L2(変化分出力がレベルL1以上の場合には出力
信号を論理「1」とし、変化分出力がレベルL2以下の
場合には出力信号を論理「0」とする。)に基づいて受
信信号が再生される(図3(G))。このようにして復
調回路25により復調されたディジタルの「1」、
「0」信号(RD)が子局送受信制御回路24に入力さ
れ、子局送受信制御回路24は親局送受信制御回路16
から送信された情報を受信する。
On the other hand, the reference phase voltage (VA) and the zero-phase voltage (V0) are input to the low-voltage controller 23 of the slave station device 20 via the zero-phase reception voltage dividing circuit 22. Now, in response to the reference phase voltage signal VA as shown in FIG. 3A, the switch SW0 of the zero-phase voltage generation circuit 11 is turned OFF as shown in FIG.
When data is transmitted by controlling N and OFF, a zero-phase voltage V0 is generated (FIG. 3C). In the demodulation circuit 25 of the slave station device 20, the multiplication circuit 32 has a band-pass filter (B
The reference phase voltage signal VA and the zero-phase voltage signal V0 are taken in via the PF1) 30 and the band-pass filter (BPF2) 31, and a signal containing a frequency component and a DC component twice as high as these signals is output (FIG. D)). Here, in the multiplication circuit 32, the reference phase voltage signal VA is supplied to the negative input terminal and the zero-phase voltage signal V
0 is input to the positive input terminal, and the “presence” and “absence” of the zero-phase voltage signal correspond to the “presence” and “absence” of the DC component. Only the DC component of the output signal of the multiplying circuit 32 is extracted by the first filter circuit 33, and a DC component output corresponding to the presence or absence of the zero-phase voltage signal V0 is obtained.
(FIG. 3E). Next, the second filter circuit 34 obtains an output signal proportional to the DC component, that is, a change in the zero-phase voltage signal (FIG. 3F). Second filter circuit 34
Is output from the waveform shaping circuit 35 to the positive or negative detection level L.
1, L2 (the output signal is set to logic "1" when the change output is equal to or higher than the level L1, and the output signal is set to logic "0" when the change output is equal to or lower than the level L2). The signal is reproduced (FIG. 3 (G)). The digital “1” demodulated by the demodulation circuit 25 in this manner,
The "0" signal (RD) is input to the slave station transmission / reception control circuit 24, and the slave station transmission / reception control circuit 24
Receives information sent from.

【0022】一方、子局送受信制御回路24から送信さ
れたディジタルの「1」、「0」信号は、親局装置10
の零相受信分圧回路12、復調回路14により子局装置
と同様の動作により親局送受信制御回路16で受信す
る。
On the other hand, the digital "1" and "0" signals transmitted from the slave station
The master station transmission / reception control circuit 16 receives the same operation by the zero-phase reception voltage dividing circuit 12 and the demodulation circuit 14 as in the slave station apparatus.

【0023】以上のようにして親局装置10と子局装置
20とのデータの送受信が行なわれるが、零相電圧発生
回路11、21におけるスイッチSW1〜SW3の制御
は次のようにして行なわれる。すなわち、図2における
計測回路15は、復調回路14の変化分出力17を取り
込み、これを整流回路で全波整流することにより零相電
圧信号V0の大きさに比例した直流分電圧信号kを出力
する。親局送受信制御回路16ではこの計測回路15の
出力電圧値に基づいて配電系統における零相電圧の変化
分の大きさを判定し、零相電圧の変化分の大きさに応じ
て零相電圧発生回路11のスイッチSW1〜SW3の切
換制御を行なう。今、配電線2において対地インピーダ
ンスが変化し零相電圧が変動した場合、計測回路15の
整流出力は図4(B)に示すように非送信時においても
ノイズ成分がk1というレベルで出力される。
Data transmission and reception between master station device 10 and slave station device 20 are performed as described above. Control of switches SW1 to SW3 in zero-phase voltage generation circuits 11 and 21 is performed as follows. . That is, the measuring circuit 15 in FIG. 2 takes in the change output 17 of the demodulation circuit 14 and performs full-wave rectification of the output 17 to output a DC component voltage signal k proportional to the magnitude of the zero-phase voltage signal V0. I do. The master station transmission / reception control circuit 16 determines the magnitude of the change in the zero-phase voltage in the distribution system based on the output voltage value of the measurement circuit 15, and generates the zero-phase voltage in accordance with the magnitude of the change in the zero-phase voltage. The switching control of the switches SW1 to SW3 of the circuit 11 is performed. Now, when the ground impedance changes and the zero-sequence voltage fluctuates in the distribution line 2, the rectified output of the measurement circuit 15 outputs the noise component at the level of k1 even during non-transmission, as shown in FIG. 4B. .

【0024】親局送受信制御回路10では、送信する前
にノイズ成分k1を取り込み、現在のスイッチSW1〜
SW3の制御状態から送信時の変化分出力k2の比(k2
/k1)が、(1)設定値内であれば、零相電圧発生回
路5のスイッチSW1〜SW3の切換制御は適当である
と判断し、スイッチSW1〜SW3の制御状態はそのま
まとし、(2)設定値以下であれば、零相電圧がより大
きく発生するようにスイッチSW1〜SW3を制御し
て、(3)設定値以上であれば、零相電圧の発生がより
小さくなるようスイッチSW1〜SW3を制御して、デ
ータ送信を行なう。例えば、設定値が10の場合につい
て説明すると、図1(B)において信号非送信時の計測
回路15の出力であるノイズ成分k1が零相電圧の0.
01%相当であるとすると、計測回路15の変化分出力
k2の計算値は、 k2=0.01%×10=0.1% (1) となる。従って、0.1%相当の零相電圧変化となるよ
うにスイッチSW1〜SW3を制御し、図4(A)に示
すようにデータを送信する。
The master station transmission / reception control circuit 10 fetches the noise component k1 before transmission and sets the current switches SW1 to SW1.
From the control state of SW3, the ratio (k2
/ K1) is within (1) the set value, it is determined that the switching control of the switches SW1 to SW3 of the zero-phase voltage generation circuit 5 is appropriate, and the control state of the switches SW1 to SW3 is left as it is, and (2) If the value is equal to or less than the set value, the switches SW1 to SW3 are controlled so that a larger zero-phase voltage is generated. SW3 is controlled to perform data transmission. For example, the case where the set value is 10 will be described. In FIG. 1B, the noise component k1 which is the output of the measurement circuit 15 when the signal is not transmitted is 0.
Assuming that it is equivalent to 01%, the calculated value of the change output k2 of the measuring circuit 15 is as follows: k2 = 0.01% × 10 = 0.1% (1) Therefore, the switches SW1 to SW3 are controlled so as to have a zero-phase voltage change corresponding to 0.1%, and data is transmitted as shown in FIG.

【0025】一方、子局装置20内の復調回路25では
その変化分出力17の大きさから正、負の検出レベルを
決め、図4(C)に示すように受信データを正しく再生
する。従って、配電系統の状態が変化し、ノイズ成分が
大きくなったり、小さくなったりしてもノイズ成分k1
と変化分出力k2との比、すなわち、S/N比を一定に
保ちながら信号伝送ができる。
On the other hand, the demodulation circuit 25 in the slave station device 20 determines a positive or negative detection level from the magnitude of the output 17 corresponding to the change, and reproduces the received data correctly as shown in FIG. Therefore, even if the state of the distribution system changes and the noise component increases or decreases, the noise component k1
The signal transmission can be performed while keeping the ratio of the change amount output k2, that is, the S / N ratio constant.

【0026】本実施例によれば、S/N比が一定に保た
れるため、塩害によりノイズ成分が大きくなっても良好
な信号伝送を行なうことができる。
According to this embodiment, since the S / N ratio is kept constant, good signal transmission can be performed even if the noise component increases due to salt damage.

【0027】次に本発明の他の実施例について説明す
る。本実施例は装置構成は前記実施例と同一であるが、
親局送受信制御回路10の処理内容を以下のように変更
したものである。すなわち、計測回路15の変化分出力
k2とノイズ成分k1との比を管理する設定値を複数、例
えば、5と10の2つの値を用意し、親局装置10と子
局装置20のとの間で信号伝送を行なう場合、伝送誤り
が発生しても再送信することによりその目的が達せられ
る場合にはS/N比の設定値を5とし、子局装置20に
対して確実に信号を伝送したい場合にはS/N比の設定
値を10として零相電圧発生回路5を制御するようにし
ている。このように構成することにより例えば、配電線
2の柱上開閉器の遠隔監視制御を行なう場合、そのほと
んどが再送信で目的が達せられる監視指令の信号伝送で
あることから、常時、配電線2に発生する零相電圧を小
さくすることができる。
Next, another embodiment of the present invention will be described. In this embodiment, the device configuration is the same as the previous embodiment,
The processing contents of the master station transmission / reception control circuit 10 are modified as follows. That is, a plurality of set values for managing the ratio between the change output k2 of the measurement circuit 15 and the noise component k1, for example, two values of 5 and 10 are prepared, and the values of the master station device 10 and the slave station device 20 are determined. In the case where signal transmission is performed between devices, if the purpose can be achieved by retransmission even if a transmission error occurs, the set value of the S / N ratio is set to 5, and the signal is reliably transmitted to the slave station device 20. When transmission is desired, the set value of the S / N ratio is set to 10, and the zero-phase voltage generation circuit 5 is controlled. With this configuration, for example, when remote monitoring control of the pole switch of the distribution line 2 is performed, most of the signal transmission of the monitoring command that can be achieved by retransmission is performed. Can be reduced.

【0028】本実施例によれば、零相電圧発生回路の負
担を低減でき、装置の信頼性の向上が図れる。尚、上記
2つの実施例において、S/N比を計算する際にノイズ
成分k1に近ずいた場合には目標とすべき変化分出力k2
のレベル零に近ずくことになるが、装置を安定に動作さ
せるために変化分出力k2の最小値k2'は復調可能なレ
ベルに制限される。そこで計測回路15の変化分出力k
2の計算結果がこの最小値k2’以下になった場合には計
測回路15の実際の変化分出力がk2'となるように下限
リミッタをかけることにより、計測回路15の非送信時
の出力であるノイズ成分k1が零に近ずいた場合の装置
の不安定動作が解消される。
According to this embodiment, the load on the zero-phase voltage generating circuit can be reduced, and the reliability of the device can be improved. In the above two embodiments, when the S / N ratio is calculated, when the noise component k1 is approached, the change output k2 to be targeted is set.
However, in order to stably operate the device, the minimum value k2 'of the variation output k2 is limited to a level that can be demodulated. Therefore, the change output k of the measuring circuit 15
When the calculation result of 2 becomes equal to or less than the minimum value k2 ', the lower limit limiter is applied so that the actual change output of the measurement circuit 15 becomes k2', so that the output of the measurement circuit 15 at the time of non-transmission is obtained. The unstable operation of the device when a certain noise component k1 approaches zero is eliminated.

【0029】またノイズ成分k1が大きくなった場合、
零相電圧の発生電圧も大きくなるがその上限は保護リレ
ーとの協調から決定される。このことから計測回路15
の変化分出力k2の計算結果が、保護リレーとの協調か
ら決定された上限値以上となった場合にはこの上限値と
なるようにリミッタをかけることにより保護リレーとの
協調がとれる。
When the noise component k1 becomes large,
The generated voltage of the zero-phase voltage also increases, but the upper limit is determined in cooperation with the protection relay. From this, the measurement circuit 15
If the calculation result of the change output k2 is equal to or greater than the upper limit value determined from the cooperation with the protection relay, the limiter is set so as to be equal to the upper limit, thereby coordinating with the protection relay.

【0030】更に送信中に系統切替により対地静電容量
が変化し、計測回路15の変化分出力k2が上記上限値
を越えた場合には直ちに送信を停止することにより保護
リレーとの協調がとれる。
Further, when the capacitance to ground changes due to system switching during transmission and the output k2 of the change of the measuring circuit 15 exceeds the upper limit, transmission is immediately stopped to cooperate with the protection relay. .

【0031】[0031]

【発明の効果】以上に説明したように本発明によれば信
号非伝送時における系統零総電圧の変動によるノイズ成
分のレベルを測定し、このノイズ成分のレベルに基づい
て予め設定されたS/N比となるように送信時の信号成
分のレベルを算出し、この信号成分のレベルに応じて零
相電圧発生回路の零相電圧発生用のインピーダンス素子
を選択するように切換制御を行なうようにしたので、配
電線に塩害が発生して対地インピーダンスが変動しても
高い伝送信頼度を維持することができる。
As described above, according to the present invention, the level of the noise component due to the fluctuation of the total system zero voltage when the signal is not transmitted is measured, and the S / S preset based on the level of the noise component is measured. The switching control is performed so that the level of the signal component at the time of transmission is calculated so as to be N ratio, and the impedance element for generating the zero-phase voltage of the zero-phase voltage generating circuit is selected according to the level of the signal component. Therefore, high transmission reliability can be maintained even if the ground impedance fluctuates due to salt damage on the distribution line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電力線搬送信号伝送装置の一実施
例を示す構成図である。
FIG. 1 is a configuration diagram showing one embodiment of a power line carrier signal transmission device according to the present invention.

【図2】図1における復調回路及び計測回路の具体的構
成を示すブロック図である。
FIG. 2 is a block diagram showing a specific configuration of a demodulation circuit and a measurement circuit in FIG.

【図3】図1に示す電力線搬送信号伝送装置の各部の動
作状態を示す波形図である。
3 is a waveform diagram showing an operation state of each unit of the power line carrier signal transmission device shown in FIG.

【図4】図1に示す電力線搬送信号伝送装置における送
受信データと計測回路の出力との関係を示す波形図であ
る。
4 is a waveform chart showing a relationship between transmission / reception data and an output of a measurement circuit in the power line carrier signal transmission device shown in FIG.

【図5】従来の電力線搬送信号伝送装置における信号の
伝送状態を示す波形図である。
FIG. 5 is a waveform diagram showing a signal transmission state in a conventional power line carrier signal transmission device.

【符号の説明】[Explanation of symbols]

2 高圧配電線 10 親局装置 11 零相電圧発生回路 12 零相受信分圧回路 13 低圧制御部 14 復調回路 15 計測回路 16 親局送受信制御回路 20 子局装置 21 零相電圧発生回路 22 零相受信分圧回路 23 低圧制御部 24 子局送受信制御回路 25 復調回路 2 High-voltage distribution line 10 Master station device 11 Zero-phase voltage generation circuit 12 Zero-phase reception voltage divider 13 Low-voltage controller 14 Demodulation circuit 15 Measurement circuit 16 Master station transmission / reception control circuit 20 Slave station device 21 Zero-phase voltage generation circuit 22 Zero-phase Reception voltage dividing circuit 23 Low voltage control unit 24 Slave station transmission / reception control circuit 25 Demodulation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西島 一夫 茨城県日立市国分町1丁目1番1号 株 式会社 日立製作所 国分工場内 (56)参考文献 特開 昭51−21415(JP,A) 特開 平1−223832(JP,A) (58)調査した分野(Int.Cl.6,DB名) H04B 3/54 - 3/56──────────────────────────────────────────────────続 き Continuation of the front page (72) Kazuo Nishijima 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant, Hitachi, Ltd. (56) References JP-A-51-21415 (JP, A) JP-A-1-223832 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H04B 3/54-3/56

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配電用変電所に設置される親局と、前記
配電用変電所からの三相高圧配電線上の任意の位置に親
局と同一の構成を有する子局を設け、三相高圧配電線を
伝送路とし、かつ該三相高圧配電線上の零相電圧の変化
を伝送信号として信号送信側の局が、該三相高圧配電線
上における零相電圧を変化させることにより親局と子局
との間で信号伝送を行なう電力線搬送信号伝送方法にお
いて、 前記親局は、信号非送信時の三相高圧配電線上における
零相電圧の変動であるノイズ成分のレベルを測定し、該
ノイズ成分のレベルに基づいて予め設定されたS/N比
となるように送信時の信号成分のレベルを算出し、該信
号成分のレベルに応じて三相高圧配電線上における零相
電圧を変化させることを特徴とする電力線搬送信号伝送
方法。
A master station installed in a distribution substation and a slave station having the same configuration as the master station are provided at an arbitrary position on a three-phase high-voltage distribution line from the distribution substation. The transmission line is used as a transmission line, and the station on the signal transmitting side uses the change in the zero-phase voltage on the three-phase high-voltage distribution line as a transmission signal, and changes the zero-phase voltage on the three-phase high-voltage distribution line to change the master station and the child station. In the power line carrier signal transmission method for performing signal transmission with a station, the master station measures a level of a noise component that is a fluctuation of a zero-phase voltage on the three-phase high-voltage distribution line when the signal is not transmitted, and Calculating the level of the signal component at the time of transmission so as to have a preset S / N ratio based on the level of the signal, and changing the zero-phase voltage on the three-phase high-voltage distribution line according to the level of the signal component. Characteristic power line carrier signal transmission method.
【請求項2】 前記親局は、信号送信時に三相高圧配電
線上から得られる信号成分と非送信時に三相高圧配電線
上から得られるノイズ成分との比である、S/N比を定
める設定値を予め複数、用意し、送信時の信号成分のレ
ベルを算出する際に信号伝送の目的に応じて前記複数の
設定値のうちのいずれかを選択して演算することを特徴
とする請求項1に記載の電力線搬送信号伝送方法。
2. The master station sets an S / N ratio, which is a ratio of a signal component obtained on the three-phase high-voltage distribution line during signal transmission to a noise component obtained on the three-phase high-voltage distribution line during non-transmission. A plurality of values are prepared in advance, and when calculating the level of a signal component at the time of transmission, one of the plurality of set values is selected and calculated according to the purpose of signal transmission. 2. The power line carrier signal transmission method according to 1.
【請求項3】 配電用変電所からの三相高圧配電線のう
ち、一相を基準とし、該基準相の対地インピーダンスを
変化させるために三相高圧配電線と対地間に切換手段を
介して接続される複数のインピーダンス素子を有する零
相電圧発生回路と、三相高圧配電線の各相の対地間電圧
を取り出し、該対地間電圧から系統零相電圧を検出して
該系統零相電圧の変化をとらえ復号化する復調回路と、
該系統零相電圧の変化分を計測する計測回路とを有する
親局を配電用変電所に設置し、かつ該配電用変電所から
の三相高圧配電線上の任意の位置に前記親局と同一の構
成を有する子局を設置すると共に、三相高圧配電線を伝
送路として前記零相電圧発生回路により系統に生成され
る零相電圧の変化を伝送信号とする電力線搬送信号伝送
装置において、 前記親局は、計測回路の出力信号を取り込み、非送信時
における前記計測回路出力から零相電圧の変動によるノ
イズ成分のレベルを測定し、該ノイズ成分のレベルに基
づいて予め設定されたS/N比となるように送信時の信
号成分のレベルを算出し、該信号成分のレベルに応じて
前記零相電圧発生回路の零相電圧発生用のインピーダン
ス素子を選択する制御手段を有することを特徴とする電
力線搬送信号伝送装置。
3. A three-phase high-voltage distribution line from a distribution substation, with one phase as a reference, and a switching means between the three-phase high-voltage distribution line and the ground to change the ground impedance of the reference phase. A zero-phase voltage generation circuit having a plurality of impedance elements connected thereto, and a ground-to-ground voltage of each phase of the three-phase high-voltage distribution line is taken out, a system zero-phase voltage is detected from the ground-to-ground voltage, and the system zero-phase voltage is detected. A demodulation circuit that captures and decodes the change;
A master station having a measurement circuit for measuring a change in the system zero-sequence voltage is installed in a distribution substation, and the same as the master station at an arbitrary position on a three-phase high-voltage distribution line from the distribution substation. A power line carrier signal transmission device that installs a slave station having the configuration described above and uses a three-phase high-voltage distribution line as a transmission line and a change in zero-phase voltage generated in the system by the zero-phase voltage generation circuit as a transmission signal. The master station captures the output signal of the measurement circuit, measures the level of the noise component due to the fluctuation of the zero-phase voltage from the output of the measurement circuit during non-transmission, and sets a preset S / N based on the level of the noise component. A control means for calculating a level of a signal component at the time of transmission so as to obtain a ratio and selecting an impedance element for generating a zero-phase voltage of the zero-phase voltage generating circuit according to the level of the signal component. Power Line carrier signal transmission device.
【請求項4】 前記制御手段は、信号送信時における前
記計測回路出力から得られる信号成分と非送信時に前記
計測回路出力から得られるノイズ成分との比である、S
/N比を定める設定値を予め複数、用意し、送信時の信
号成分のレベルを算出する際に信号伝送の目的に応じて
前記複数の設定値のうちのいずれかを選択して演算する
ことを特徴とする請求項3に記載の電力線搬送信号伝送
装置。
4. The control means according to claim 1, wherein said ratio is a ratio between a signal component obtained from said measurement circuit output during signal transmission and a noise component obtained from said measurement circuit output during non-transmission.
A plurality of set values for determining the / N ratio are prepared in advance, and when calculating the level of the signal component at the time of transmission, one of the plurality of set values is selected and calculated according to the purpose of signal transmission. The power line carrier signal transmission device according to claim 3, wherein:
JP27121191A 1991-10-18 1991-10-18 Power line carrier signal transmission method and apparatus Expired - Fee Related JP2857687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27121191A JP2857687B2 (en) 1991-10-18 1991-10-18 Power line carrier signal transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27121191A JP2857687B2 (en) 1991-10-18 1991-10-18 Power line carrier signal transmission method and apparatus

Publications (2)

Publication Number Publication Date
JPH05110478A JPH05110478A (en) 1993-04-30
JP2857687B2 true JP2857687B2 (en) 1999-02-17

Family

ID=17496899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27121191A Expired - Fee Related JP2857687B2 (en) 1991-10-18 1991-10-18 Power line carrier signal transmission method and apparatus

Country Status (1)

Country Link
JP (1) JP2857687B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0031393D0 (en) * 2000-12-21 2001-02-07 Autonomous Well Company The Lt Power line communication system

Also Published As

Publication number Publication date
JPH05110478A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
US4300126A (en) Method and apparatus, for power line communications using zero crossing load interruption
JPH0549169A (en) Power controller
JP2857687B2 (en) Power line carrier signal transmission method and apparatus
US4450497A (en) Ultra-high-speed relay
CA2489909C (en) Ac power backfeed protection based on phase shift
EP1468345A2 (en) System and method for coordinated control of a switched power capacitor with an integrated resonance protection system
US4510399A (en) Demodulator circuit for parallel AC power systems
US5701241A (en) Recovery of transmitted power in an installation for transmission of high-voltage direct current
JP2629131B2 (en) Power line communication device and power line communication network
JP2001358619A (en) Monitor control system using power line carrier
JPS5829634Y2 (en) automatic station search circuit
US20240097449A1 (en) Line reactor protection security using local frequency measurement
US4780908A (en) Method and apparatus for signal transmission regulation in differential protection
JPS61189119A (en) Disconnection detector
JP2603237Y2 (en) Reverse charge detection device
KR20030027888A (en) Dynamic series voltage compensator and method thereof
JPH06284049A (en) Data transmission equipment using electric circuit
JPH028515Y2 (en)
JPH0553326B2 (en)
JPS60224357A (en) Transmitter and receiver of power line carrier
JPS6311855B2 (en)
JPS59134952A (en) Demodulating circuit
JPH0666717B2 (en) Distribution line carrier current signal receiver
JPS6051408A (en) Protecting relaying method
JPH0226423B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees