JP2841528B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell

Info

Publication number
JP2841528B2
JP2841528B2 JP1217777A JP21777789A JP2841528B2 JP 2841528 B2 JP2841528 B2 JP 2841528B2 JP 1217777 A JP1217777 A JP 1217777A JP 21777789 A JP21777789 A JP 21777789A JP 2841528 B2 JP2841528 B2 JP 2841528B2
Authority
JP
Japan
Prior art keywords
thin film
solid electrolyte
fuel cell
electrode
porous substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1217777A
Other languages
Japanese (ja)
Other versions
JPH0381962A (en
Inventor
和夫 伏見
薫 北寄崎
和彦 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1217777A priority Critical patent/JP2841528B2/en
Priority to KR1019900013022A priority patent/KR950001256B1/en
Priority to EP90116284A priority patent/EP0414270B1/en
Priority to US07/573,245 priority patent/US5151334A/en
Priority to DE69016881T priority patent/DE69016881T2/en
Publication of JPH0381962A publication Critical patent/JPH0381962A/en
Application granted granted Critical
Publication of JP2841528B2 publication Critical patent/JP2841528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 A.産業上の利用分野 この発明は、多孔質基板に電極、固体電解質の薄膜を
積層して単セルを構成して成る燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of the Invention The present invention relates to a fuel cell comprising a porous substrate and an electrode and a solid electrolyte thin film laminated to form a single cell.

B.発明の概要 本発明は、単セルを積重構成したスタックを有する固
体電解質型燃料電池において、 多孔質基板表面部に、ニッケルパウダを塗布し、プレ
ス後焼結することにより、微細均一化した空孔を有する
多孔質電極薄膜を形成し、その表面にピンホールのない
固体電解質薄膜を積層し、その表面に電極薄膜を積層し
て電池の単セルを構成することにより、 良好な燃料電池を構成するようにしたものである。
B. Summary of the Invention The present invention relates to a solid electrolyte fuel cell having a stack of single cells stacked in a stack, in which nickel powder is applied to the surface of a porous substrate, pressed and sintered after pressing to achieve fine uniformity. A good fuel cell is obtained by forming a porous electrode thin film with voids, laminating a solid electrolyte thin film without pinholes on its surface, and laminating the electrode thin film on the surface to form a single cell of the battery. Is constituted.

C.従来の技術 従来、多孔質基板を用いた応用製品に燃料電池があ
る。この種、燃料電池の一つに平板型の燃料電池があ
る。
C. Conventional Technology Conventionally, there is a fuel cell as an applied product using a porous substrate. One of such fuel cells is a flat type fuel cell.

一般に、燃料電池本体は固体電解質の両側に陽極と陰
極の電極板を配置して単位電池構造体(以下単位セル構
造体と称す)を構成し、この単セル構造体を陽極電極同
志と陰極電極同志が対向するように複数個直列に配置し
たものである。このように構成された燃料電池本体の陰
極側に燃料として水素ガス(水素)を供給し、陽極側に
酸化剤として、空気(酸素)を供給して、水素と酸素と
を反応させて起電力を発生させている。なお、この反応
のときに水が生成される。次に第7図により従来の燃料
電池について述べる。
Generally, a fuel cell body forms a unit cell structure (hereinafter referred to as a unit cell structure) by arranging anode and cathode electrode plates on both sides of a solid electrolyte, and the single cell structure is composed of an anode electrode and a cathode electrode. A plurality of them are arranged in series so as to face each other. Hydrogen gas (hydrogen) is supplied as fuel to the cathode side of the fuel cell body thus configured, and air (oxygen) is supplied to the anode side as an oxidant, whereby hydrogen and oxygen are reacted to generate an electromotive force. Is occurring. Note that water is generated during this reaction. Next, a conventional fuel cell will be described with reference to FIG.

すなわち、燃料電池本体30は、第7図に示すように、
複数個の単セル構造体Sと、これらの単セル構造体Sを
直列に積層固定する抑え板31a,31bと、積層固定した電
池本体30の各単セル構造体Sの陰極板側に水素ガスH2
供給する水素ガス供給用マニホルド32と、陽極板側に空
気(酸素)を供給する空気供給用マニホルド33と、各単
セル構造体Sの陽極板および陽極板からそれぞれ電気を
取り出す集電リード34および35によって構成されてい
る。
That is, as shown in FIG.
A plurality of single cell structures S, holding plates 31a and 31b for stacking and fixing these single cell structures S in series, and hydrogen gas on the cathode plate side of each single cell structure S of the battery body 30 with the stack fixed. A hydrogen gas supply manifold 32 for supplying H 2 , an air supply manifold 33 for supplying air (oxygen) to the anode plate side, and a collector for extracting electricity from the anode plate and the anode plate of each single cell structure S It is constituted by leads 34 and 35.

この様に構成された積層型燃料電池においては、ガス
供給用のマニホルド32,33は、電池本体30の外側に付設
されている。また、供給された水素ガスと空気が電解質
を介して反応を行うことによって水と電気エネルギーが
発生し、この発生した電気エネルギーを外部に取り出す
集電リード(ブスバー)34,35も、単セル構造体の外側
に付設されている。
In the stacked fuel cell configured as described above, the gas supply manifolds 32 and 33 are provided outside the cell body 30. The supplied hydrogen gas and air react through the electrolyte to generate water and electric energy, and the current collection leads (bus bars) 34 and 35 that take out the generated electric energy to the outside have a single-cell structure. It is attached to the outside of the body.

D.発明が解決しようとする課題 第7図に示した従来の燃料電池では固体電解質,酸素
用電極および水素用電極を組み合わせて構成してある
が、強度に難点がある。しかし単セル構造体を組立た後
に両電極の外側に設けた集電板によって強度は確保でき
るものの組立時に破損する恐れがある。また、ある程度
の強度を確保するために固体電解質の層を止むを得ず厚
く形成する必要があった。
D. Problems to be Solved by the Invention The conventional fuel cell shown in FIG. 7 has a combination of a solid electrolyte, an electrode for oxygen, and an electrode for hydrogen, but has a drawback in strength. However, although the strength can be ensured by the current collector plates provided outside the two electrodes after assembling the single cell structure, there is a possibility that the single cell structure may be damaged during assembly. In addition, in order to secure a certain level of strength, the solid electrolyte layer must be formed unavoidably thick.

固体電解質の層を厚く形成すると、固体電解質自身の
抵抗分による電圧降下Vは V=i・r・t×10-4(iは固体電解質に流れる電流、
Rは固体電解質の抵抗、tは固体電解質の厚さである)
で表される関係から、電圧降下は大きくなるため固体電
解質の厚さは薄い方が良いことが判る。しかし、従来の
構成では固体電解質の厚さは強度の関係である程度厚く
形成しなくてはならず、このため、電圧降下が大きくな
ってしまう問題がある。
When the solid electrolyte layer is formed thick, the voltage drop V due to the resistance of the solid electrolyte itself is V = i · rt · 10 -4 (i is the current flowing through the solid electrolyte,
R is the resistance of the solid electrolyte, and t is the thickness of the solid electrolyte)
It can be understood from the relationship represented by that the thickness of the solid electrolyte is preferably smaller because the voltage drop becomes larger. However, in the conventional configuration, the thickness of the solid electrolyte has to be formed to be somewhat thick due to the strength, and thus there is a problem that the voltage drop becomes large.

本発明は上述の点に鑑み、固体電解質を薄膜に形成
し、電圧降下の小さな燃料電池の単セル構造体が得られ
るようにした固体電解質型燃料電池を提供することを目
的とする。
In view of the above, an object of the present invention is to provide a solid oxide fuel cell in which a solid electrolyte is formed in a thin film so that a single cell structure of a fuel cell with a small voltage drop can be obtained.

E.課題を解決するための手段 本発明の固体電解質型燃料電池は、多孔質基板の表面
上に、ニッケルパウダのサブミクロン径のものと、ニッ
ケルパウダ〜3μm径のものを同量づつ混合し、水で溶
いたものを均一の厚さに塗布し、これをプレスした後に
焼結して塗布部を形成し、この塗布部表面を研摩して平
坦化した後、その上にニッケルパウダサブミクロン径の
ものを擦り込み、プレスした後、焼結してその表面部に
微細均一な空孔を有する水素用の電極層を形成し、その
電極層上に、ピンホールのない固体電解質薄膜を積層
し、その固体電解質薄膜の上に酸素用の電極薄膜を積層
してこの電池の単セルを構成したことを特徴とする。
E. Means for Solving the Problems In the solid oxide fuel cell of the present invention, a nickel powder having a submicron diameter and a nickel powder having a diameter of 3 μm are mixed by the same amount on the surface of a porous substrate. After applying the solution dissolved in water to a uniform thickness, pressing it and then sintering it to form a coated part, polishing and flattening the coated part surface, then placing nickel powder submicron on it After rubbing in a diameter, pressing and sintering to form an electrode layer for hydrogen with fine and uniform pores on its surface, and laminating a solid electrolyte thin film without pinholes on the electrode layer A single cell of the battery is formed by laminating an electrode thin film for oxygen on the solid electrolyte thin film.

F.作用 上述のように構成することにより、ニッケルパウダが
多孔質基板表面部の大径の空孔を埋めるようにして積層
し、微細かつ均一な空孔を有する薄膜を形成し、その上
にピンホールを生じないよう固体電解質を積層し、膜厚
を薄く構成するようにするという作用を奏する。
F. Action By configuring as described above, nickel powder is laminated so as to fill the large-diameter pores on the surface of the porous substrate, and a thin film having fine and uniform pores is formed. This has the effect of stacking solid electrolytes so that pinholes do not occur, thereby reducing the thickness.

G.実施例 以下、本発明の実施例を図面に基づいて説明する。G. Examples Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は固体電解質型燃料電池本体をスタック構成し
た縦断面図で、第1図において、ステンレス製多孔基板
1の表面に、順次、水素用電極薄膜(第1の電極薄膜)
2、ピンホールが発生しない固体電解質薄膜3、酸素用
電極薄膜(第2の電極薄膜)4を積層して単セル構造体
を構成する。次に多孔質基板1を支持構造体として水素
用電極薄膜2を製作することについて述べる。
FIG. 1 is a longitudinal sectional view in which a solid oxide fuel cell main body is stacked, and in FIG. 1, an electrode thin film for hydrogen (first electrode thin film) is sequentially formed on the surface of a stainless steel porous substrate 1.
2. A single cell structure is formed by laminating a solid electrolyte thin film 3 in which pinholes are not generated and an electrode thin film for oxygen (second electrode thin film) 4. Next, the production of the electrode thin film 2 for hydrogen using the porous substrate 1 as a supporting structure will be described.

前記多孔質基板1としては、材質SUS316L、空孔率約4
0%、公称空孔径0.5μm、厚さ約1mmのものを用いた。
The porous substrate 1 is made of material SUS316L, having a porosity of about 4
0%, a nominal pore diameter of 0.5 μm, and a thickness of about 1 mm were used.

なお、公称空孔径は0.5μmであるが、実際の空孔径
にはばらつきがあり、約10μmの空孔は多々存在し、所
々には約40μmにもおよぶ大口径の空孔が存在してい
る。
Although the nominal pore diameter is 0.5 μm, the actual pore diameter varies, and there are many pores of about 10 μm, and large pores of about 40 μm in some places. .

上記のように構成されている多孔質基板1を直径1/2
インチに打ち抜いて円板状に形成し、トリクレン液中で
超音波洗浄し、その後、多孔質基板1を乾燥する。この
多孔質基板1を第2図に示す。
The porous substrate 1 configured as described above is
It is punched into inches, formed into a disk shape, ultrasonically cleaned in a trichlorene solution, and then the porous substrate 1 is dried. This porous substrate 1 is shown in FIG.

次に1μm以下の径(以下サブミクロン径とする)の
ニッケル粉末と3μm径のニッケル粉末とを体積比1:1
で混合し、水に溶かした水溶液を第2図に示す多孔質基
板1の円板表面に略均一に塗布し、これを室温で乾燥さ
せた後、水素雰囲気中で焼結させて第3図に示す第1ニ
ッケル層11を形成する。このときの焼結条件は1000℃で
約1時間である。
Next, a nickel powder having a diameter of 1 μm or less (hereinafter referred to as a submicron diameter) and a nickel powder having a diameter of 3 μm are mixed at a volume ratio of 1: 1.
An aqueous solution mixed and dissolved in water is applied substantially uniformly to the disk surface of the porous substrate 1 shown in FIG. 2, dried at room temperature, and then sintered in a hydrogen atmosphere to obtain an aqueous solution as shown in FIG. The first nickel layer 11 shown in FIG. The sintering condition at this time is about 1 hour at 1000 ° C.

次に上記第1ニッケル層11の表面を第4図に示す如く
平坦に研磨し、第1ニッケル層11に存在する突起を除去
する。この研磨剤としてはグリッドペーパ#600を用い
た。その後、脱イオン水及びトリクロロエチレン中で、
10分間超音波洗浄した後、室温で乾燥させる。
Next, the surface of the first nickel layer 11 is polished flat as shown in FIG. 4 to remove the protrusions present on the first nickel layer 11. Grid paper # 600 was used as the polishing agent. Then, in deionized water and trichlorethylene,
After ultrasonic cleaning for 10 minutes, it is dried at room temperature.

次に3μm径のニッケル粉末を約50mg多孔質基板1の
第1ニッケル層11の表面に均一な厚さとなるようにのせ
た後、約700kg/cm2Gの圧接力でプレスし、この後、これ
を水素雰囲気中で焼結させて第2ニッケル層12を第5図
に示すように形成する。このときの焼結は750℃で1時
間行う。
Next, about 50 mg of nickel powder having a diameter of 3 μm is placed on the surface of the first nickel layer 11 of the porous substrate 1 so as to have a uniform thickness, and then pressed with a pressing force of about 700 kg / cm 2 G. This is sintered in a hydrogen atmosphere to form a second nickel layer 12 as shown in FIG. The sintering at this time is performed at 750 ° C. for 1 hour.

次にサブミクロン径のニッケル粉末を、多孔質基板1
の第2ニッケル層12の表面に擦り込み、約700kg/cm2Gの
圧接力でプレスする。その後、角度サブミクロン径のニ
ッケル粉末を擦り込んで水素雰囲気気中で焼結させて第
6図に示すように第3ニッケル層13を形成する。このと
きの焼結は750℃で1時間行う。
Next, a submicron-diameter nickel powder is applied to the porous substrate 1.
Of the second nickel layer 12 and pressed with a pressing force of about 700 kg / cm 2 G. Thereafter, nickel powder having a submicron diameter is rubbed and sintered in a hydrogen atmosphere to form a third nickel layer 13 as shown in FIG. The sintering at this time is performed at 750 ° C. for 1 hour.

以上の工程を経ることにより、多孔質基板1の表面に
は第1ニッケル層11、第2ニッケル層12,第3ニッケル
層13よりなる水素用電極薄膜2が厚さ約100μmになっ
て形成され、その表面部は1〜3μm径の均一な空孔が
開いている状態となる。
Through the above steps, a hydrogen electrode thin film 2 having a thickness of about 100 μm including the first nickel layer 11, the second nickel layer 12, and the third nickel layer 13 is formed on the surface of the porous substrate 1. The surface portion is in a state where uniform pores having a diameter of 1 to 3 μm are opened.

なお、上記実施例では、その多孔質基板としてステン
レスを使用する場合について述べて来たが、こればかり
ではなく、ニッケルおよび銅の材質のものを使用しても
よい。ニッケル製の多孔質基板はNi粉末を用いて焼結し
て製造するため、Ni粉末の粒子形状が角ばった性質であ
るから空孔口径が3μm〜50μmと不揃いになる。しか
し、Niパウダ電極との密着が良くなるので、耐水素性が
ステンレスのものより優れている。
In the above embodiment, the case where stainless steel is used as the porous substrate has been described. However, not only this, but also a material of nickel and copper may be used. Since a porous substrate made of nickel is manufactured by sintering using Ni powder, the particle shape of the Ni powder is square, so that the pore diameter is not uniform at 3 μm to 50 μm. However, since the adhesion to the Ni powder electrode is improved, the hydrogen resistance is superior to that of stainless steel.

また、銅製の多孔質基板は銅粉末の粒子形状が丸いた
め、その空孔の形状をきれいにできるけれども空孔口径
はNiのものとほぼ同様3μm〜40μmとなる。なお、こ
の銅製の多孔質基板は酸素に触れると酸化されてCu2Oと
いう絶縁体になるので、水素用電極には最適である。
In addition, the copper porous substrate has a round shape of copper powder particles, so that the shape of the pores can be made fine, but the pore diameter is about 3 μm to 40 μm, which is almost the same as that of Ni. Note that this copper porous substrate is oxidized when exposed to oxygen and becomes an insulator called Cu 2 O, and thus is optimal for an electrode for hydrogen.

次に固体電解質薄膜3の製作例について述べる。 Next, a production example of the solid electrolyte thin film 3 will be described.

まず、第1製作例は多孔質基板1の表面に形成した水
素用電極薄膜2の上面に固体電解質の薄膜を厚さ10μm
に形成する。これにはエレクトロンビーム蒸着法を使用
し、蒸着にはターボポンプを使用して真空度10-8mmHg
で、基板温度を室温〜580℃まで可変し、蒸着速度をコ
ントローラでコントロールしながら行った。
First, in the first production example, a thin film of a solid electrolyte having a thickness of 10 μm was formed on the upper surface of the hydrogen electrode thin film 2 formed on the surface of the porous substrate 1.
Formed. For this, electron beam evaporation is used, and a vacuum degree of 10 -8 mmHg is used using a turbo pump for evaporation.
The substrate temperature was varied from room temperature to 580 ° C., and the deposition rate was controlled by a controller.

なお、固体電解質としては単結晶LaF3を用い、固体電
解質の薄膜の成膜条件は基板温度500℃、蒸気速度20Å/
sec、加速電圧−3.0kVである。
In addition, single crystal LaF 3 was used as the solid electrolyte, and the conditions for forming a thin film of the solid electrolyte were a substrate temperature of 500 ° C. and a vapor speed of 20 ° /
sec, acceleration voltage -3.0 kV.

上記のようにして固体電解質の薄膜を形成するとピン
ホールの発生がないものが得られる。
When a thin film of a solid electrolyte is formed as described above, a film having no pinhole can be obtained.

次に固体電解質薄膜3の第2製作例について述べる。 Next, a second example of manufacturing the solid electrolyte thin film 3 will be described.

第2製作例は抵抗加熱法を採用し、上記同様のポンプ
で真空度を10-8mmHgにし、基板温度は400℃とした。そ
して、蒸着速度は3〜5Å/Sで、約5〜6時間で10μm
の厚さの薄膜が得られた。この方法により得られた薄膜
も上記例と同様にピンホールの発生がない。
In the second production example, the resistance heating method was adopted, the degree of vacuum was set to 10 −8 mmHg by the same pump as described above, and the substrate temperature was set to 400 ° C. And the deposition rate is 3-5Å / S, 10 μm in about 5-6 hours.
Was obtained. The thin film obtained by this method does not generate pinholes as in the above-described example.

なお、固体電解質としてはLaF3の他に、La1-xSrF3-x
を使用し、特に、La0.95Sr0.952.95を原料とした薄膜
のx線回析の結果、LaF3のピークしか見られなかった。
このことから、この固体電解質の薄膜はLaF3と、SrF2
混合物ではないことを確認できる。
In addition, in addition to LaF 3 as a solid electrolyte, La 1-x SrF 3-x
In particular, as a result of x-ray diffraction of a thin film using La 0.95 Sr 0.95 F 2.95 as a raw material, only a LaF 3 peak was observed.
From this, it can be confirmed that this solid electrolyte thin film is not a mixture of LaF 3 and SrF 2 .

次は固体電解質薄膜3の第3製作例について述べる。
第3製作例はマグネトロンスパッタリングを使用して、
基板温度400℃、アルゴンガス雰囲気中の5.3×10-3mmHg
の圧力下で、LaF3の粉末をターゲットにして40時間のス
パッタリングを行って、10μm厚の薄膜を得た。この薄
膜もx線回析した結果、結晶性のとぼしい、多結晶のLa
F3であった。
Next, a third example of manufacturing the solid electrolyte thin film 3 will be described.
The third production example uses magnetron sputtering,
Substrate temperature 400 ° C, 5.3 × 10 -3 mmHg in argon gas atmosphere
Under the pressure described above, sputtering was performed for 40 hours using a LaF 3 powder as a target to obtain a thin film having a thickness of 10 μm. As a result of X-ray diffraction of this thin film, polycrystalline La
It was F 3.

なお、固体電解質薄膜の原料としてはLaF3に限定され
ないで次のようなものを用いてもよい。
In addition, the raw material of the solid electrolyte thin film is not limited to LaF 3 and the following may be used.

(イ)La0.95Sr0.052.95 (ロ)La0.95Sr0.102.90 (ハ)La0.95Ba0.052.29 (ハ)La0.90Ba0.102.29 上記マグネトロンスパッタリングにより得られた薄膜
は複雑な組成のものでも、得られた薄膜はおおむね原料
の組成であるので、La0.95Sr0.052.95などの薄膜に適
している。
(B) La 0.95 Sr 0.05 F 2.95 (b) La 0.95 Sr 0.10 F 2.90 (c) La 0.95 Ba 0.05 F 2.29 (c) La 0.90 Ba 0.10 F 2.29 The thin film obtained by magnetron sputtering has a complex composition. However, since the obtained thin film has almost the composition of the raw material, it is suitable for a thin film such as La 0.95 Sr 0.05 F 2.95 .

次は固体電解質薄膜3の第4製作例について述べる。 Next, a fourth example of manufacturing the solid electrolyte thin film 3 will be described.

この第4製作例は第5図に示すように構成された第3
ニッケル層13の表面に、LaとFをその分子内に含む有機
金属化合物を熱分解させてLa,F3の薄膜を形成した。上
記有機金属化合物はLanthanun fodという化合物であ
る。この化合物の構造式は次のようになる。
This fourth example is a third example constructed as shown in FIG.
On the surface of the nickel layer 13, the organometallic compound containing La and F in the molecule is thermally decomposed La, to form a thin film of F 3. The organometallic compound is a compound called Lanthanun fod. The structural formula of this compound is as follows.

なお、成膜条件は基板温度600℃とし、有機金属化合
物を230℃に保温し、キャリアガスとしてアルゴンガス
(Ar)を流量100ml/minで用い、有機金属化合物蒸気を
リアクタ中にある多孔質基板1の表面に移動させて反応
させることによってLaF3の薄膜を得る。
The film formation conditions were as follows: the substrate temperature was set at 600 ° C., the organometallic compound was kept at 230 ° C., argon gas (Ar) was used as a carrier gas at a flow rate of 100 ml / min, and the organometallic compound vapor was injected into the porous substrate in the reactor. A thin film of LaF 3 is obtained by moving to the surface of No. 1 and reacting.

次に、固体電解質薄膜3の第5の製作例について述べ
る。
Next, a fifth example of manufacturing the solid electrolyte thin film 3 will be described.

この第5製作例は、第5図に示すように構成された第
3ニッケル層13の表面に、高周波スパッタ装置を用い、
そのスパッタ条件を、基板温度800℃,アルゴン圧力5.3
×10-3mmHgでイットリアで安定化したジルコニアをター
ゲットにして、40時間スパッタリングすることとし、10
μm厚の固体電解質のピンホールのない薄膜を積層す
る。
This fifth example uses a high-frequency sputtering device on the surface of the third nickel layer 13 configured as shown in FIG.
The sputtering conditions were as follows: substrate temperature 800 ° C, argon pressure 5.3.
The target was zirconia stabilized with yttria at × 10 −3 mmHg, and sputtering was performed for 40 hours.
A pinhole-free thin film of a solid electrolyte having a thickness of μm is laminated.

なお、この他に酸化セリウム等を用いてもよい。 In addition, cerium oxide or the like may be used.

最後に、酸素用電極薄膜4の製作例について述べる。 Finally, a production example of the oxygen electrode thin film 4 will be described.

第1製作例は酸素用電極薄膜をペロブスカイト化合物
から作成するもので、まずペロブスカイト化合物(La
0.6Sr0.4CoOx)を作る。これには酢酸コバルト(CH3CO
O)2CO・4H2Oと、酢酸ランタン(CH3COO)2Laと、酢酸
ストロンチウム(CH3COO)2Srを原料とし、La0.6Sr0.4C
oOxの組成比に従い、粉末を秤量混合し、酸素雰囲気中
で1000℃にて加熱し、5時間焼成した。このようにして
作成したペロブスカイト化合物の電気抵抗率は4.4Ωcm
であった。
In the first production example, an electrode thin film for oxygen is formed from a perovskite compound.
0.6 Sr 0.4 CoOx). This includes cobalt acetate (CH 3 CO
O) 2 CO · 4H 2 O, lanthanum acetate (CH 3 COO) 2 La, and strontium acetate (CH 3 COO) 2 Sr as raw materials, La 0.6 Sr 0.4 C
According to the composition ratio of oOx, the powders were weighed and mixed, heated at 1000 ° C. in an oxygen atmosphere, and fired for 5 hours. The electric resistivity of the perovskite compound thus prepared is 4.4 Ωcm
Met.

上記のようにして作成したペロブスカイト化合物を用
いて酸素用電極薄膜を形成するには次の3つ手段があ
る。
There are the following three means for forming an electrode thin film for oxygen using the perovskite compound prepared as described above.

(1)ペロブスカイト化合物をプロピレングリコールに
溶解させ、これを固体電解質薄膜3の表面に塗布し、若
干の圧力を加えて300℃の温度で酸素雰囲気中にて8時
間焼成して電極薄膜4を得る。
(1) A perovskite compound is dissolved in propylene glycol, which is applied to the surface of the solid electrolyte thin film 3 and baked at 300 ° C. in an oxygen atmosphere for 8 hours at a temperature of 300 ° C. to obtain an electrode thin film 4. .

(2)ペロブスカイト化合物と、白金黒とを3:1の割合
で混合し、プロピレングコールにて溶解させる。その
後、この液を固体電解質薄膜3の表面に塗布して上記と
同様の条件で焼成することによって電極薄膜4を得る。
(2) The perovskite compound and platinum black are mixed at a ratio of 3: 1 and dissolved with propylene glycol. Thereafter, this liquid is applied to the surface of the solid electrolyte thin film 3 and fired under the same conditions as above to obtain the electrode thin film 4.

(2)ペロブスカイト化合物を高周波スパッタリング装
置を用いて固体電解質薄膜3の表面に形成する。これに
はアルゴンガスの1×10-2mmHgの圧力下で蒸着速度0.5
μm/時間で約2時間行って約1μm厚の電極薄膜4を得
る。
(2) A perovskite compound is formed on the surface of the solid electrolyte thin film 3 using a high-frequency sputtering device. The deposition rate is 0.5 at a pressure of 1 × 10 -2 mmHg of argon gas.
This is performed for about 2 hours at μm / hour to obtain an electrode thin film 4 of about 1 μm thickness.

上記ペロブスカイト化合物は白金と同等の性能を有す
るが、白金よりも極めて安価である。
The perovskite compound has the same performance as platinum, but is much cheaper than platinum.

次に酸素用電極薄膜の第2製作例について述べる。 Next, a second production example of the oxygen electrode thin film will be described.

この第2製作例はAg粉末をプロピレングリコールに溶
解させて、この液を固体電解質薄膜3の表面に塗布し、
若干の圧接力を加えて300℃の温度で酸素雰囲気中にて
8時間焼成することにより電極薄膜を得るものである。
In the second production example, an Ag powder is dissolved in propylene glycol, and this solution is applied to the surface of the solid electrolyte thin film 3,
The electrode thin film is obtained by baking at a temperature of 300 ° C. in an oxygen atmosphere for 8 hours while applying a slight pressing force.

次は酸素用電極薄膜3の第3製作例について述べる。 Next, a third production example of the oxygen electrode thin film 3 will be described.

第3製作例は塩化白金酸(H2PtCl6)をプロピレング
リコールにて溶解させ、これを上記と同様に塗布して上
記と同様の条件にて焼成することにより電極薄膜を得る
ものである。
In the third production example, chloroplatinic acid (H 2 PtCl 6 ) is dissolved in propylene glycol, which is applied in the same manner as described above and baked under the same conditions as above to obtain an electrode thin film.

上述したように、一般に入手できる多孔質基板はその
孔径に、例えば0.5〜40μmとばらつきがあり、この多
孔質基板の表面に水素,酸素電極と固体電解質薄膜を積
層形成したとき、多孔質基板に大きな孔があると、その
孔の上部の固体電解質にピンホールができ易かった。し
かし、上述したように水素,酸素電極および固体電解質
を作成するとピンホールが発生しなくなった。燃料電池
は固体電解質を挟んで酸素分圧が異なることにより、一
種の酸素濃淡電池が構成され、固体電解質の両端に起電
力が発生するものである。このときの起電力Eoは次式で
表される。
As described above, generally available porous substrates vary in pore diameter, for example, 0.5 to 40 μm. When a hydrogen, oxygen electrode and a solid electrolyte thin film are formed on the surface of the porous substrate, the porous substrate is If there were large holes, pinholes were easily formed in the solid electrolyte above the holes. However, when the hydrogen and oxygen electrodes and the solid electrolyte were prepared as described above, no pinholes were generated. In a fuel cell, a kind of oxygen concentration cell is formed by different oxygen partial pressures across a solid electrolyte, and an electromotive force is generated at both ends of the solid electrolyte. The electromotive force Eo at this time is expressed by the following equation.

Eo=(RT/4F)×ln(P1/P2) 上記式から起電力Eoは酸素分圧の比に比例して増加す
る。なお、式において、Rは気体定数、Tは絶対温度、
Fはファラデー定数、P1,P2は各々固体電解質を挟んで
の酸素分圧である。
Eo = (RT / 4F) × ln (P 1 / P 2 ) From the above equation, the electromotive force Eo increases in proportion to the ratio of the oxygen partial pressure. In the equation, R is a gas constant, T is an absolute temperature,
F is the Faraday constant, and P 1 and P 2 are the oxygen partial pressures across the solid electrolyte.

上記式から固体電解質にピンホールができると、酸素
分圧の比は小さくなるため、起電力Eoは小さくなってし
まうが、本発明のようにピンホールが生じない固体電解
質を製作することにより、起電力の低下は生じなくな
る。
When a pinhole is formed in the solid electrolyte from the above formula, the ratio of the oxygen partial pressure is reduced, so that the electromotive force Eo is reduced.However, by manufacturing a solid electrolyte in which the pinhole is not generated as in the present invention, No reduction in electromotive force occurs.

以上のように構成した単セル構造体は導電性のセルケ
ース内に収納してその単セル構造体の水素用電極薄膜2
とセルケース5とを電気的に接続させるようにし、ま
た、酸素用電極薄膜4側に導電性の端部セパレータ7を
被着して薄膜4と端部セパレータ7とを電気的に接続さ
せ、セルケース5と端部セパレータ7との間に絶縁物6
を介在させて燃料電池本体20aを構成したものである。
この燃料電池本体20aのセルケース5の多孔質基板1側
には第1図に示すように導電性のセパレータ7,8を電気
的に導通させて接続させる。このセパレータ8には上記
と同様に単セル構造体の酸素用電極薄膜4が電気的に接
続されるとともに水素用電極薄膜2とセルケース5も電
気的に接続され、セパレータ8とセルケース5の間に絶
縁物6が介在されて燃料電池本体20bが構成される。以
下同様に燃料電池本体20c,20d…をスタック構成して各
電池本体20a,20b…が単セル構造体と単に積層するだけ
で燃料電池の直列接続ができる。そして、セパレータ7,
8の導気口9から酸素を供給し、セルケース5の導気口1
0から水素を供給することによって発電を行う。
The single-cell structure constructed as described above is housed in a conductive cell case, and the hydrogen electrode thin film 2 of the single-cell structure is housed.
And the cell case 5 are electrically connected, and a conductive end separator 7 is applied to the oxygen electrode thin film 4 side to electrically connect the thin film 4 and the end separator 7. Insulator 6 between cell case 5 and end separator 7
The fuel cell main body 20a is configured by interposing a fuel cell.
As shown in FIG. 1, conductive separators 7 and 8 are electrically connected to the porous substrate 1 side of the cell case 5 of the fuel cell main body 20a. Similarly to the above, the oxygen electrode thin film 4 of the single cell structure is electrically connected to the separator 8 and the hydrogen electrode thin film 2 and the cell case 5 are also electrically connected to each other. The fuel cell body 20b is configured with the insulator 6 interposed therebetween. In the same manner, fuel cells can be connected in series by simply stacking the fuel cell bodies 20c, 20d... And simply stacking the respective cell bodies 20a, 20b. And separator 7,
Oxygen is supplied from the air inlet 9 of the cell 8 and the air inlet 1 of the cell case 5
Power is generated by supplying hydrogen from zero.

H.発明の効果 以上述べたように、本発明によれば、多孔質基板の表
面に順次、第1の電極薄膜、ピンホールの発生が生じな
い薄い固体電解質薄膜、第2の電極薄膜とを構成して単
セル構造体を形成したので、電圧降下の小さな単セル構
造体が得られる。
H. Effects of the Invention As described above, according to the present invention, a first electrode thin film, a thin solid electrolyte thin film that does not generate pinholes, and a second electrode thin film are sequentially formed on the surface of a porous substrate. Since the single cell structure is formed by the configuration, a single cell structure having a small voltage drop can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の固体電解質型燃料電池の実施例を説明
するための燃料電池のセル積層部の要部縦断面図、第2
図から第6図は水素用電極薄膜の製造工程を示す拡大断
面図、第7図は積層型燃料電池の原理図である。 1……多孔質基板、2……第1の電極薄膜となる水素用
電極薄膜、3……固体電解質薄膜、4……第2の電極薄
膜となる酸素用電極薄膜、5……セルケース、6……絶
縁物、7,8……セパレータ、20a,20b,20c……燃料電池本
体。
FIG. 1 is a longitudinal sectional view of an essential part of a cell stack portion of a fuel cell for explaining an embodiment of a solid oxide fuel cell according to the present invention.
FIG. 6 is an enlarged cross-sectional view showing a manufacturing process of a hydrogen electrode thin film, and FIG. 7 is a principle diagram of a stacked fuel cell. Reference numeral 1 denotes a porous substrate, 2 denotes a hydrogen electrode thin film serving as a first electrode thin film, 3 denotes a solid electrolyte thin film, 4 denotes an oxygen electrode thin film serving as a second electrode thin film, and 5 denotes a cell case. 6 ... insulator, 7, 8 ... separator, 20a, 20b, 20c ... fuel cell body.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/02 H01M 8/08 - 8/24 H01M 4/86 - 4/98──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 8/00-8/02 H01M 8/08-8/24 H01M 4/86-4/98

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質基板の表面上に、ニッケルパウダの
サブミクロン径のものと、ニッケルパウダ〜3μm径の
ものを同量づつ混合し、水で溶いたものを均一の厚さに
塗布し、これをプレスした後に焼結して塗布部を形成
し、 当該塗布部表面を研摩して平坦化した後、その上にニッ
ケルパウダサブミクロン径のものを擦り込み、プレスし
た後、焼結してその表面部に微細均一な空孔を有する水
素用の電極層を形成し、 当該電極層上に、ピンホールのない固体電解質薄膜を積
層し、 当該固体電解質薄膜の上に酸素用の電極薄膜を積層し
て、スタックの単セルを構成して成ることを特徴とする
固体電解質型燃料電池。
A nickel powder having a submicron diameter and a nickel powder having a diameter of 3 .mu.m are mixed in equal amounts on the surface of a porous substrate, and a mixture dissolved in water is applied to a uniform thickness. This was pressed and then sintered to form a coated portion. The surface of the coated portion was polished and flattened, and a nickel powder having a submicron diameter was rubbed thereon, pressed, and then sintered. An electrode layer for hydrogen having fine uniform pores is formed on the surface thereof, a solid electrolyte thin film without pinholes is laminated on the electrode layer, and an electrode thin film for oxygen is formed on the solid electrolyte thin film. A solid oxide fuel cell, wherein the fuel cells are stacked to constitute a single cell of a stack.
JP1217777A 1989-08-24 1989-08-24 Solid oxide fuel cell Expired - Lifetime JP2841528B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1217777A JP2841528B2 (en) 1989-08-24 1989-08-24 Solid oxide fuel cell
KR1019900013022A KR950001256B1 (en) 1989-08-24 1990-08-23 Fuel cell utilizing solidous electrolyte
EP90116284A EP0414270B1 (en) 1989-08-24 1990-08-24 Fuel cell utilizing solidous electrolyte
US07/573,245 US5151334A (en) 1989-08-24 1990-08-24 Fuel cell utilizing solidous electrolyte
DE69016881T DE69016881T2 (en) 1989-08-24 1990-08-24 Fuel cell containing solid electrolytes.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217777A JP2841528B2 (en) 1989-08-24 1989-08-24 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0381962A JPH0381962A (en) 1991-04-08
JP2841528B2 true JP2841528B2 (en) 1998-12-24

Family

ID=16709569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217777A Expired - Lifetime JP2841528B2 (en) 1989-08-24 1989-08-24 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2841528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070946B2 (en) 2010-01-19 2015-06-30 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014284C2 (en) * 2000-02-04 2001-08-13 Stichting Energie A method of manufacturing an assembly comprising an anode-supported electrolyte and a ceramic cell comprising such an assembly.
JP3997874B2 (en) 2002-09-25 2007-10-24 日産自動車株式会社 Single cell for solid oxide fuel cell and method for producing the same
DE10337357A1 (en) * 2003-08-14 2005-03-10 Adc Automotive Dist Control Method and device for lighting control for a camera
JP5011912B2 (en) * 2006-09-28 2012-08-29 大日本印刷株式会社 Solid oxide fuel cell and method for producing the same
JP5011911B2 (en) * 2006-09-28 2012-08-29 大日本印刷株式会社 Solid oxide fuel cell and method for producing the same
JP2008243743A (en) * 2007-03-28 2008-10-09 Univ Of Tokyo Solid oxide thin film, forming method of solid oxide thin film, solid oxide fuel cell using solid oxide thin film, and solid oxide steam electrolytic device
JP5228457B2 (en) * 2007-11-30 2013-07-03 大日本印刷株式会社 Method for producing solid oxide fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070946B2 (en) 2010-01-19 2015-06-30 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same

Also Published As

Publication number Publication date
JPH0381962A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
JP5255173B2 (en) Roughened electrolyte interface layer for solid oxide fuel cells
US6623881B2 (en) High performance solid electrolyte fuel cells
US5151334A (en) Fuel cell utilizing solidous electrolyte
US5670270A (en) Electrode structure for solid state electrochemical devices
US5993986A (en) Solide oxide fuel cell stack with composite electrodes and method for making
JP3976181B2 (en) Solid oxide fuel cell single cell and solid oxide fuel cell using the same
US20020102450A1 (en) High performance solid electrolyte fuel cells
JP2008538449A5 (en)
JP2002289248A (en) Unit cell for fuel cell and solid electrolytic fuel cell
JP2008538449A (en) Self-supporting ceramic membrane and electrochemical cell and electrochemical cell stack structure including the same
KR20100050687A (en) Fabrication method of metal supported solid oxide fuel cell
JP2841528B2 (en) Solid oxide fuel cell
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
JP3347561B2 (en) Solid oxide fuel cell
JP2940008B2 (en) Solid oxide fuel cell
JP2004146131A (en) Sealing structure and sealing method of solid oxide fuel cell
JP2004146129A (en) Sealing structure and sealing method of solid oxide fuel cell
JP3447541B2 (en) Cylindrical solid oxide fuel cell and fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH0855625A (en) Manufacture of fuel electrode substrate
JPH0381966A (en) Solid electrolyte fuel cell
JP2771090B2 (en) Solid oxide fuel cell
JP3405659B2 (en) Cylindrical solid oxide fuel cell
JPH0381963A (en) Solid electrolyte fuel cell
JP6936273B2 (en) Electrochemical reaction cell stack