JP2847533B2 - Manufacturing method of metal composite laminate - Google Patents

Manufacturing method of metal composite laminate

Info

Publication number
JP2847533B2
JP2847533B2 JP1181481A JP18148189A JP2847533B2 JP 2847533 B2 JP2847533 B2 JP 2847533B2 JP 1181481 A JP1181481 A JP 1181481A JP 18148189 A JP18148189 A JP 18148189A JP 2847533 B2 JP2847533 B2 JP 2847533B2
Authority
JP
Japan
Prior art keywords
metal plate
composite laminate
insulating resin
resin sheet
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1181481A
Other languages
Japanese (ja)
Other versions
JPH0345319A (en
Inventor
良一 山本
啓至 永松
五郎 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP1181481A priority Critical patent/JP2847533B2/en
Publication of JPH0345319A publication Critical patent/JPH0345319A/en
Application granted granted Critical
Publication of JP2847533B2 publication Critical patent/JP2847533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント配線板等に用いられる金属複合積
層板を簡単にして強度的に優れ、しかも、寸法精度良好
に製造する方法に関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a method for producing a metal composite laminate used for a printed wiring board or the like in a simplified manner, excellent in strength, and with good dimensional accuracy. is there.

〔従来の技術〕[Conventional technology]

プリント配線板等の金属複合積層板を製造する方法と
しては、第7図の側断面図で示す如く、加熱・加圧装置
2を備えている真空チャンバー1内に、貫通孔4を穿設
してある金属板3及びその両面にエポキシ樹脂含浸ガラ
ス繊維布等の絶縁樹脂シート5を重ね合せ、これら金属
板3及び絶縁樹脂シート5を銅箔等の被覆材6により挟
み、更に化粧板7を介在させて装入する。しかる後、真
空チャンバー1の内部の空気を排出して減圧し、加熱・
加圧装置2により加熱加圧することによって、上記金属
板3、絶縁樹脂シート5及び被覆材6を積層一体化する
方法が、従来から知られている。
As a method of manufacturing a metal composite laminate such as a printed wiring board, a through hole 4 is formed in a vacuum chamber 1 provided with a heating / pressing device 2 as shown in a side sectional view of FIG. The metal plate 3 and the insulating resin sheet 5 such as an epoxy resin impregnated glass fiber cloth are superimposed on both surfaces thereof, and the metal plate 3 and the insulating resin sheet 5 are sandwiched by a covering material 6 such as a copper foil. Insert with intervening. Thereafter, the air inside the vacuum chamber 1 is exhausted to reduce the pressure,
A method of laminating and integrating the metal plate 3, the insulating resin sheet 5, and the coating material 6 by heating and pressurizing with the pressurizing device 2 is conventionally known.

〔発明が解決しようとする課題〕 上記従来の方法においては、金属板や絶縁樹脂シート
等の層間に存在している空気は減圧により脱気されるも
のの、ガラス繊維材や樹脂内部に含有されている空気ま
でも完全に脱気することは困難である。通常、減圧後の
適当な時点で加熱・加圧装置2を閉じて加熱加圧するこ
とが行われているが、これであると加熱加圧中に内在し
ている上記の空気が成長し、特に減圧の影響を受けやす
い金属複合積層板の周辺部に集中して肉眼で見える大き
さの気泡(ボイド)となり、これが金属複合積層板の肉
厚変動、積層材の剥離及び強度低下の原因になるという
問題点を有していた。
[Problems to be Solved by the Invention] In the above conventional method, although air existing between layers such as a metal plate and an insulating resin sheet is degassed by decompression, it is contained in glass fiber material or resin. It is difficult to completely degas even the air that is present. Usually, heating and pressurizing is performed by closing the heating and pressurizing device 2 at an appropriate time after the depressurization. In this case, the above-mentioned air existing during the heating and pressurizing grows. Bubbles having a size visible to the naked eye are concentrated at the periphery of the metal composite laminate, which is susceptible to decompression, and this causes variations in the thickness of the metal composite laminate, peeling of the laminated material, and reduction in strength. There was a problem that.

本発明は上述のような問題点に鑑みなされたものであ
り、金属板等の周辺にゴム弾性を有する耐熱シール材を
介装することによって、金属板等の層間の空気の脱気は
勿論、樹脂内部等に存在している空気が肉眼で見える大
きさの気泡に成長することを防止し、強堅で寸法制度も
良好な金属複合積層板を簡単に製造することができる方
法を提供するものである。
The present invention has been made in view of the above-described problems, and by interposing a heat-resistant sealing material having rubber elasticity around a metal plate or the like, of course, deaeration of air between layers of the metal plate or the like, A method for preventing the air present in a resin or the like from growing into bubbles having a size visible to the naked eye, and providing a method for easily manufacturing a metal composite laminate having a strong and good dimensional accuracy. It is.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る金属複合積層板の製造方法は、加熱・加
圧装置を備えている真空チャンバー内に、金属板と該金
属板の両面に重ね合せた絶縁樹脂シートとを装入し、真
空チャンバー内の空気を排出しつつ、加熱加圧すること
により、上記金属板及び絶縁樹脂シートを積層一体化す
るもので、上記絶縁樹脂シートの上下両面に銅箔や離型
フィルム等の被覆材を重ね合せると共に、金属板及び絶
縁樹脂シートの周辺には、耐熱シール材を介装する。耐
熱シール材は離型性及びゴム弾性を有し、かつ、製造す
る金属複合積層板の厚みよりも若干肉厚になっている。
この耐熱シール材を金属板等の周辺に介装し、真空チャ
ンバー内の加熱・加圧装置により加熱加圧成形すること
を特徴としている。
The method for producing a metal composite laminate according to the present invention comprises the steps of: loading a metal plate and an insulating resin sheet superposed on both surfaces of the metal plate into a vacuum chamber provided with a heating / pressing device; While discharging the air inside, by heating and pressurizing, the metal plate and the insulating resin sheet are laminated and integrated, and a covering material such as a copper foil or a release film is laminated on both upper and lower surfaces of the insulating resin sheet. At the same time, a heat-resistant sealing material is interposed around the metal plate and the insulating resin sheet. The heat-resistant sealing material has releasability and rubber elasticity, and is slightly thicker than the thickness of the metal composite laminate to be manufactured.
It is characterized in that this heat-resistant sealing material is interposed around a metal plate or the like, and is heated and pressed by a heating / pressing device in a vacuum chamber.

〔発明の作用〕[Function of the invention]

本発明においては、真空チャンバー内の空気を排出し
て減圧しつつ加熱加圧すると、耐熱シール材によって囲
繞される内部空間(以下「シール空間」という)が真空
チャンバー全体の内部空間と分離され、当該シール空間
の減圧進行が停止する。更に加熱加圧することにより絶
縁樹脂シート中の樹脂が溶融してシール空間全体に亘り
充填される。これにより一定の減圧下にあるシール空間
の空気圧が逆に増圧状態に転ずるために、絶縁樹脂シー
ト中の樹脂やガラス繊維等の基材、金属板からの空気が
成長して肉眼で見える大きさの気泡となることが防止で
きる。また引き続いての加熱加圧により樹脂内圧が更に
増加するので、微小な気泡がさらに小さく潰されて消失
するようになる。
In the present invention, when the air in the vacuum chamber is discharged and heated and pressurized while reducing the pressure, the internal space surrounded by the heat-resistant sealing material (hereinafter referred to as “seal space”) is separated from the internal space of the entire vacuum chamber, The progress of pressure reduction in the seal space stops. Further heating and pressurization causes the resin in the insulating resin sheet to melt and fill the entire sealing space. As a result, the air pressure in the seal space under a certain reduced pressure reverses to the increased pressure state, so that the air from the base material such as resin or glass fiber in the insulating resin sheet or the metal plate grows and is visible to the naked eye. Can be prevented from becoming bubbles. Further, since the internal pressure of the resin is further increased by the subsequent heating and pressurization, the minute bubbles are further crushed and disappear.

〔実施例〕〔Example〕

次に本発明の実施例を添附の図面において詳述する。 Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は側断面図、第2図は初期の加熱加圧状態の側
断面図、第3図は耐熱シール材を介装した状態の一部切
欠平面図、第4図は最終加熱加圧状態の断面図、第5図
は離型状態の断面図、第6図は製造された金属複合積層
板の断面図である。
1 is a side sectional view, FIG. 2 is a side sectional view in an initial heating and pressing state, FIG. 3 is a partially cutaway plan view with a heat-resistant sealing material interposed, and FIG. FIG. 5 is a cross-sectional view of the released state, and FIG. 6 is a cross-sectional view of the manufactured metal composite laminate.

本発明は、第1図に示す如く、加熱・加圧装置2を備
えている真空チャンバー1の内部に、貫通孔4を有する
金属板3及びこの金属板3の上下両面に絶縁樹脂シート
5、さらに必要であれば銅箔や離型フイルム等の被覆材
6を重ね合せて装入する。金属板3にはアルミニウム
板、銅板、鋼板、ケイ素鋼板、インバー板等があり、用
途により貫通孔を有しないものも使用できる。絶縁樹脂
シート5はガラス繊維や紙等を基材とし、これに熱硬化
性樹脂を含浸したものが好適に使用でき、熱硬化性樹脂
としてはエポキシ樹脂、ポリイミド樹脂、フェノール樹
脂及び不飽和ポリエステル樹脂等がある。さらに基材に
熱可塑性樹脂や耐熱エンプラ樹脂からなるシートを重ね
て使用してもよく、熱可塑性樹脂としてはポリアミド樹
脂、ポリオレフィン樹脂等がある。また、耐熱エンプラ
樹脂にはポリエーテルエーテルケトン樹脂、ポリエーテ
ルイミド樹脂、ポリエーテルサルフォン樹脂等がある。
これらいずれかの樹脂を上記ガラス繊維等の基材に対し
て樹脂量を40重量%以上使用してなる絶縁樹脂シート5
を金属板3の両面に重ね合せて装入し、第3図に示す如
く、金属板3及び絶縁樹脂シート5の外周には耐熱シー
ル材8を介装する。耐熱シール材8はパーフルオロエー
テルゴム、テトラフルオロエチレン−プロピレンゴゴム
等のフッ素系ゴム、シリコーンゴムやフルオロシリコー
ンゴム等のシリコーン系ゴム、フォスファゼン系フッ素
ゴム等のフォスファゼン系ゴム、アクリルゴムやエチレ
ンアクリルゴム等のアクリル系ゴム等からなり、離型性
及びゴム弾性を有している。しかも、耐熱シール材8の
厚みは製造する金属複合積層板の厚みよりも若干肉厚
で、好ましくは0,5mm程度厚い方が良い。この耐熱シー
ル材8は方形の枠状を呈し、上記金属板3及び絶縁樹脂
シート5の四周辺を囲繞するようになっているものを例
示してある。更に耐熱シール材8及び絶縁樹脂シート5
の上下面に被覆板6及び化粧板7を介装し、それらを真
空チャンバー1の内部に装入する。次いで真空チャンバ
ー1内の空気を排出して減圧を開始し、一定の減圧条件
になった時点で加熱・加圧装置2により加熱加圧する。
そうすると加圧前は耐熱シール材8により囲まれている
シール空間も真空チャンバー1の内部と同様に減圧され
るが、第2図に示す如く、耐熱シール材8と被覆板6と
が密着状態になった時点において、シール空間が真空チ
ャンバー1全体の内部空間と分離され、真空チャンバー
1全体の内部空間の減圧が続行していてもシール空間の
減圧進行は停止する。更に加熱加圧を続けると、第4図
に示す如く、耐熱シール材8が弧状に折曲し、絶縁樹脂
シート5中の樹脂が溶融流動してシール空間全体に充填
されるようになる。耐熱シール材8と被覆板6が密着状
態になった後は一定の減圧下にあるシール空間の空気圧
が逆に増圧状態に転ずるために、絶縁樹脂シート5中の
樹脂や基材、金属板3から微小な気泡が発生したり、成
長しないようになる。なお、この状態に達した時は真空
チャンバー1全体の減圧は不要になるので、そのまま減
圧下においても、大気圧下においても、いずれでも良
い。しかし、大気圧下においた方が真空ポンプ9等の作
動が不必要となるので、省エネルギーのためにも好まし
い。また引き続く加熱加圧により樹脂圧力が更に増加す
るので、樹脂内の微小な気泡がさらに小さく潰されて消
失するようになる。そして上記加圧状態を保ち、絶縁樹
脂シート5の樹脂として熱硬化性樹脂を使用した場合は
それが硬化するまで、また熱可塑性樹脂の場合は冷却、
固化するまで放置し、第5図に示す如く、離型する。更
に、第6図に示す如く、側縁部を切除して金属複合積層
板を製造するものである。
As shown in FIG. 1, a metal plate 3 having a through hole 4 and insulating resin sheets 5 on both upper and lower surfaces of the metal plate 3 are provided inside a vacuum chamber 1 having a heating / pressing device 2 as shown in FIG. If necessary, a covering material 6 such as a copper foil or a release film is overlaid and charged. Examples of the metal plate 3 include an aluminum plate, a copper plate, a steel plate, a silicon steel plate, and an invar plate, and a plate having no through hole may be used depending on the application. The insulating resin sheet 5 is preferably made of glass fiber or paper as a base material and impregnated with a thermosetting resin. The thermosetting resin may be an epoxy resin, a polyimide resin, a phenol resin or an unsaturated polyester resin. Etc. Further, a sheet made of a thermoplastic resin or a heat-resistant engineering plastic resin may be laminated on the base material and used. Examples of the thermoplastic resin include a polyamide resin and a polyolefin resin. In addition, examples of heat-resistant engineering plastic resins include polyetheretherketone resin, polyetherimide resin, and polyethersulfone resin.
An insulating resin sheet 5 using any one of these resins in an amount of 40% by weight or more based on the base material such as glass fiber.
Are placed on both surfaces of the metal plate 3 in a superposed manner, and a heat-resistant sealing material 8 is interposed on the outer periphery of the metal plate 3 and the insulating resin sheet 5 as shown in FIG. The heat-resistant seal material 8 is made of fluorine rubber such as perfluoroether rubber, tetrafluoroethylene-propylene rubber, silicone rubber such as silicone rubber or fluorosilicone rubber, phosphazene rubber such as phosphazene fluorine rubber, acrylic rubber or ethylene acrylic. It is made of acrylic rubber such as rubber, and has release properties and rubber elasticity. In addition, the thickness of the heat-resistant sealing material 8 is slightly thicker than the thickness of the metal composite laminate to be manufactured, and preferably 0.5 mm thick. The heat-resistant sealing material 8 has a rectangular frame shape, and surrounds the metal plate 3 and the insulating resin sheet 5 around the four sides. Furthermore, heat-resistant sealing material 8 and insulating resin sheet 5
A cover plate 6 and a decorative plate 7 are interposed on the upper and lower surfaces of the vacuum chamber 1, and they are inserted into the vacuum chamber 1. Next, the air in the vacuum chamber 1 is discharged to start the decompression, and when a certain decompression condition is reached, the heating and pressurizing device 2 heats and pressurizes.
Then, before the pressurization, the pressure in the sealing space surrounded by the heat-resistant sealing material 8 is reduced similarly to the inside of the vacuum chamber 1, but as shown in FIG. At this point, the seal space is separated from the entire internal space of the vacuum chamber 1, and the depressurization of the seal space stops even if the internal space of the entire vacuum chamber 1 continues to be depressurized. When heating and pressing are further continued, as shown in FIG. 4, the heat-resistant sealing material 8 is bent in an arc shape, and the resin in the insulating resin sheet 5 melts and flows to fill the entire sealing space. After the heat-resistant sealing material 8 and the covering plate 6 are in close contact with each other, the air pressure in the sealing space under a certain reduced pressure changes to the increased pressure state. 3 prevents micro bubbles from being generated or growing. When this state is reached, decompression of the entire vacuum chamber 1 becomes unnecessary, so that either under reduced pressure or under atmospheric pressure may be used. However, the operation under the atmospheric pressure is preferable for energy saving because the operation of the vacuum pump 9 and the like becomes unnecessary. Further, since the resin pressure is further increased by the subsequent heating and pressurization, fine bubbles in the resin are further crushed and disappear. Then, the above-mentioned pressurized state is maintained, and when a thermosetting resin is used as the resin of the insulating resin sheet 5, it is cured until it is cured, and in the case of a thermoplastic resin, cooling is performed.
Leave until solidified, and release as shown in FIG. Further, as shown in FIG. 6, a side edge portion is cut off to manufacture a metal composite laminate.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、製造された金属複合積
層板は全体に亘って樹脂が充填され、特にその周辺部に
樹脂が充分に充填される他、加熱加圧時における微小な
気泡の発生や成長を防げるため、積層板の周辺部に気泡
の存在しない強堅な金属複合積層板が製造される。
As described above, according to the present invention, the produced metal composite laminate is filled with resin over the entirety, and in addition to being sufficiently filled with resin particularly around its periphery, fine bubbles are generated at the time of heating and pressing. In order to prevent generation and growth, a strong metal composite laminate having no bubbles around the laminate is manufactured.

また、金属板及び絶縁樹脂シートの周辺に介装する耐
熱シール材が離型性及びゴム弾性を有するので、加熱加
圧時の厚みに追従でき、反り、ねじれの存在しない寸法
精度良好な金属複合積層板が得られる他、被覆板や化粧
板の損傷及び溶融樹脂の漏洩を防ぎ、離型も容易であ
り、耐熱シール材の再利用も可能である等幾多の効果を
奏するものである。
In addition, since the heat-resistant seal material interposed around the metal plate and the insulating resin sheet has releasability and rubber elasticity, it can follow the thickness at the time of heating and pressing, and has good dimensional accuracy without warpage and twist. In addition to providing a laminated board, it has many effects such as preventing damage to the covering board and decorative board and leakage of the molten resin, easy release, and reuse of the heat-resistant sealing material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は側断面図、第2図は初期の加熱加圧状態の側断
面図、第3図は耐熱シール材を介装した状態の一部切欠
平面図、第4図は最終加熱加圧状態の断面図、第5図は
離型状態の断面図、第6図は製造された金属複合積層板
の断面図、第7図は従来方法の側断面図である。 図中1は真空チャンバー、2は加熱・加圧装置、3は金
属板、4は金属板の貫通孔、8は耐熱シール材を示す。
1 is a side sectional view, FIG. 2 is a side sectional view in an initial heating and pressing state, FIG. 3 is a partially cutaway plan view with a heat-resistant sealing material interposed, and FIG. FIG. 5 is a sectional view of a released state, FIG. 6 is a sectional view of a manufactured metal composite laminate, and FIG. 7 is a side sectional view of a conventional method. In the figure, 1 is a vacuum chamber, 2 is a heating / pressing device, 3 is a metal plate, 4 is a through-hole of the metal plate, and 8 is a heat-resistant sealing material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 31:34 (56)参考文献 特開 昭63−299928(JP,A) 特開 昭63−283911(JP,A) (58)調査した分野(Int.Cl.6,DB名) B29C 43/18 - 43/20,43/56,43/32 H05K 1/05──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FIB29L 31:34 (56) References JP-A-63-299928 (JP, A) JP-A-63-283911 (JP, A) ( 58) Field surveyed (Int.Cl. 6 , DB name) B29C 43/18-43 / 20,43 / 56,43 / 32 H05K 1/05

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加熱・加圧装置を備えている真空チャンバ
ー内に、金属板と該金属板の両面に重ね合せた絶縁樹脂
シートとを装入し、真空チャンバー内の空気を排出しつ
つ、加熱加圧することにより、上記金属板及び絶縁樹脂
シートを積層一体化して金属複合積層板を製造するにあ
たり、上記絶縁樹脂シートの上下両面に銅箔や離型フイ
ルム等の被覆材を重ね合せると共に、金属板及び絶縁樹
脂シートの周辺には、離型性及びゴム弾性を有し、か
つ、製造する金属複合積層板の厚みよりも肉厚の耐熱シ
ール材を介装して加熱加圧成形することを特徴とする金
属複合積層板の製造方法。
1. A metal plate and an insulating resin sheet superposed on both surfaces of the metal plate are charged into a vacuum chamber provided with a heating / pressing device, and while the air in the vacuum chamber is exhausted, By applying heat and pressure, the metal plate and the insulating resin sheet are laminated and integrated to produce a metal composite laminate, and a covering material such as a copper foil or a release film is laminated on both upper and lower surfaces of the insulating resin sheet, Heat and pressure molding around the metal plate and insulating resin sheet with a heat-resistant sealing material that has release properties and rubber elasticity and is thicker than the thickness of the metal composite laminate to be manufactured A method for producing a metal composite laminate, comprising:
JP1181481A 1989-07-13 1989-07-13 Manufacturing method of metal composite laminate Expired - Fee Related JP2847533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181481A JP2847533B2 (en) 1989-07-13 1989-07-13 Manufacturing method of metal composite laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181481A JP2847533B2 (en) 1989-07-13 1989-07-13 Manufacturing method of metal composite laminate

Publications (2)

Publication Number Publication Date
JPH0345319A JPH0345319A (en) 1991-02-26
JP2847533B2 true JP2847533B2 (en) 1999-01-20

Family

ID=16101511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181481A Expired - Fee Related JP2847533B2 (en) 1989-07-13 1989-07-13 Manufacturing method of metal composite laminate

Country Status (1)

Country Link
JP (1) JP2847533B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2787180B2 (en) * 1992-10-15 1998-08-13 株式会社奥村組 Stabilization of collapsed rock mass during tunnel excavation
CN203666080U (en) * 2014-01-16 2014-06-25 深圳市优米佳自动化设备有限公司 Novel bubble-free vacuum laminating machine
JP6988630B2 (en) * 2018-03-26 2022-01-05 株式会社デンソー Manufacturing method of heat flux sensor

Also Published As

Publication number Publication date
JPH0345319A (en) 1991-02-26

Similar Documents

Publication Publication Date Title
JPH10512820A (en) Manufacturing method of honeycomb core composite product
JPH10315257A (en) Apparatus and method for vacuum laminating
JP4935957B1 (en) Manufacturing method of resin sheet for sealing
JP2847533B2 (en) Manufacturing method of metal composite laminate
RU2323090C2 (en) Method of producing fiber-reinforced laminates
JP2944308B2 (en) Manufacturing method of multilayer printed circuit board
JP2685553B2 (en) Composite material molding method
JP3488839B2 (en) Manufacturing method of printed wiring board
JP4144660B2 (en) Manufacturing method of heat-resistant flexible substrate
JPS61290036A (en) Molding method for laminated plate
JPH10128778A (en) Production of perforated surface panel made of composite material
CN111818738A (en) Method for processing thick copper PCB by using prepreg without glass cloth
JP2656590B2 (en) Method of forming composite laminate
JPH0235477B2 (en)
JPH0418317A (en) Molding method of thermosetting resin composite material
JPS61261012A (en) Manufacture of laminated sheet and device thereof
US12005656B2 (en) Protective case for electronic device and method for manufacturing the same
JPH02162017A (en) Manufacture of thick plate-like laminate out of composite material
JPS61173911A (en) Manufacture of laminated plate
JPH0295826A (en) Manufacture of resin formed body equipped with circuit
JP2004047703A (en) Method for forming insulating resin layer to wiring board
JP3985304B2 (en) Method for manufacturing printed wiring board
JPH0324919A (en) Method for molding smc molded product, laminated sheet and printed wiring board
JPS6239223A (en) Manufacture of laminated sheet
JPH05116211A (en) Formation of fiber reinforced resin molded body laminated with metallic foil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees