JP2856160B2 - Refrigeration device control method and refrigeration device - Google Patents

Refrigeration device control method and refrigeration device

Info

Publication number
JP2856160B2
JP2856160B2 JP8194481A JP19448196A JP2856160B2 JP 2856160 B2 JP2856160 B2 JP 2856160B2 JP 8194481 A JP8194481 A JP 8194481A JP 19448196 A JP19448196 A JP 19448196A JP 2856160 B2 JP2856160 B2 JP 2856160B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
expansion valve
temperature
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8194481A
Other languages
Japanese (ja)
Other versions
JPH1038399A (en
Inventor
幸正 矢野
敏幸 夏目
高宏 岡本
昌弥 繁永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP8194481A priority Critical patent/JP2856160B2/en
Publication of JPH1038399A publication Critical patent/JPH1038399A/en
Application granted granted Critical
Publication of JP2856160B2 publication Critical patent/JP2856160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、過冷却回路の過
冷却度を制御して、能力やCOP(成績係数)を向上さ
せる冷凍装置の制御方法および冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system control method and a refrigeration system for controlling the degree of supercooling of a subcooling circuit to improve the capacity and COP (coefficient of performance).

【0002】[0002]

【従来の技術】従来、冷凍装置としては、図5に示すよ
うに、凝縮器101とメイン膨張弁102との間に接続
された過冷却用熱交換器103と、上記凝縮器101と
上記過冷却用熱交換器103との間に接続されて上記過
冷却用熱交換器103に過冷却用冷媒を供給するサブ膨
張弁105とが構成する過冷却回路106を備えたもの
がある。
2. Description of the Related Art Conventionally, as a refrigerating apparatus, as shown in FIG. 5, a supercooling heat exchanger 103 connected between a condenser 101 and a main expansion valve 102; Some include a subcooling circuit 106 that is connected between the cooling heat exchanger 103 and a sub-expansion valve 105 that supplies the subcooling refrigerant to the subcooling heat exchanger 103.

【0003】この冷凍装置は、凝縮器101から分岐し
サブ膨張弁105を経て冷却された冷媒を、上記過冷却
用熱交換器103の冷却管103aに通し、メイン膨張
弁102および蒸発器107をバイパスして圧縮機10
8の手前でメイン冷媒路110に合流させている。
In this refrigerating apparatus, a refrigerant branched from a condenser 101 and cooled through a sub-expansion valve 105 is passed through a cooling pipe 103a of the supercooling heat exchanger 103, and a main expansion valve 102 and an evaporator 107 are cooled. Bypass compressor 10
8 and is merged with the main refrigerant passage 110.

【0004】一方、上記凝縮器101から過冷却用熱交
換器103の被冷却管103bに至った冷媒は、冷却管
103aを通る冷媒で冷やされてからメイン膨張弁11
1に至る。この過冷却用熱交換器103の働きによっ
て、上記冷媒の過冷却が増加される。
On the other hand, the refrigerant that has reached the cooled pipe 103b of the supercooling heat exchanger 103 from the condenser 101 is cooled by the refrigerant passing through the cooling pipe 103a, and then cooled by the main expansion valve 11b.
Leads to 1. By the operation of the subcooling heat exchanger 103, the supercooling of the refrigerant is increased.

【0005】図6に、上記過冷却用熱交換器103があ
る場合のモリエル線図を破線で示し、上記過冷却用熱交
換器103がない場合のモリエル線図を実線で示す。図
6から分かるように、過冷却が増加することによって、
(蒸発器入口圧力が同じ場合)蒸発器107入口での冷媒
温度がTe0からTe1に低下し、空気との温度差が大き
くなる。したがって、蒸発器の蒸発能力が向上する。し
たがって、能力とCOPが向上する。
FIG. 6 shows a Mollier diagram with the supercooling heat exchanger 103 by a broken line, and a Mollier diagram without the supercooling heat exchanger 103 by a solid line. As can be seen from FIG. 6, the increase in supercooling
(When the evaporator inlet pressure is the same) The refrigerant temperature at the evaporator 107 inlet decreases from Te 0 to Te 1 , and the temperature difference with the air increases. Therefore, the evaporating capability of the evaporator is improved. Therefore, capacity and COP are improved.

【0006】もっとも、上記過冷却用熱交換器103を
用いる場合には、冷媒の一部が蒸発器107をバイパス
することになるから、蒸発器107を循環する冷媒量は
減少する。しかし、この蒸発器を循環する冷媒量が減少
することによって、図6に示すように、蒸発側の圧損が
低下して圧縮機108の吸入圧力が高くなる。したがっ
て、圧縮機108を循環する冷媒量が増大する。したが
って、能力とCOPが向上する。
However, when the supercooling heat exchanger 103 is used, a part of the refrigerant bypasses the evaporator 107, so that the amount of the refrigerant circulating through the evaporator 107 is reduced. However, as the amount of the refrigerant circulating in the evaporator decreases, the pressure loss on the evaporation side decreases and the suction pressure of the compressor 108 increases as shown in FIG. Therefore, the amount of the refrigerant circulating in the compressor 108 increases. Therefore, capacity and COP are improved.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記従来の
冷凍装置では、上記過冷却回路106による過冷却度を
制御することができないから、冷凍装置の運転条件によ
っては、過冷却度を適性な値に制御できず、能力やCO
Pを確実に向上させることができないという問題があ
る。
However, in the conventional refrigeration system, the degree of supercooling by the supercooling circuit 106 cannot be controlled. Therefore, depending on the operating conditions of the refrigeration system, the degree of supercooling is set to an appropriate value. Control and capacity and CO
There is a problem that P cannot be reliably improved.

【0008】そこで、この発明の目的は、過冷却回路に
よる過冷却度を適正な値に制御でき、能力やCOPを確
実に向上させることができる冷凍装置の制御方法および
冷凍装置を提供することにある。
It is an object of the present invention to provide a refrigeration apparatus control method and a refrigeration apparatus that can control the degree of supercooling by a subcooling circuit to an appropriate value and can surely improve the capacity and COP. is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の冷凍装置の制御方法は、凝縮器と
メイン膨張弁との間に接続された過冷却用熱交換器と、
上記凝縮器と上記過冷却用熱交換器との間に接続されて
上記過冷却用熱交換器に過冷却用冷媒を供給するサブ膨
張弁とが構成する分岐型の過冷却回路を有する冷凍装置
の制御方法であって、蒸発器の入口での冷媒温度Teを
Te温度センサで検出し、上記過冷却用熱交換器の出口
での冷媒温度TscをTsc温度センサで検出し、上記蒸
発器の入口での冷媒温度Teが、上記入口での冷媒の乾
き度が略零になる冷媒温度になるように、上記蒸発器の
入口での冷媒温度Teと過冷却用熱交換器の出口での冷
媒温度Tscに基づいて、上記サブ膨張弁の開度を制御
することを特徴としている。
According to a first aspect of the present invention, there is provided a method for controlling a refrigerating apparatus, comprising: a supercooling heat exchanger connected between a condenser and a main expansion valve;
A refrigeration apparatus having a branch-type subcooling circuit connected between the condenser and the subcooling heat exchanger and configured by a sub-expansion valve configured to supply a subcooling refrigerant to the subcooling heat exchanger. Control method, the refrigerant temperature Te at the inlet of the evaporator is detected by a Te temperature sensor, the refrigerant temperature Tsc at the outlet of the supercooling heat exchanger is detected by a Tsc temperature sensor, The refrigerant temperature Te at the inlet of the evaporator and the refrigerant temperature at the outlet of the supercooling heat exchanger are set so that the refrigerant temperature Te at the inlet becomes a refrigerant temperature at which the dryness of the refrigerant at the inlet becomes substantially zero. The opening degree of the sub expansion valve is controlled based on the temperature Tsc.

【0010】この発明の制御方法によれば、蒸発器の入
口での冷媒温度Teと、過冷却用熱交換器の出口での冷
媒温度Tscとを検出して、このTeとTscとに基づ
いて、サブ膨張弁の開度を調節して、蒸発器の入口での
冷媒温度Teを、上記入口での冷媒の乾き度が略零にな
る温度にする。
[0010] According to the control method of the present invention, the refrigerant temperature Te at the inlet of the evaporator and the refrigerant temperature Tsc at the outlet of the subcooling heat exchanger are detected, and based on the detected Te and Tsc. By adjusting the opening of the sub expansion valve, the refrigerant temperature Te at the inlet of the evaporator is set to a temperature at which the dryness of the refrigerant at the inlet becomes substantially zero.

【0011】したがって、蒸発器の運転効率を確実に向
上させて、COPを確実に向上できる。同時に、低圧側
での圧力を上昇させて、圧縮機の吸入圧力を高くして、
能力を確実に向上できる。
Therefore, the operating efficiency of the evaporator can be reliably improved, and the COP can be reliably improved. At the same time, raise the pressure on the low pressure side, raise the suction pressure of the compressor,
The ability can be surely improved.

【0012】また、請求項2の発明の冷凍装置は、凝縮
器とメイン膨張弁との間に接続された過冷却用熱交換器
と、上記凝縮器と上記過冷却用熱交換器との間に接続さ
れ上記過冷却用熱交換器に過冷却用冷媒を供給するサブ
膨張弁とが構成する分岐型の過冷却回路を有する冷凍装
置であって、蒸発器の入口での冷媒温度Teを検出する
Te温度センサと、上記過冷却用熱交換器の出口での冷
媒温度Tscを検出するTsc温度センサと、上記蒸発器の
入口での冷媒温度が、上記入口での冷媒の乾き度が略零
になる冷媒温度になるように、上記蒸発器の入口での冷
媒温度Teと過冷却用熱交換器の出口での冷媒温度Ts
cに基づいて、上記サブ膨張弁の開度を制御するサブ膨
張弁制御手段を備えていることを特徴としている。
Further, according to a second aspect of the present invention, there is provided a refrigerating apparatus, comprising: a supercooling heat exchanger connected between a condenser and a main expansion valve; and a supercooling heat exchanger connected between the condenser and the supercooling heat exchanger. And a sub-expansion valve configured to supply a sub-cooling refrigerant to the sub-cooling heat exchanger and connected to the sub-cooling heat exchanger, wherein a refrigerant temperature Te at an inlet of the evaporator is detected. A Te temperature sensor, a Tsc temperature sensor for detecting a refrigerant temperature Tsc at the outlet of the supercooling heat exchanger, and a refrigerant temperature at the inlet of the evaporator, where the dryness of the refrigerant at the inlet is substantially zero. And the refrigerant temperature Ts at the outlet of the subcooling heat exchanger so that the refrigerant temperature becomes
The sub-expansion valve control means for controlling the opening of the sub-expansion valve on the basis of c.

【0013】この冷凍装置によれば、サブ膨張弁制御手
段が、蒸発器の入口での冷媒温度Teと、過冷却用熱交
換器の出口での冷媒温度Tscとを検出して、このTe
とTscとに基づいて、サブ膨張弁の開度を調節して、
蒸発器の入口での冷媒温度Teを、上記入口での冷媒の
乾き度が略零になる温度にする。
According to this refrigeration system, the sub-expansion valve control means detects the refrigerant temperature Te at the inlet of the evaporator and the refrigerant temperature Tsc at the outlet of the subcooling heat exchanger, and detects this Te.
And Tsc, the opening degree of the sub expansion valve is adjusted,
The refrigerant temperature Te at the inlet of the evaporator is set to a temperature at which the dryness of the refrigerant at the inlet becomes substantially zero.

【0014】したがって、蒸発器の運転効率を確実に向
上させて、COPを確実に向上できる。同時に、低圧側
での圧力を上昇させて、圧縮機の吸入圧力を高くして、
能力を確実に向上できる。
Therefore, the operating efficiency of the evaporator can be reliably improved, and the COP can be reliably improved. At the same time, raise the pressure on the low pressure side, raise the suction pressure of the compressor,
The ability can be surely improved.

【0015】[0015]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0016】図1に、この発明の冷凍装置の実施の形態
を示す。この実施の形態は、凝縮機としての室外熱交換
器1と分岐型の過冷却回路2とメイン電動膨張弁3と蒸
発器としての室内熱交換器5と圧縮機6と四路切替弁7
とを有している。上記過冷却回路2は、主路8から分岐
した分岐路10に接続されたサブ電動膨張弁11と、室
外熱交換器1とメイン電動膨張弁3との間に接続された
過冷却用熱交換器としての2重管熱交換器12とを有す
る。上記サブ電動膨張弁3から上記2重管熱交換器12
に供給された冷却用冷媒は、上記主路8から上記2重管
熱交換器12に供給された冷媒と熱交換して、上記冷媒
を過冷却する。一方、上記2重管熱交換器12を通り抜
けた冷却用冷媒は主路8に合流してアキュムレータ13
に至る。
FIG. 1 shows an embodiment of a refrigeration apparatus according to the present invention. In this embodiment, an outdoor heat exchanger 1 as a condenser, a branch type supercooling circuit 2, a main electric expansion valve 3, an indoor heat exchanger 5 as an evaporator, a compressor 6, and a four-way switching valve 7
And The subcooling circuit 2 includes a sub-electric expansion valve 11 connected to a branch path 10 branched from the main path 8, and a subcooling heat exchange connected between the outdoor heat exchanger 1 and the main electric expansion valve 3. And a double tube heat exchanger 12 as a vessel. From the sub electric expansion valve 3 to the double pipe heat exchanger 12
The cooling refrigerant supplied to the heat exchanger exchanges heat with the refrigerant supplied from the main path 8 to the double-pipe heat exchanger 12 to supercool the refrigerant. On the other hand, the cooling refrigerant that has passed through the double-tube heat exchanger 12 joins the main path 8 and enters the accumulator 13.
Leads to.

【0017】また、この実施形態は、上記2重管熱交換
器12の出口での冷媒温度Tscを検出するTsc温度
センサ15と、上記室内熱交換器5の入口での冷媒温度
Teを検出するTe温度センサ16を有している。ま
た、この実施形態は、圧縮機6が吐出する冷媒の温度T
Qを検出する吐出温度センサ17と、室外熱交換器1の
入口での冷媒温度Tcを検出するTc温度センサ18と
を有する。
In this embodiment, a Tsc temperature sensor 15 for detecting the refrigerant temperature Tsc at the outlet of the double-tube heat exchanger 12 and a refrigerant temperature Te at the inlet of the indoor heat exchanger 5 are detected. It has a Te temperature sensor 16. In this embodiment, the temperature T of the refrigerant discharged from the compressor 6 is set to T.
It has a discharge temperature sensor 17 for detecting Q, and a Tc temperature sensor 18 for detecting the refrigerant temperature Tc at the entrance of the outdoor heat exchanger 1.

【0018】そして、この実施形態は、上記各温度セン
サ15,16,17,18からの温度検出信号が入力さ
れ、この検出信号に基づいてサブ電動膨張弁2およびメ
イン電動膨張弁3の開度を調整する膨張弁制御部20を
有している。
In this embodiment, the temperature detection signals from the temperature sensors 15, 16, 17, and 18 are input, and the opening degrees of the sub-electric expansion valve 2 and the main electric expansion valve 3 are determined based on the detection signals. Is provided.

【0019】上記冷凍装置の動作を、図2および図3に
示したフローチャートに沿って説明する。
The operation of the refrigerating apparatus will be described with reference to the flowcharts shown in FIGS.

【0020】まず、ステップS1で、上記膨張弁制御部
20は、上記サブ電動膨張弁2を全閉にする。
First, in step S1, the expansion valve control section 20 fully closes the sub electric expansion valve 2.

【0021】次に、ステップS2に進む。このステップ
S2では、上記膨張弁制御部20は、メイン電動膨張弁
3の開度を調節することによって、圧縮機6の吸込口で
の冷媒の過熱度SHを制御する。すなわち、上記膨張弁
制御部20は、Te温度センサ16,Tc温度センサ1
8から入力された信号によって冷媒温度Te,Tcを得
る。そして、この制御部20は、この冷媒温度Te,T
cと、圧縮機6単体のエネルギ効率によって決定される
図2のモリエル線図上の傾きKとから、上記過熱度SH
を適性値SHmにするような圧縮機6の吐出温度TQ
目標値TQmを算出する。次に、上記膨張弁制御部20
は、上記吐出温度センサ17から入力された信号によっ
て圧縮機6が吐出する冷媒の温度TQを得て、この吐出
冷媒温度TQが上記目標値TQmになるように、メイン電
動弁3の開度を調節する。このようにメイン電動弁3の
開度を制御することによって、過熱度SHを適性値SH
mにすることができ、圧縮機6の手前で確実に冷媒を蒸
発させて、圧縮機6の信頼性を確保できる。
Next, the process proceeds to step S2. In step S2, the expansion valve control unit 20 controls the degree of superheat SH of the refrigerant at the suction port of the compressor 6 by adjusting the opening of the main electric expansion valve 3. That is, the expansion valve control unit 20 includes the Te temperature sensor 16 and the Tc temperature sensor 1
The refrigerant temperatures Te and Tc are obtained based on the signal input from 8. Then, the control unit 20 determines the refrigerant temperatures Te, T
c and the slope K on the Mollier diagram in FIG. 2 determined by the energy efficiency of the compressor 6 alone, the superheat degree SH
The calculated target value T Q m of discharge temperature T Q of the compressor 6 so as to suitability value SHm. Next, the expansion valve control unit 20
Obtains the temperature T Q of the refrigerant discharged from the compressor 6 based on the signal input from the discharge temperature sensor 17, and sets the main electric valve 3 so that the discharged refrigerant temperature T Q becomes the target value T Qm. Adjust the opening of. By controlling the opening degree of the main motor-operated valve 3 in this manner, the degree of superheat SH is reduced to the appropriate value SH.
m, and the refrigerant can be reliably evaporated before the compressor 6 to ensure the reliability of the compressor 6.

【0022】次に、ステップS3に進む。このステップ
S3では、上記膨張弁制御部20は、サブ電動膨張弁1
1の開度を調節することによって、メイン電動膨張弁3
の入口での過冷却度SCを制御する。このサブ電動膨張
弁11の制御を、図3のフローチャートを参照しながら
説明する。
Next, the process proceeds to step S3. In step S3, the expansion valve control unit 20 controls the sub-electric expansion valve 1
By adjusting the opening of the main electric expansion valve 3
The degree of supercooling SC at the inlet of is controlled. The control of the sub electric expansion valve 11 will be described with reference to the flowchart of FIG.

【0023】まず、ステップS11で、上記膨張弁制御
部20は、上記Te温度センサ16からの信号によっ
て、上記室内熱交換器5の入口での冷媒温度Teを得
る。図2のTeは、サブ電動膨張弁全閉での入口冷媒温
度を示す。次に、ステップS12に進み、上記冷媒温度
Teを2重管熱交換器12の出口での冷媒温度Tscの
目標値Tscmにする。次に、ステップS13に進み、上
記Tsc温度センサ15からの信号によって、冷媒温度
Tscを得て、ステップS14で、この冷媒温度Tsc
が上記目標値Tscmになるような、サブ電動膨張弁11
の開度を算出して、サブ電動膨張弁11に与えるべきパ
ルス信号を算出する。次に、ステップS15に進み、上
記算出したパルス信号を上記サブ電動膨張弁11に出力
してから、ステップS11に戻る。
First, in step S11, the expansion valve control section 20 obtains the refrigerant temperature Te at the inlet of the indoor heat exchanger 5 based on the signal from the Te temperature sensor 16. Te in FIG. 2 indicates the inlet refrigerant temperature when the sub electric expansion valve is fully closed. Next, the process proceeds to step S12, in which the refrigerant temperature Te is set to a target value Tscm of the refrigerant temperature Tsc at the outlet of the double tube heat exchanger 12. Next, in step S13, the refrigerant temperature Tsc is obtained from the signal from the Tsc temperature sensor 15, and in step S14, the refrigerant temperature Tsc is obtained.
Is smaller than the target value Tscm.
Is calculated, and a pulse signal to be given to the sub electric expansion valve 11 is calculated. Next, the process proceeds to step S15, where the calculated pulse signal is output to the sub electric expansion valve 11, and then returns to step S11.

【0024】このような過冷却度SCの制御によって、
図2に破線で示すように、室内熱交換器5の入口での冷
媒の乾き度を略零にすることができるから、室内熱交換
器5の運転効率が良くなり、能力とCOPを確実に向上
できる。また、図2に破線で示すように、低圧側での圧
力が上昇するから、圧縮機6の吸入圧力を高くして、能
力とCOPを確実に向上させることができる。
By controlling the degree of supercooling SC,
As shown by the dashed line in FIG. 2, since the dryness of the refrigerant at the inlet of the indoor heat exchanger 5 can be made substantially zero, the operation efficiency of the indoor heat exchanger 5 is improved, and the capacity and COP are surely reduced. Can be improved. Further, as indicated by the broken line in FIG. 2, the pressure on the low pressure side increases, so that the suction pressure of the compressor 6 can be increased, and the capacity and COP can be reliably improved.

【0025】[0025]

【発明の効果】以上より明らかなように、請求項1の発
明の冷凍装置の制御方法は、蒸発器の入口での冷媒温度
Teと、過冷却用熱交換器の出口での冷媒温度Tscと
を検出して、このTeとTscとに基づいて、サブ膨張
弁の開度を調節して、蒸発器の入口での冷媒温度Te
を、上記入口での冷媒の乾き度が略零になる温度にす
る。
As is clear from the above, the control method of the refrigerating apparatus according to the first aspect of the present invention relates to a method of controlling the temperature of the refrigerant Te at the inlet of the evaporator and the temperature Tsc of the refrigerant at the outlet of the subcooling heat exchanger. Is detected, and the opening degree of the sub-expansion valve is adjusted based on the Te and Tsc, and the refrigerant temperature Te at the inlet of the evaporator is adjusted.
At a temperature at which the dryness of the refrigerant at the inlet becomes substantially zero.

【0026】したがって、蒸発器の運転効率を確実に向
上させて、COPを確実に向上できる。同時に、低圧側
での圧力を上昇させて、圧縮機の吸入圧力を高くして、
能力を確実に向上できる。
Therefore, the operating efficiency of the evaporator can be reliably improved, and the COP can be reliably improved. At the same time, raise the pressure on the low pressure side, raise the suction pressure of the compressor,
The ability can be surely improved.

【0027】また、請求項2の発明の冷凍装置は、サブ
膨張弁制御手段が、蒸発器の入口での冷媒温度Teと、
過冷却用熱交換器の出口での冷媒温度Tscとを検出し
て、このTeとTscとに基づいて、サブ膨張弁の開度
を調節して、蒸発器の入口での冷媒温度Teを、上記入
口での冷媒の乾き度が略零になる温度にする。
Further, in the refrigeration apparatus according to the second aspect of the present invention, the sub-expansion valve control means controls the refrigerant temperature Te at the inlet of the evaporator,
The refrigerant temperature Tsc at the outlet of the subcooling heat exchanger is detected, and based on the Te and Tsc, the opening degree of the sub-expansion valve is adjusted, and the refrigerant temperature Te at the inlet of the evaporator is calculated as follows. The temperature at which the dryness of the refrigerant at the inlet is substantially zero.

【0028】したがって、蒸発器の運転効率を確実に向
上させて、COPを確実に向上できる。同時に、低圧側
での圧力を上昇させて、圧縮機の吸入圧力を高くして、
能力を確実に向上できる。
Therefore, the operating efficiency of the evaporator can be reliably improved, and the COP can be reliably improved. At the same time, raise the pressure on the low pressure side, raise the suction pressure of the compressor,
The ability can be surely improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の冷凍装置の実施形態のブロック図
である。
FIG. 1 is a block diagram of an embodiment of a refrigeration apparatus of the present invention.

【図2】 上記実施形態の動作を説明するモリエル線図
である。
FIG. 2 is a Mollier diagram for explaining the operation of the embodiment.

【図3】 上記実施形態の制御部の動作を説明するフロ
ーチャートである。
FIG. 3 is a flowchart illustrating an operation of a control unit of the embodiment.

【図4】 上記実施形態のサブ電動弁制御を説明するフ
ローチャートである。
FIG. 4 is a flowchart illustrating a sub motor-operated valve control of the embodiment.

【図5】 従来の冷凍装置のブロック図である。FIG. 5 is a block diagram of a conventional refrigeration apparatus.

【図6】 上記従来の冷凍装置の動作を説明するモリエ
ル線図である。
FIG. 6 is a Mollier diagram for explaining the operation of the conventional refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1…室外熱交換器、2…過冷却回路、3…メイン電動膨
張弁、5…室内熱交換器、6…圧縮機、7…四路切替
弁、8…主路、10…分岐路、11…サブ電動膨張弁、
12…2重管熱交換器、13…アキュムレータ、15…
Tsc温度センサ、16…Te温度センサ、17…吐出
温度センサ、18…Tc温度センサ、20…膨張弁制御
部。
DESCRIPTION OF SYMBOLS 1 ... Outdoor heat exchanger, 2 ... Subcooling circuit, 3 ... Main electric expansion valve, 5 ... Indoor heat exchanger, 6 ... Compressor, 7 ... Four-way switching valve, 8 ... Main path, 10 ... Branch path, 11 … Sub electric expansion valve,
12 ... double tube heat exchanger, 13 ... accumulator, 15 ...
Tsc temperature sensor, 16: Te temperature sensor, 17: discharge temperature sensor, 18: Tc temperature sensor, 20: expansion valve control unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 繁永 昌弥 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 (56)参考文献 実開 昭53−65053(JP,U) (58)調査した分野(Int.Cl.6,DB名) F25B 1/00 F25B 13/00──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaya Shigenaga, 1000 Oya, Okamoto-cho, Kusatsu-shi, Shiga 2 Daiga Industries Co., Ltd. Shiga Works (56) Reference Reference 58) Field surveyed (Int.Cl. 6 , DB name) F25B 1/00 F25B 13/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凝縮器(1)とメイン膨張弁(3)との間に
接続された過冷却用熱交換器(12)と、上記凝縮器(1)
と上記過冷却用熱交換器(12)との間に接続されて上記
過冷却用熱交換器(12)に過冷却用冷媒を供給するサブ
膨張弁(11)とが構成する分岐型の過冷却回路(2)を有
する冷凍装置の制御方法であって、 蒸発器(5)の入口での冷媒温度TeをTe温度センサ
(16)で検出し、 上記過冷却用熱交換器(12)の出口での冷媒温度Tscを
Tsc温度センサ(15)で検出し、 上記蒸発器(5)の入口での冷媒温度Teが、上記入口で
の冷媒の乾き度が略零になる冷媒温度になるように、上
記蒸発器(5)の入口での冷媒温度Teと過冷却用熱交換
器(12)の出口での冷媒温度Tscに基づいて、上記サ
ブ膨張弁(11)の開度を制御することを特徴とする冷凍
装置の制御方法。
1. A supercooling heat exchanger (12) connected between a condenser (1) and a main expansion valve (3), and the condenser (1).
And a sub-expansion valve (11) connected between the sub-cooling heat exchanger (12) and the sub-expansion valve (11) for supplying the sub-cooling refrigerant to the sub-cooling heat exchanger (12). A method for controlling a refrigerating apparatus having a cooling circuit (2), comprising: detecting a refrigerant temperature Te at an inlet of an evaporator (5) by a Te temperature sensor;
(16), the refrigerant temperature Tsc at the outlet of the supercooling heat exchanger (12) is detected by the Tsc temperature sensor (15), and the refrigerant temperature Te at the inlet of the evaporator (5) is: The refrigerant temperature Te at the inlet of the evaporator (5) and the refrigerant temperature Tsc at the outlet of the subcooling heat exchanger (12) are adjusted so that the refrigerant has a temperature at which the dryness of the refrigerant at the inlet becomes substantially zero. And controlling the opening degree of the sub-expansion valve (11) based on the control method.
【請求項2】 凝縮器(1)とメイン膨張弁(3)との間に
接続された過冷却用熱交換器(12)と、上記凝縮器(1)
と上記過冷却用熱交換器(12)との間に接続され上記過
冷却用熱交換器(12)に過冷却用冷媒を供給するサブ膨
張弁(11)とが構成する分岐型の過冷却回路(2)を有す
る冷凍装置であって、 蒸発器(5)の入口での冷媒温度Teを検出するTe温度
センサ(16)と、 上記過冷却用熱交換器(12)の出口での冷媒温度Tscを
検出するTsc温度センサ(15)と、 上記蒸発器(5)の入口での冷媒温度が、上記入口での冷
媒の乾き度が略零になる冷媒温度になるように、上記蒸
発器(5)の入口での冷媒温度Teと過冷却用熱交換器
(12)の出口での冷媒温度Tscに基づいて、上記サ
ブ膨張弁(11)の開度を制御するサブ膨張弁制御手段
(20)を備えていることを特徴とする冷凍装置。
2. A supercooling heat exchanger (12) connected between a condenser (1) and a main expansion valve (3), and the condenser (1).
And a sub-expansion valve (11) connected between the subcooling heat exchanger (12) and the subcooling heat exchanger (12) for supplying the subcooling refrigerant to the subcooling heat exchanger (12). A refrigeration apparatus having a circuit (2), a Te temperature sensor (16) for detecting a refrigerant temperature Te at an inlet of an evaporator (5), and a refrigerant at an outlet of the supercooling heat exchanger (12). A Tsc temperature sensor (15) for detecting the temperature Tsc; and the evaporator so that the refrigerant temperature at the inlet of the evaporator (5) becomes a refrigerant temperature at which the dryness of the refrigerant at the inlet becomes substantially zero. (5) Refrigerant temperature Te at inlet and subcooling heat exchanger
(12) a sub-expansion valve control means for controlling the opening of the sub-expansion valve (11) based on the refrigerant temperature Tsc at the outlet
A refrigeration apparatus comprising (20).
JP8194481A 1996-07-24 1996-07-24 Refrigeration device control method and refrigeration device Expired - Fee Related JP2856160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8194481A JP2856160B2 (en) 1996-07-24 1996-07-24 Refrigeration device control method and refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8194481A JP2856160B2 (en) 1996-07-24 1996-07-24 Refrigeration device control method and refrigeration device

Publications (2)

Publication Number Publication Date
JPH1038399A JPH1038399A (en) 1998-02-13
JP2856160B2 true JP2856160B2 (en) 1999-02-10

Family

ID=16325263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8194481A Expired - Fee Related JP2856160B2 (en) 1996-07-24 1996-07-24 Refrigeration device control method and refrigeration device

Country Status (1)

Country Link
JP (1) JP2856160B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3440910B2 (en) * 2000-02-17 2003-08-25 ダイキン工業株式会社 Refrigeration equipment
EP1762794B1 (en) * 1999-10-18 2017-03-22 Daikin Industries, Ltd. Refrigerating device
KR100618212B1 (en) * 2003-10-16 2006-09-01 엘지전자 주식회사 Control system and method for refrigerant temperature of air conditioner
KR101114325B1 (en) 2004-05-11 2012-02-14 엘지전자 주식회사 Air conditioner
KR100624639B1 (en) 2004-12-17 2006-09-21 이태한 A heat pump system
JP4696634B2 (en) * 2005-03-28 2011-06-08 アイシン精機株式会社 Engine driven air conditioner
KR101227475B1 (en) 2005-08-31 2013-01-30 엘지전자 주식회사 Air conditioner
JP2007085706A (en) * 2005-09-26 2007-04-05 Sanyo Electric Co Ltd Refrigerating device
JP5144959B2 (en) * 2007-05-25 2013-02-13 三菱重工業株式会社 Heat source machine and control method thereof
JP2011179697A (en) * 2010-02-26 2011-09-15 Panasonic Corp Refrigerating cycle device and water heating/cooling device
WO2021192074A1 (en) * 2020-03-25 2021-09-30 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH1038399A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US5309733A (en) Air-conditioning system
US7155928B2 (en) Refrigerating apparatus
EP1659348B1 (en) Freezing apparatus
JP3894221B1 (en) Air conditioner
EP2339269B1 (en) Air conditioner
JP2856160B2 (en) Refrigeration device control method and refrigeration device
JP2007057220A (en) Refrigeration device
US7028502B2 (en) Refrigeration equipment
JP3263579B2 (en) Multi-room type air conditioner and heating method
JPH05332630A (en) Air conditioner
JP2000018737A (en) Air-conditioner
JP2500519B2 (en) Operation control device for air conditioner
JP3334222B2 (en) Air conditioner
KR19990081638A (en) Multi type air conditioner and control method
JP3829340B2 (en) Air conditioner
JP4767340B2 (en) Heat pump control device
JP3317170B2 (en) Refrigeration equipment
JP2684845B2 (en) Operation control device for air conditioner
JP3511161B2 (en) Air conditioner
JP3189492B2 (en) Operation control device for air conditioner
JP3149625B2 (en) Operation control device for air conditioner
JP2664421B2 (en) Air conditioner
JPH1038413A (en) Air conditioner
JP3059886B2 (en) Refrigeration equipment
JP3353367B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees