JP2842898B2 - Foreign matter adhesion prevention method - Google Patents

Foreign matter adhesion prevention method

Info

Publication number
JP2842898B2
JP2842898B2 JP21018989A JP21018989A JP2842898B2 JP 2842898 B2 JP2842898 B2 JP 2842898B2 JP 21018989 A JP21018989 A JP 21018989A JP 21018989 A JP21018989 A JP 21018989A JP 2842898 B2 JP2842898 B2 JP 2842898B2
Authority
JP
Japan
Prior art keywords
foreign matter
wettability
substrate
liquid
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21018989A
Other languages
Japanese (ja)
Other versions
JPH0374846A (en
Inventor
昭男 斉藤
英輔 西谷
進 都竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21018989A priority Critical patent/JP2842898B2/en
Publication of JPH0374846A publication Critical patent/JPH0374846A/en
Application granted granted Critical
Publication of JP2842898B2 publication Critical patent/JP2842898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、薄膜デバイス、磁気ディスク、
光ディスク等のエレクトロニクス装置や部品の洗浄技術
に係り、特に異物付着防止方法に関する。
The present invention relates to a semiconductor device, a thin film device, a magnetic disk,
The present invention relates to a technology for cleaning electronic devices and components such as optical disks, and more particularly to a method for preventing foreign matter from adhering.

〔従来の技術〕 LSI等の高密度化、高集積化にともない、微小な異物
等による素子特性や歩留りの低下が問題となっている。
このため、アールシーエーレビュー31(1970毎)第187
から06頁〔RCA Review,31(1970)p.187〜206〕で述べ
られているように、アンモニア水と過酸化水素水の混合
物を80℃程度に加熱し、これにウェハを浸漬する方法
や、超純水中で超音波を加える方法により微小な異物を
除去していた。特に後者の超音波洗浄に関しては通常の
50kHzではなく、ジャーナルオブエレクトロニックマテ
リアルズ第8巻(1979年)第855頁から864頁〔J.Elec.M
aterials,8(1979)p.855〜864〕で述べられているよう
に850kHzの周波数のものを用いたり、特開昭60−187380
で述べられているように超音波放射面と液面の距離を変
化させたり、特開昭61−101283で述べられているように
基本周波数に周波数変調を行なったり、様々な工夫を施
し実用に供していた。
[Prior Art] With an increase in the density and integration of LSIs and the like, there has been a problem that element characteristics and yield are reduced due to minute foreign matter and the like.
Therefore, RCCA Review 31 (every 1970) No. 187
As described in p. 06 [RCA Review, 31 (1970), p. 187-206], a method of heating a mixture of aqueous ammonia and hydrogen peroxide to about 80 ° C. and immersing the wafer in the mixture may be used. In addition, minute foreign matter was removed by a method of applying ultrasonic waves in ultrapure water. Especially for the latter ultrasonic cleaning,
Instead of 50 kHz, Journal of Electronic Materials, Vol. 8 (1979), pages 855 to 864 [J. Elec. M
Aterials, 8 (1979) pp. 855-864], and a frequency of 850 kHz may be used.
The distance between the ultrasonic radiation surface and the liquid surface is changed as described in, and the frequency is modulated to the fundamental frequency as described in JP-A-61-101283. Was offered.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は4MbitDRAM等の超LSI製造に用いられる
0.8μmプロセスで問題とされる粒径0.08μm程度の異
物に対しては有効であるが、16M以降に問題とされる粒
径0.05μm以下の超微粒異物に対しては上述した様々の
工夫を行なっても除去効果は不十分である。
The above conventional technology is used for the manufacture of VLSI such as 4Mbit DRAM
Although it is effective for foreign matter with a particle size of about 0.08 μm which is a problem in the 0.8 μm process, the above-mentioned various measures are applied to ultrafine foreign matter with a particle size of 0.05 μm or less which is a problem after 16M. Even if it is performed, the removal effect is insufficient.

そこで異物除去法には限界があると考え、異物付着防
止技術により上記問題を解決した。半導体装置製造工程
においてウェハに異物が付着する機会は多岐にわたる
が、液体に浸漬する処理で付着する場合も多い。そこで
第4図に示すようにウェハ等のエレクトロニクス部品6
が気液界面を通過して、例えば液槽7中の液7a中に存在
する面積が増大していく「浸漬時」(第4図(a))、
液中に保持されている「液中保持時」(第4図
(b))、ウェハが気液界面を通過して液中に存在する
面積が減少していく「引上げ時」(第4図(c))に分
け異物の付着しやすさを検討したところ、第4図(a)
の「浸漬時」と第4図(b)の「液中保持時」に付着し
やすいことがわかった。
Therefore, the foreign matter removal method was considered to be limited, and the above problem was solved by a foreign matter adhesion prevention technique. In the semiconductor device manufacturing process, there are various opportunities for foreign matter to adhere to the wafer, but in many cases, foreign matter adheres to the wafer by immersion in a liquid. Therefore, as shown in FIG.
Is passed through the gas-liquid interface, and the area existing in the liquid 7a in the liquid tank 7 increases, for example, at "dipping" (FIG. 4 (a)).
"At the time of holding in liquid" held in liquid (FIG. 4 (b)), and "at the time of pulling" where the area of the wafer passing through the gas-liquid interface and existing in the liquid decreases (FIG. 4). Fig. 4 (a) shows the ease of attachment of foreign matter by examining (c)).
It was found that the particles easily adhered during "dipping" and "during liquid holding" in FIG. 4 (b).

したがって、本発明の目的は、「浸漬時」の異物付着
を防止する改良された異物付着防止方法を提供すること
にある。
Accordingly, an object of the present invention is to provide an improved foreign matter adhesion preventing method for preventing foreign matter adhesion during "immersion".

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は表面のぬれ性を大きくすることにより達成
される。ぬれ性とは液体に対する基板表面の液体に対す
るぬれやすさを言い、定量的には第5図に示すように液
体を滴下した際に生ずる液滴8の接触角θで表わされ
る。接触角が小さい程ぬれ性は大きい。あとで述べるよ
うに接触角が約40゜以下で異物付着防止の効果がある
が、この値は基板の種類や環境等によっても変わり40゜
以下に限定されるものではない。
The above object is achieved by increasing the wettability of a surface. The wettability refers to the wettability of the liquid on the surface of the substrate with respect to the liquid, and is quantitatively represented by the contact angle θ of the liquid droplet 8 generated when the liquid is dropped as shown in FIG. The smaller the contact angle, the greater the wettability. As will be described later, when the contact angle is about 40 ° or less, there is an effect of preventing adhesion of foreign matter, but this value varies depending on the type of the substrate, the environment, and the like, and is not limited to 40 ° or less.

特に半導体装置、薄膜デバイス、ディスク等のエレク
トロニクス部品を製造する工程においては、熱酸化膜、
CVD酸化膜等の酸化膜が露出していることが多く、ま
た、これらの酸化膜表面のぬれ性は通常小さい。すなわ
ち異物付着は起きやすい。ぬれ性を高めることにより異
物付着を防止することができる。また、あとで述べるよ
うに酸化膜表層部の酸素含有量は、ぬれ性と関係があ
り、含有量が大きい程ぬれ性も大きくなる。
Especially in the process of manufacturing electronic components such as semiconductor devices, thin film devices and disks, thermal oxide films,
Oxide films such as CVD oxide films are often exposed, and the surface of these oxide films usually has low wettability. That is, adhesion of foreign matter is likely to occur. Increasing the wettability can prevent foreign matter from adhering. Further, as described later, the oxygen content of the surface portion of the oxide film is related to the wettability, and the wettability increases as the content increases.

ぬれ性を大きくする、あるいは酸化膜表層部の酸素含
有量を増加させる方法は、塩素ガスを含むガスのプラズ
マ処理を酸化膜表面に施すことである。用いるガスには
Cl2ガスの単独あるいはAr等の不活性ガスとの混合ガス
が適用できる。プラズマ処理装置は通常行なわれている
ように高周波(好ましくは10kHz以上)でプラズマを発
生させるものであり、チャンバー壁等のスパッタにより
ウェハ上を汚染しないよう基板表面に近接する金属汚染
源となる部分を石英板でおおうような構造であるものが
好ましい。また、イオン打込み装置、化学気相反応蒸着
(CVD)装置、ドライエッチング装置に上記プラズマ処
理部を組込むことにより、異物付着防止処理を同時に行
なえる装置とすれば、半導体製造工程等のスループット
を高めることができる。
A method for increasing the wettability or increasing the oxygen content of the oxide film surface layer is to perform plasma treatment of a gas containing chlorine gas on the oxide film surface. The gas used
Cl 2 gas alone or a mixed gas with an inert gas such as Ar can be used. The plasma processing apparatus generates plasma at a high frequency (preferably 10 kHz or more) as is usually performed, and removes a portion serving as a metal contamination source close to the substrate surface such as a chamber wall so as not to contaminate the wafer by sputtering. Those having a structure covered with a quartz plate are preferred. In addition, by incorporating the above-described plasma processing unit into an ion implantation apparatus, a chemical vapor deposition (CVD) apparatus, and a dry etching apparatus, if the apparatus can simultaneously perform foreign matter adhesion prevention processing, the throughput in a semiconductor manufacturing process and the like can be increased. be able to.

本発明は酸化膜に有効であるが、レジスト塗布膜等で
ぬれ性が悪い場合にも適用可能な方法である。
The present invention is effective for an oxide film, but is also applicable to a case where the wettability of a resist coating film or the like is poor.

〔作 用〕(Operation)

表面のぬれ性と異物の付着しやすさについては、例え
ば電子情報通信学会技術研究報告第89巻(1989年)第5
頁で述べられているように、ばくぜんと知られてはいた
が、「浸漬時」付着なのか「液中保持時」付着なのか
「引上げ時」付着なのか明言されていないし、異物が付
着しにくい理由についても明確ではない。
Regarding the surface wettability and the easiness of adhesion of foreign matter, see, for example, IEICE Technical Report Vol. 89 (1989), No. 5
As stated on the page, it was known that it was very effective, but it was not specified whether it was `` dipping '' adhesion, `` holding in liquid '' adhesion or `` pulling up '' adhesion, and foreign matter is difficult to adhere It is not clear why.

本発明は詳細な検討の結果、表面のぬれ性を大きくす
ることにより「浸漬時」付着が防止できることをはじめ
て明らかにしたものである。また、基板表面のぬれ性と
「浸漬時」付着の関係についても第6図によりその理由
を推定することができる。すなわち、第6図(a)に示
すように基板6の表面のぬれ性が小さい場合、異物9は
破線で示すような液体10よりの表面張力FSを受け、実線
で示すその合力Fとして基板6に近づくような力を受け
基板に付着しやすいと考えられる。これに対し、第6図
(b)に示すぬれ性の大きい場合には液体10よりの表面
張力FSの合力Fは基板6から離れるように働き異物9は
基板6に付着しにくいと考えられる。
As a result of detailed studies, the present invention has revealed for the first time that adhesion during "immersion" can be prevented by increasing the wettability of the surface. Further, the relationship between the wettability of the substrate surface and the adhesion during "immersion" can be estimated from FIG. That is, as shown in FIG. 6 (a), when the wettability of the surface of the substrate 6 is small, the foreign matter 9 receives the surface tension F S from the liquid 10 as shown by a broken line, and the resultant force F as shown by a solid line. It is considered that a force approaching No. 6 is likely to be attached to the substrate. In contrast, the resultant force F is foreign matter 9 acts away from the substrate 6 when FIG. 6 (b) greater wettability shown in the surface tension F S of the liquid 10 is considered less likely to adhere to the substrate 6 .

次にぬれ性の大きさ(接触角)と異物付着の関係につ
いて検討した。表面ぬれ性の異なるSiウェハを用意し第
3図に示すように液槽5にポリスチレン標準粒子を1×
108個/cm3分散させた超純水5a中に浸漬した後引上げ乾
燥し付着粒子数を光学顕微鏡により測定した。なお、同
図の(a)は浸漬前、(b)は浸漬、そして(c)は引
上げの状態を示す。得られた結果を第1表に示す。接触
角約40゜以下では付着異物がほとんど見られなかった。
付着異物がほとんど見られない接触角の範囲は、基板の
種類、環境、浸漬速度等により変わるものと考えられ、
40゜以下に限定するものではない。
Next, the relationship between the magnitude of wettability (contact angle) and the adhesion of foreign matter was examined. Prepare Si wafers with different surface wettability, and place 1 × polystyrene standard particles in liquid tank 5 as shown in FIG.
After immersion in ultrapure water 5a in which 10 8 particles / cm 3 were dispersed, it was pulled up and dried, and the number of adhered particles was measured by an optical microscope. In the figure, (a) shows the state before immersion, (b) shows the state after immersion, and (c) shows the state after pulling up. Table 1 shows the obtained results. At a contact angle of about 40 ° or less, almost no extraneous matter was observed.
The range of the contact angle where almost no extraneous matter is seen is considered to vary depending on the type of substrate, environment, immersion speed, etc.
It is not limited to 40 mm or less.

熱酸化膜、CVD酸化膜等のぬ性については、表面が有
機物等で汚染されていなければ、表面層の酸素含有量す
なわちSiとOとの比によって決定されると考えられる。
塩素ガスを含むガスのプラズマ処理により酸化膜表面層
のSiとOとの比を制御することができる。
It is considered that the resistance of the thermal oxide film, the CVD oxide film, and the like is determined by the oxygen content of the surface layer, that is, the ratio of Si to O, unless the surface is contaminated with an organic substance or the like.
The ratio of Si to O in the oxide film surface layer can be controlled by plasma treatment of a gas containing chlorine gas.

上記した点を実験データにより確認した。 The above points were confirmed by experimental data.

第2表に示したサンプルを作成し、X線光電子分光
(ESCAまたはXPS)装置によりCl2プラズマ処理、あるい
はArスパッタ装置による酸化膜表面層のSiとOとの比の
変化を測定した。また、接触角計により、ぬれ性の指標
である接触角を測定した。
Samples shown in Table 2 were prepared, and a change in the ratio of Si to O in the oxide film surface layer was measured by an X-ray photoelectron spectroscopy (ESCA or XPS) apparatus using a Cl 2 plasma treatment or an Ar sputtering apparatus. The contact angle, which is an index of wettability, was measured by a contact angle meter.

得られた結果を第3表に示す。 Table 3 shows the obtained results.

酸化膜表面層におけるSiとOとの含有比(O/Si)の値
は全て2.0以上(即ちSiO2よりも表面がOリッチ)とな
っているが、これは分析前にサンプルを大気にさらした
ために吸着したO2を含んでいるためである。Cl2プラズ
マ処理ではClラジカルがSiを攻撃すると推定されCl2
ラズマ処理サンプルのNo.2では、無処理サンプルのNo.1
に比べ結果的に表面がOリッチになっている。このサン
プルNo.2の接触角は、無処理サンプルNo.1の48゜に比べ
22゜となり、大幅にぬれ性が大きくなっている。すなわ
ち、酸化膜表面層の酸素含有量が増加することにより、
ぬれ性が大きくなると言える。
The values of the content ratio of Si to O (O / Si) in the oxide film surface layer are all 2.0 or more (that is, the surface is more O-rich than SiO 2 ). This is because it contains O 2 adsorbed as a result. In Cl 2 plasma treatment sample No.2 is estimated that Cl radical attacks the Si in Cl 2 plasma treatment, the untreated sample No.1
As a result, the surface is O-rich as a result. The contact angle of this sample No.2 is 48 ° compared to the untreated sample No.1
It is 22 mm, greatly increasing wettability. That is, by increasing the oxygen content of the oxide film surface layer,
It can be said that the wettability increases.

Arスパッタ処理においては、Oの方がSiよりもスパッ
タ効率が高く、Arスパッタ処理サンプルNo.3では無処理
サンプルNo.1に比べ結果的に酸化膜表面がSiリッチにな
っている。このサンプルNo.3の接触角は、無処理サンプ
ルNo.1の48゜に比べ51゜となり、ぬれ性は小さくなって
いる。すなわち、酸化膜表面層の酸素含有量が減少する
ことによりぬれ性が小さくなると言える。
In the Ar sputtering process, O has a higher sputtering efficiency than Si, and as a result, the oxide film surface is richer in Si in Ar sputtering sample No. 3 than in untreated sample No. 1. The contact angle of this sample No. 3 was 51 ° compared to 48 ° of the untreated sample No. 1, and the wettability was small. That is, it can be said that the wettability is reduced by decreasing the oxygen content of the oxide film surface layer.

以上の検討により、表面層のSiとOとの比により、ぬ
れ性は変化し、酸素含有量を大きくすることによりぬれ
性を大きくできることが明らかとなった。また。表面層
の酸素含有量を大きくし、ぬれ性を大きくするために
は、Cl2プラズマ処理が有効であることが明らかとなっ
た。
From the above study, it has been clarified that the wettability changes depending on the ratio of Si and O in the surface layer, and that the wettability can be increased by increasing the oxygen content. Also. It was found that Cl 2 plasma treatment was effective in increasing the oxygen content of the surface layer and increasing the wettability.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施列1 第1図に示すようにSi基板1上に熱酸化膜2を形成
し、Cl2プラズマ処理aを2分間施した。Cl2プラズマ処
理条件はCl2流量3〜10sccm(standard cubic centimet
er per minutes)、Ar流量100sccm、圧力10〜100mtor
r、RFパワー15〜300W(13.56MHz)、基板バイアス−70V
である。
Example 1 As shown in FIG. 1, a thermal oxide film 2 was formed on a Si substrate 1 and subjected to Cl 2 plasma treatment a for 2 minutes. The Cl 2 plasma treatment condition is a Cl 2 flow rate of 3 to 10 sccm (standard cubic centimet).
er per minutes), Ar flow rate 100sccm, pressure 10 ~ 100mtor
r, RF power 15-300W (13.56MHz), substrate bias -70V
It is.

Cl2プラズマ処理基板および未処理基板(熱酸化膜を
形成した後プラズマ処理を施していない基板)を、第3
図に示すようにポリスチレン標準粒子を1×108個/cm3
分散させた超純水5a中に浸漬した。尚、用いたポリスチ
レン標準粒子の粒径は2μm、1μm、0.5μm、0.1μ
m、0.05μmである。ただし、0.05μmの場合、粒子同
士が凝集しないように界面活性剤としてドデシル硫酸ナ
トリウムを適当量添加した。浸漬後スピンナ乾燥し、光
学顕微鏡あるいは電子顕微鏡により付着しているポリス
チレン標準粒子数を測定した。比較例としての未処理基
板は、粒径により付着数の差はあまりなく、第4表に示
すように1.6×104個/cm2程度(各粒径でのデータの平均
値)付着が見られたのに対し、本実施例のサンプルNo.1
〜10のCl2プラズマ処理基板でほとんど付着は見られな
かった。
A Cl 2 plasma-treated substrate and an untreated substrate (a substrate that has not been subjected to plasma treatment after forming a thermal oxide film) are
As shown in the figure, 1 × 10 8 polystyrene standard particles / cm 3
It was immersed in the dispersed ultrapure water 5a. The polystyrene standard particles used had a particle size of 2 μm, 1 μm, 0.5 μm, 0.1 μm.
m, 0.05 μm. However, in the case of 0.05 μm, an appropriate amount of sodium dodecyl sulfate was added as a surfactant so that the particles did not aggregate. After immersion, spinner drying was performed, and the number of adhered polystyrene standard particles was measured with an optical microscope or an electron microscope. In the untreated substrate as a comparative example, there was not much difference in the number of adhesions depending on the particle diameter, and as shown in Table 4, adhesion was about 1.6 × 10 4 / cm 2 (average value of data at each particle diameter). In contrast, the sample No. 1
10 Most deposited by Cl 2 plasma treatment substrates was observed.

未処理基板に付着した異物数は液中への浸漬時間を変
化させても変わらなかった。すなわち異物は「液中保持
時」ではなく「浸漬時」に付着したものと考えられる。
また、ポリスチレン粒子を分散させた超純水にpH2程度
となるように塩酸を加えた後、Cl2プラズマ処理基板を
浸漬し異物付着数を測定したところ、異物は付着し浸漬
時間とともに付着数は増加することがわかった。すなわ
ち、ぬれ性の大きい場合でも「液中保持時」の付着は起
こることを示しており、ぬれ性の大きいことが「浸漬
時」の付着防止に有効であると結論される。
The number of foreign substances adhered to the untreated substrate did not change even when the immersion time in the liquid was changed. In other words, it is considered that the foreign matter adhered not at the time of holding in the liquid but at the time of immersion.
Also, after adding hydrochloric acid to ultrapure water in which polystyrene particles are dispersed so as to have a pH of about 2 , the Cl 2 plasma-treated substrate was immersed and the number of foreign particles adhered was measured. Was found to increase. That is, it is shown that the adhesion during "holding in the liquid" occurs even when the wettability is high, and it is concluded that the high wettability is effective in preventing the adhesion during "dipping".

本実施例で検討したプラズマ処理条件の範囲では、第
4表に示したように接触角は21〜29゜となり異物付着防
止効果も十分であった。従って本発明の、効果のあるプ
ラズマ処理条件の範囲はもっと広いと考えられる。
In the range of the plasma processing conditions studied in this example, as shown in Table 4, the contact angle was 21 to 29 °, and the effect of preventing foreign matter adhesion was sufficient. Therefore, the range of effective plasma processing conditions of the present invention is considered to be wider.

実施例2 第2図に示すようにSiウェハ1上に熱酸化膜2を形成
し、リソグラフィ技術により孔部3を形成した。実施例
1と同様の条件でCl2プラズマ処理aを施した。Cl2プラ
ズマ処理基板および比較例としての未処理基板を、実施
例1と同様にしてポリスチレン標準粒子を分散させた超
純水中に浸漬した後、スピンナ乾燥し、光学顕微鏡ある
いは電子顕微鏡により付着しているポリスチレン標準粒
子数を測定した。この結果を第5表に示す。この表から
わかるように、比較例である未処理基板では1×104個/
cm2程度付着が見られたのに対し、本実施例のサンプルN
o.11〜20のCl2プラズマ処理基板では、ほとんど付着は
見られなかった。
Example 2 As shown in FIG. 2, a thermal oxide film 2 was formed on a Si wafer 1, and a hole 3 was formed by lithography. Cl 2 plasma treatment a was performed under the same conditions as in Example 1. A Cl 2 plasma-treated substrate and an untreated substrate as a comparative example were immersed in ultrapure water in which polystyrene standard particles were dispersed in the same manner as in Example 1, dried with a spinner, and adhered using an optical microscope or an electron microscope. The number of polystyrene standard particles was measured. Table 5 shows the results. As can be seen from this table, 1 × 10 4 /
While the adhesion of about 2 cm 2 was observed, the sample N of the present example
Almost no adhesion was observed on the Cl 2 plasma treated substrates of o.

〔発明の効果〕 本発明によれば、微小異物の付着を防止できるため半
導体装置、薄膜デバイス、ディスク等の製造工程におけ
る歩留りを向上させる効果がある。
[Effects of the Invention] According to the present invention, adhesion of minute foreign matter can be prevented, and thus there is an effect of improving the yield in the manufacturing process of semiconductor devices, thin film devices, disks, and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図は、それぞれ本発明の一実施例を示
したもので、基板処理状態を示す断面図、第3図は本発
明の効果を確認するための実験方法を示した工程図、第
4図、第5図及び第6図はそれぞれ本発明の原理を説明
するもので、微粒子付着処理の工程図、ぬれ性説明用の
接触角模式図及び基板のぬれ性と液体中の異物が付着す
るメカニズムを説明する模式図である。 1……Si基板、2……熱酸化膜 3……孔部、4……Siウェハ 5……液槽 5a……ポリスチレン粒子を分散させた超純水 6……Siウェハ半導体装置、薄膜デバイス、ディスク等
のエレクトロニクス基板 7……異物を含む液体、8……液滴 9……異物、10……液体 a……プラズマ処理、θ……接触角
1 and 2 show one embodiment of the present invention, respectively, and are cross-sectional views showing a substrate processing state, and FIG. 3 is a process diagram showing an experimental method for confirming the effect of the present invention. 4, 5, and 6 illustrate the principle of the present invention, respectively, and show a process diagram of a fine particle adhesion process, a schematic diagram of a contact angle for explaining wettability, a wettability of a substrate, and a foreign matter in a liquid. FIG. 4 is a schematic diagram for explaining a mechanism of adhering. DESCRIPTION OF SYMBOLS 1 ... Si substrate, 2 ... Thermal oxide film 3 ... Pore, 4 ... Si wafer 5 ... Liquid tank 5a ... Ultra pure water in which polystyrene particles are dispersed 6 ... Si wafer semiconductor device, thin film device , Electronic substrate such as disk 7... Liquid containing foreign matter, 8... Droplet 9... Foreign matter, 10... Liquid a... Plasma treatment, θ.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−250645(JP,A) 特開 昭62−117330(JP,A) 特開 昭63−133534(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/304 H01L 21/302────────────────────────────────────────────────── (5) References JP-A-62-250645 (JP, A) JP-A-62-117330 (JP, A) JP-A-63-133534 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01L 21/304 H01L 21/302

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エレクトロニクス部品を製造する工程にお
いて、前記部品の一部を構成する基板上に形成された酸
化膜表層部の酸素含有量を増加させて、前記基板表面の
ぬれ性を大きくし、前記基板上への異物付着を防止する
異物付着防止方法。
In the process of manufacturing an electronic component, an oxygen content of a surface layer portion of an oxide film formed on a substrate constituting a part of the component is increased to increase wettability of the substrate surface. A method for preventing foreign matter from adhering to the substrate.
【請求項2】上記基板上に形成された酸化膜表層部の酸
素含有量を増加させる方法として、Cl2プラズマ処理す
る工程を有する請求項1記載の異物付着防止方法。
2. The method according to claim 1, further comprising a step of performing a Cl 2 plasma treatment as a method for increasing the oxygen content of the surface layer of the oxide film formed on the substrate.
JP21018989A 1989-08-16 1989-08-16 Foreign matter adhesion prevention method Expired - Lifetime JP2842898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21018989A JP2842898B2 (en) 1989-08-16 1989-08-16 Foreign matter adhesion prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21018989A JP2842898B2 (en) 1989-08-16 1989-08-16 Foreign matter adhesion prevention method

Publications (2)

Publication Number Publication Date
JPH0374846A JPH0374846A (en) 1991-03-29
JP2842898B2 true JP2842898B2 (en) 1999-01-06

Family

ID=16585259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21018989A Expired - Lifetime JP2842898B2 (en) 1989-08-16 1989-08-16 Foreign matter adhesion prevention method

Country Status (1)

Country Link
JP (1) JP2842898B2 (en)

Also Published As

Publication number Publication date
JPH0374846A (en) 1991-03-29

Similar Documents

Publication Publication Date Title
US6368924B1 (en) Amorphous carbon layer for improved adhesion of photoresist and method of fabrication
US4861732A (en) Method for removing an ion-implanted organic resin layer during fabrication of semiconductor devices
US20050079650A1 (en) Device including an amorphous carbon layer for improved adhesion of organic layers and method of fabrication
TW200947547A (en) Plasma etching method, plasma etching apparatus, and storage medium
JPH056880A (en) Surface treatment method
US5204210A (en) Method for the direct patterning of diamond films
JPH0718011B2 (en) How to attach SiO2
JPH05129249A (en) Method of adjusting state of polymer base material
JP2842898B2 (en) Foreign matter adhesion prevention method
JP3863229B2 (en) Cleaning method and semiconductor device manufacturing method using the same
JPH0745600A (en) Solution which prevents deposit of submerged, foreign substance, etching using that and device
JP3271389B2 (en) How to use electrostatic chuck
JPH09167764A (en) Forming method of insulating film
US5001083A (en) Method of priming semiconductor substrate for subsequent photoresist masking and etching
JPH0567601A (en) Control method for adhesion of foreign substance in solution
JP3250240B2 (en) Method for manufacturing semiconductor device
JPH07169675A (en) Substrate material for electron beam lithography
JP2689431B2 (en) Method for selectively forming silicon dioxide film
JPH11307497A (en) Cleaning method
JP2001300454A (en) Method for treating surface of substrate
JP2502232B2 (en) Dry etching method for polymer thin films
Yamazaki et al. Quantitative secondary ion mass spectrometry analysis of the native oxide on silicon wafers
JPH0661160A (en) Pattern forming method
JPH08115903A (en) Manufacture of semiconductor, and plasma etching device
JPH04206541A (en) Formation of substrate for evaluation