JP2853580B2 - Dissolution treatment method for chemical analysis samples - Google Patents

Dissolution treatment method for chemical analysis samples

Info

Publication number
JP2853580B2
JP2853580B2 JP6191087A JP19108794A JP2853580B2 JP 2853580 B2 JP2853580 B2 JP 2853580B2 JP 6191087 A JP6191087 A JP 6191087A JP 19108794 A JP19108794 A JP 19108794A JP 2853580 B2 JP2853580 B2 JP 2853580B2
Authority
JP
Japan
Prior art keywords
sample
melting
crucible
melt
chemical analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6191087A
Other languages
Japanese (ja)
Other versions
JPH0835920A (en
Inventor
多紀 斎田
亨 岡沢
修 川崎
嘉弘 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6191087A priority Critical patent/JP2853580B2/en
Publication of JPH0835920A publication Critical patent/JPH0835920A/en
Application granted granted Critical
Publication of JP2853580B2 publication Critical patent/JP2853580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、蒸発、揮発性の少な
い固形試料の化学分析用試料の溶解処理方法に関するも
ので、鉄鋼のみならず化学、医学等幅広い分野で利用で
きる。特に、ICP(Inductively Cou
pled Plasma;高周波誘導結合プラズマ)発
光分光分析法、原子吸光分析法等の自動前処理として活
用できる化学分析用試料の溶解処理方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dissolving a sample for chemical analysis of a solid sample having low evaporation and volatility, and can be used not only in steel but also in a wide range of fields such as chemistry and medicine. In particular, ICP (Inductively Cou)
The present invention relates to a method for dissolving a sample for chemical analysis, which can be used as an automatic pretreatment such as pleated plasma (high-frequency inductively coupled plasma) emission spectroscopy and atomic absorption spectroscopy.

【0002】[0002]

【従来の技術】例えば、鉄鋼、スラグ、鉄鉱石等の化学
分析用試料の溶解は、迅速、正確かつ安全を期すため
に、試料の品種に応じた適切な分解剤を選ぶこと、分析
成分の定量系における液性に合致した分解剤を選ぶこ
と、分析成分または共存成分の分解剤に対する特性を考
慮すること、分解剤の空試験値を考慮すること、毒性、
爆発、火災などの危険性を考慮することが必要である。
具体的には、鉄鋼試料全般にほとんど共通な分解剤は、
王水または塩酸と硝酸の併用であるが、これらでも分解
困難な場合、例えば、酸化物、炭化物、窒化物などを含
む場合は、酸不溶解残渣をこし分けて融解し、合併する
必要がある。
2. Description of the Related Art For example, in order to dissolve a sample for chemical analysis of steel, slag, iron ore, etc., in order to ensure quickness, accuracy and safety, it is necessary to select an appropriate decomposing agent according to the type of the sample, Choose a disintegrant that is compatible with the liquidity in the quantitative system, consider the characteristics of the analytical or co-existing components for the disintegrant,
It is necessary to consider the danger of explosion and fire.
Specifically, decomposers that are almost common in all steel samples are:
It is a combination of aqua regia or hydrochloric acid and nitric acid, but when these are also difficult to decompose, for example, when they contain oxides, carbides, nitrides, etc., it is necessary to separate and melt the acid-insoluble residue and merge them .

【0003】従来、化学分析用試料の溶解処理は、その
殆どが手作業で行われており、分析結果のフィードバッ
クの大幅な遅延を招き、その全自動化あるいは主要部の
自動化と迅速性が要求されていた。従来の手作業による
化学分析用融解処理試料の溶解は、白金るつぼ内に粉状
試料と溶融剤を混入し、この白金るつぼを800〜12
00℃の電気炉に入れて内部の収容物を完全に融解さ
せ、しかるのちバーナー等で白金るつぼを加熱しつつ、
るつぼ挟みを用いて手作業で白金るつぼを揺り動かしな
がら、図4に示すとおり、白金るつぼ31内壁に試料融
解物32を広範囲に付着させ、以降の工程での試料融解
物32の溶解を容易とする。そして、そのまま静置して
融解試料を凝固させたのち、図3に示すとおり、希酸3
3の入ったガラスビーカー等の容器34に融解試料の凝
固した白金るつぼ31を投入し、これを熱板35上で8
0〜90℃に加熱して約40〜50分かけて溶解を完了
させていた。
Heretofore, most of the dissolution processing of a sample for chemical analysis has been performed manually, resulting in a significant delay in feedback of the analysis result, and it is required to be fully automated or to automate and speed up the main part. I was Conventional melting of a melting sample for chemical analysis by manual operation involves mixing a powdery sample and a melting agent into a platinum crucible, and placing the platinum crucible in an 800 to 12 mm.
Put in an electric furnace at 00 ° C to completely melt the contents inside, and then heat the platinum crucible with a burner etc.
While rocking the platinum crucible by hand using a crucible pinch, as shown in FIG. 4, the sample melt 32 is adhered to a wide range of the inner wall of the platinum crucible 31 to facilitate dissolution of the sample melt 32 in the subsequent steps. . Then, the molten sample was allowed to stand and solidified to solidify, and then, as shown in FIG.
The solidified platinum crucible 31 of the molten sample is put into a container 34 such as a glass beaker containing 3 and placed on a hot plate 35 for 8 minutes.
The dissolution was completed by heating to 0 to 90 ° C. in about 40 to 50 minutes.

【0004】上記手作業による化学分析用融解処理試料
の溶解作業において、白金るつぼ31内壁に試料融解物
32を広範囲に付着させる作業は、かなりの熟練を要す
るばかりでなく、約1000℃の高温融解物のため危険
であり、るつぼ挟みで白金るつぼを掴んで揺り動かす等
作業性が悪い。また、融解処理後試料の溶解を完了させ
るには、一般的に約40〜50分の長時間が必要であ
り、融解処理時作業の熟練度によっては、解け残りが発
生し再処理を行わなければならないという問題点を有し
ている。
[0004] In the above manual melting operation of the melting sample for chemical analysis, the operation of attaching the sample melt 32 to the inner wall of the platinum crucible 31 over a wide area requires not only considerable skill but also high temperature melting at about 1000 ° C. It is dangerous because it is an object, and the workability is poor, such as grabbing and shaking the platinum crucible between crucibles. In addition, it generally takes about 40 to 50 minutes to complete the dissolution of the sample after the melting process, and depending on the skill of the melting process, unmelting remains and reprocessing must be performed. There is a problem that must be.

【0005】化学分析用融解処理試料の溶解の自動化方
法としては、固形試料を溶融助剤と共に溶融るつぼに装
填し加熱溶融して後冷却凝固させ、次いで酸添加、加熱
により溶解させる化学分析用溶液試料の調整方法におい
て、前記溶融るつぼ内の固形試料の加熱溶融を同るつぼ
を耐熱耐酸容器に収納した状態で誘導加熱により行い、
前記酸添加後、耐熱耐酸容器内に高温流体を吹込みつつ
該るつぼ内凝固試料を加熱溶解する方法(特開昭55−
4521号公報)が提案されている。
[0005] As an automatic method for dissolving a melt-processed sample for chemical analysis, a solid sample is loaded into a melting crucible together with a melting aid, heated and melted, cooled and solidified, and then added with an acid and dissolved by heating. In the sample preparation method, the heating and melting of the solid sample in the melting crucible is performed by induction heating in a state where the same crucible is housed in a heat- and acid-resistant container,
After the addition of the acid, a method of heating and dissolving the solidified sample in the crucible while blowing a high-temperature fluid into the heat- and acid-resistant container (Japanese Patent Application Laid-Open No.
No. 4521) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記特開昭55−45
21号公報に開示の方法は、手操作を伴うことなく連続
的に迅速確実に実施できるが、溶融るつぼを耐熱耐酸容
器に収納した状態で誘導加熱しつつ耐熱耐酸容器内に高
温流体を吹込み該るつぼ内凝固試料を加熱溶解するた
め、凝固試料を迅速に溶解させ、かつ溶液を飛散させな
いよう高温流体の吹込み量の調節が困難である。
Problems to be Solved by the Invention
The method disclosed in Japanese Patent Publication No. 21 can be carried out quickly and reliably without manual operation, but high-temperature fluid is blown into the heat- and acid-resistant container while induction heating is performed while the melting crucible is housed in the heat- and acid-resistant container. Since the coagulated sample in the crucible is heated and dissolved, it is difficult to rapidly dissolve the coagulated sample and to adjust the blowing amount of the high-temperature fluid so that the solution is not scattered.

【0007】この発明の目的は、前記化学分析用試料の
溶解処理を、迅速、正確にかつ安全に自動的に完了させ
ると共に、従来法と同等以上の分析精度の得られる化学
分析用融解処理試料の溶解方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to dissolve a sample for chemical analysis automatically, quickly, accurately and safely, and to obtain a molten sample for chemical analysis which has an analysis accuracy equal to or higher than that of a conventional method. To provide a method for dissolving

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意試験研究を重ねた。その結果、溶融る
つぼ内で固形試料を融解時に剥離剤を添加して融解する
ことによって、るつぼ内壁に融解物を付着させるための
作業が不要となること、融解させたのち冷却凝固させ、
希酸を添加した容器内に溶融るつぼを収納した状態で超
音波恒温槽に入れて溶解することによって、10〜15
分で溶解が完了することを究明し、この発明に到達し
た。
Means for Solving the Problems The present inventors have intensively studied and studied to achieve the above object. As a result, the solid sample in the melting crucible is melted by adding a release agent at the time of melting, so that the work for attaching the melt to the crucible inner wall becomes unnecessary, and after being melted, cooled and solidified,
By dissolving the molten crucible in a state in which the melting crucible is accommodated in a container to which the dilute acid has been added, by placing it in an ultrasonic thermostat, 10 to 15
It was determined that the dissolution was completed in minutes, and the present invention was reached.

【0009】すなわちこの発明は、固形試料を溶融助剤
と共に溶融るつぼに装填し、加熱融解したのち冷却凝固
させ、次いで酸液中で加熱して凝固試料を溶解させる化
学分析用融解処理試料の溶解方法において、溶融るつぼ
に固形試料を溶融助剤および剥離剤と共に装填し、加熱
融解したのちそのまま冷却凝固させ、酸液容器内に溶融
るつぼを投入して超音波恒温槽に入れて溶解することを
特徴とする化学分析用融解処理試料の溶解方法である。
That is, according to the present invention, a solid sample is charged into a melting crucible together with a melting aid, heated and melted, cooled and solidified, and then heated in an acid solution to melt the solidified sample. In the method, a solid sample is loaded into a melting crucible together with a melting aid and a release agent, and then heated and melted, then cooled and solidified as it is, and the melting crucible is put into an acid solution container and put into an ultrasonic thermostat to dissolve. This is a method for dissolving a melt-processed sample for chemical analysis.

【0010】[0010]

【作用】この発明においては、溶融るつぼに固形試料を
溶融助剤および剥離剤と共に装填し、加熱融解したのち
そのまま冷却凝固させることによって、溶解を容易にす
るため、溶融るつぼ内壁に試料融解物を広範囲に付着さ
せなくても、試料融解物の剥離が剥離剤により促進され
て容易に剥離するため、試料融解物の溶解が促進され
る。また、酸液容器内に溶融るつぼを投入して超音波恒
温槽に入れて溶解することによって、超音波の振動によ
って溶解が促進され、10〜15分という極めて短時間
で溶解が完了する。したがって、従来の手作業のように
溶融るつぼ内壁に試料融解物を広範囲に付着させる必要
がなく、危険かつ熟練を要する作業を不用とすることが
できる。
In the present invention, a solid sample is loaded into a melting crucible together with a melting aid and a release agent, and is heated and melted, and then cooled and solidified as it is. Even if the sample melt is not adhered over a wide area, the peeling of the sample melt is facilitated by the release agent and the sample melt is easily peeled, so that the dissolution of the sample melt is promoted. Further, the melting crucible is put into the acid solution container and put into an ultrasonic thermostat to dissolve, so that the dissolution is promoted by the vibration of the ultrasonic wave, and the dissolution is completed in a very short time of 10 to 15 minutes. Therefore, unlike the conventional manual operation, it is not necessary to adhere the sample melt to the inner wall of the melting crucible in a wide range, and it is not necessary to perform dangerous and skillful operations.

【0011】この発明において使用する溶融るつぼとし
ては、試料融解物を溶解する酸液中に投入するため耐酸
性に優れて連続使用できることが必要であり、一般的に
白金るつぼが使用される。この発明において使用する溶
融助剤としては、ほう酸リチウムまたはほう酸ナトリウ
ム、炭酸ナトリウムおよび臭化ナトリウムの混合物等を
使用することができる。また、この発明において使用す
る剥離剤としては、ヨウ化アンモニウム、臭化アンモニ
ウム、炭酸アンモニウム、ほう酸アンモニウム等を用い
ることができる。さらに、この発明において試料融解物
を溶解する酸液としては、所定濃度にした溶媒、例え
ば、塩酸、過塩素酸、硝酸等の低濃度酸水溶液を使用す
ることができる。また、溶解する試料の品種に応じて、
王水、塩酸と硝酸の併用を用いることもできる。
The melting crucible used in the present invention is required to have excellent acid resistance and to be used continuously because it is put into an acid solution for dissolving a sample melt, and a platinum crucible is generally used. As the melting aid used in the present invention, lithium borate or sodium borate, a mixture of sodium carbonate and sodium bromide, or the like can be used. Further, as the release agent used in the present invention, ammonium iodide, ammonium bromide, ammonium carbonate, ammonium borate, and the like can be used. Further, in the present invention, a solvent having a predetermined concentration, for example, a low-concentration aqueous acid solution such as hydrochloric acid, perchloric acid, or nitric acid can be used as the acid solution for dissolving the sample melt. Also, depending on the type of sample to be dissolved,
Aqua regia, or a combination of hydrochloric acid and nitric acid can also be used.

【0012】[0012]

【実施例】白金るつぼ内にトータルFe:0.47%、
SiO2:36.39%、CaO:36.33%の高炉
スラグ標準試料BS No.100(粉状試料)0.1
gと溶融助剤のホウ酸リチウム2.5gおよび剥離剤と
して4%ヨウ化アンモニウム2mlを混入し、これを約
1000℃の電気炉内に装入して融解させたのち、電気
炉から取り出してそのまま静置し、図2に示すとおり、
試料融解物1を凝固させた。試料融解物1の凝固した白
金るつぼ2は、図1に示すとおり、ガラス製のるつぼフ
ック3に掛け、100℃に保持した超音波恒温槽4に浸
漬した3%塩酸水溶液5の入ったガラスビーカー6にる
つぼフック3を降下させて前記白金るつぼ2を3%塩酸
水溶液5中に投入し、26kHzの超音波を発振させて
試料融解物1を溶解させたところ、10〜15分で溶解
したので、ICP発光分光分析法により高炉スラグ中の
トータルFe、SiO2、CaOを分析した。それを1
0回繰り返して各平均値、バラツキ幅、標準偏差、変動
係数を求めた。その結果を表1に本発明法として示す。
[Example] Total Fe: 0.47% in a platinum crucible,
Blast furnace slag standard sample BS No. of SiO 2 : 36.39%, CaO: 36.33% 100 (powder sample) 0.1
g, 2.5 g of lithium borate as a melting aid and 2 ml of 4% ammonium iodide as a stripping agent, and charged into an electric furnace at about 1000 ° C. to be melted, and then taken out of the electric furnace. Leave as it is, and as shown in FIG.
Sample melt 1 was solidified. The solidified platinum crucible 2 of the sample melt 1 was hung on a crucible hook 3 made of glass and immersed in an ultrasonic thermostat 4 kept at 100 ° C., as shown in FIG. 6, the crucible hook 3 was lowered to put the platinum crucible 2 into the 3% hydrochloric acid aqueous solution 5, and the ultrasonic wave of 26 kHz was oscillated to dissolve the sample melt 1. The melt was dissolved in 10 to 15 minutes. The total Fe, SiO 2 , and CaO in the blast furnace slag were analyzed by ICP emission spectroscopy. 1
The average value, the variation width, the standard deviation, and the variation coefficient were obtained by repeating 0 times. The results are shown in Table 1 as the method of the present invention.

【0013】また、比較のため、白金るつぼ内に高炉ス
ラグ標準試料BS No.100(粉状試料)0.1g
と溶融助剤のホウ酸リチウム2.5gを混入し、これを
約1000℃の電気炉内に装入して融解させたのち、バ
ーナー等で白金るつぼを加熱しながら、るつぼ挟みを用
いて手作業で白金るつぼを揺り動かしながら、図4に示
すとおり、白金るつぼ31内壁に試料融解物32を広範
囲に付着させ、そのまま試料融解物32を冷却凝固させ
たのち、図3に示すとおり、3%塩酸水溶液33の入っ
たガラスビーカー34に試料融解物32の凝固した白金
るつぼ31を投入し、これを表面温度200℃前後の熱
板35上で80〜90℃に加熱して溶解させたところ、
約40〜50分で溶解したので、ICP発光分光分析法
により高炉スラグ中のトータルFe、SiO2、CaO
を分析した。それを10回繰り返して各平均値、バラツ
キ幅、標準偏差、変動係数を求めた。その結果を表1に
従来法として示す。なお、表1中の変動係数は、変動係
数=(標準偏差/平均値)×100により求めた値であ
る。
For comparison, a blast furnace slag standard sample BS No. was placed in a platinum crucible. 0.1 g of 100 (powder sample)
And 2.5 g of lithium borate as a melting aid, and the mixture was placed in an electric furnace at about 1000 ° C. to be melted. Then, while heating the platinum crucible with a burner or the like, using a crucible sandwicher, While rocking the platinum crucible in the operation, as shown in FIG. 4, the sample melt 32 is adhered to the inner wall of the platinum crucible 31 over a wide area, and the sample melt 32 is cooled and solidified as it is, as shown in FIG. The solidified platinum crucible 31 of the sample melt 32 was put into a glass beaker 34 containing an aqueous solution 33, and this was heated to 80 to 90 ° C. on a hot plate 35 having a surface temperature of about 200 ° C. to be melted.
Since it was dissolved in about 40 to 50 minutes, total Fe, SiO 2 , and CaO in the blast furnace slag were determined by ICP emission spectroscopy.
Was analyzed. This was repeated 10 times to obtain each average value, variation width, standard deviation, and variation coefficient. The results are shown in Table 1 as a conventional method. Note that the coefficient of variation in Table 1 is a value obtained from the coefficient of variation = (standard deviation / average value) × 100.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示すとおり、本発明法は従来法に比
較し、迅速、高精度かつ安全に化学分析が可能であり、
特に溶解し難いSiO2の分析精度が向上している。こ
のことから、剥離剤を用いると共に、超音波恒温槽を用
いることによって、融解試料の溶解が十分に行われ、高
炉ズラグの溶解が十分に行われたことを示している。
[0015] As shown in Table 1, the method of the present invention enables rapid, high-precision and safe chemical analysis, as compared with the conventional method.
Particularly, the analysis accuracy of SiO 2 , which is difficult to dissolve, is improved. This indicates that the use of the peeling agent and the use of the ultrasonic thermostat sufficiently dissolve the molten sample and sufficiently dissolve the blast furnace slag.

【0016】[0016]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、るつぼ内壁に試料融解物を広範囲に付着させる危険
かつ熟練を要する作業が不用となり、作業の熟練度から
生じる分析結果のバラツキが小さくなり、試料融解物の
溶解処理時間を1/3〜5に短縮できると共に、従来法
と同等あるいはそれ以上の分析精度を得ることができ
る。
As described above, according to the method of the present invention, there is no need for a dangerous and skill-intensive operation for adhering the sample melt to the inner wall of the crucible over a wide area, and the variation in the analytical results resulting from the skill level of the operation is small. Thus, the time required for dissolving the sample melt can be reduced to 1/3 to 5 and the analysis accuracy equivalent to or higher than that of the conventional method can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における本発明法の試料融解物の溶解方
法の説明図である。
FIG. 1 is an explanatory diagram of a method for dissolving a sample melt according to the method of the present invention in an example.

【図2】本発明法により融解した試料融解物の冷却凝固
後の状況説明図である。
FIG. 2 is an explanatory view of a state after cooling and solidifying a sample melt melted by the method of the present invention.

【図3】実施例における従来法の試料融解物の溶解方法
の説明図である。
FIG. 3 is an explanatory diagram of a conventional method for dissolving a sample melt in a working example.

【図4】従来法により融解した試料融解物の冷却凝固後
の状況説明図である。
FIG. 4 is an explanatory diagram showing a situation after cooling and solidifying a sample melt melted by a conventional method.

【符号の説明】[Explanation of symbols]

1、32 試料融解物 2、31 白金るつぼ 3 るつぼフック 4 超音波恒温槽 5、33 3%塩酸水溶液 6、34 ガラスビーカー 35 熱板 1,32 Sample melt 2,31 Platinum crucible 3 Crucible hook 4 Ultrasonic oven 5,33 3% hydrochloric acid aqueous solution 6,34 Glass beaker 35 Hot plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸田 嘉弘 和歌山県和歌山市湊1850番地 住友金属 工業株式会社 和歌山製鉄所内 (56)参考文献 特開 昭59−18437(JP,A) 特開 昭58−50446(JP,A) 特開 昭55−4521(JP,A) 特開 平5−273132(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 1/28 G01N 33/20────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihiro Maruta 1850 Minato, Wakayama-shi, Wakayama Sumitomo Metal Industries, Ltd. Wakayama Works (56) References JP-A-59-18437 (JP, A) JP-A-58- 50446 (JP, A) JP-A-55-4521 (JP, A) JP-A-5-273132 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 1/28 G01N 33 / 20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固形試料を溶融助剤と共に溶融るつぼに
装填し、加熱融解したのち冷却凝固させ、次いで酸液中
で加熱して凝固試料を溶解させる化学分析用試料の溶解
処理方法において、溶融るつぼに固形試料を溶融助剤お
よび剥離剤と共に装填し、加熱融解したのちそのまま冷
却凝固させ、酸液容器内に溶融るつぼを投入して超音波
恒温槽に入れて溶解することを特徴とする化学分析用試
料の溶解処理方法。
In a method for dissolving a sample for chemical analysis, a solid sample is charged into a melting crucible together with a melting aid, heated and melted, cooled and solidified, and then heated in an acid solution to melt the solidified sample. A chemistry characterized by loading a solid sample together with a melting aid and a release agent into a crucible, heating and melting, then cooling and solidifying as it is, then putting the melting crucible into an acid solution container and dissolving it in an ultrasonic thermostat. A method for dissolving a sample for analysis.
JP6191087A 1994-07-20 1994-07-20 Dissolution treatment method for chemical analysis samples Expired - Lifetime JP2853580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6191087A JP2853580B2 (en) 1994-07-20 1994-07-20 Dissolution treatment method for chemical analysis samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6191087A JP2853580B2 (en) 1994-07-20 1994-07-20 Dissolution treatment method for chemical analysis samples

Publications (2)

Publication Number Publication Date
JPH0835920A JPH0835920A (en) 1996-02-06
JP2853580B2 true JP2853580B2 (en) 1999-02-03

Family

ID=16268647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6191087A Expired - Lifetime JP2853580B2 (en) 1994-07-20 1994-07-20 Dissolution treatment method for chemical analysis samples

Country Status (1)

Country Link
JP (1) JP2853580B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401769B1 (en) * 2001-05-08 2003-10-17 현대자동차주식회사 Method of pretreating of sintered alloy or metals using ultrasonic
CN114910467A (en) * 2022-04-28 2022-08-16 中国第一重型机械股份公司 Metallurgical slag on-line monitoring and analyzing method and system
CN114778266B (en) * 2022-04-28 2024-05-07 中国第一重型机械股份公司 High-temperature melting digestion method and device for chemical analysis sample

Also Published As

Publication number Publication date
JPH0835920A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
TW201221492A (en) Method for eliminating carbon contamination of platinum-containing components for a glass making apparatus
RU2531333C2 (en) Method of extraction of platinoids from spent automotive catalysts
JP2853580B2 (en) Dissolution treatment method for chemical analysis samples
JP4291318B2 (en) Glass bead manufacturing apparatus, glass bead manufacturing method, and fluorescent X-ray analysis apparatus and fluorescent X-ray analysis method for analyzing glass beads manufactured by the apparatus or method
JP2010197183A (en) Analysis method of trace element in alloy
US6241800B1 (en) Acid fluxes for metal reclamation from contaminated solids
Subramanian et al. Recovery of niobium and tantalum from low grade tin slag-A hydrometallurgical approach
RU2521035C2 (en) Method of recovery of secondary platinum with radioactive plutonium contamination
JP3415599B2 (en) Method for producing glass bead for X-ray fluorescence analysis
US3804939A (en) Method of precipitating americium oxide from a mixture of americium and plutonium metals in a fused salt bath containing puo2
KR101974334B1 (en) Method for manufacturing glassbead
US3841863A (en) Purification of platinum
KR101889163B1 (en) Manufacturing method for glass-bead of iron-chrome alloy iron
Blanchette A quick and reliable fusion method for silicon and ferrosilicon
JPS58123441A (en) Preparation of bead sample for analyzing component
JPS5824495B2 (en) Manufacturing method of heat-resistant conductive aluminum alloy
JP4077741B2 (en) Treatment method for boron-containing waste
Hitchen et al. Titrimetric determination of uranium in low-grade ores by the ferrous ion-phosphoric acid reduction method
US2991174A (en) Process of producing chromium steel
JPH0352010B2 (en)
US4568487A (en) Depleted-uranium recovery from and cleaning of target sands
JPH07308752A (en) Method for removing low melting metal core
Shevtsov et al. Solubility of Oxygen in High-Manganese Iron Melts
US2043574A (en) Process for treating metals
JPH06221975A (en) Method of preventing evaporation of sulfer in preparing sample for x-ray fluorescence analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees