JP2834474B2 - 直流リニアモータ - Google Patents

直流リニアモータ

Info

Publication number
JP2834474B2
JP2834474B2 JP1124521A JP12452189A JP2834474B2 JP 2834474 B2 JP2834474 B2 JP 2834474B2 JP 1124521 A JP1124521 A JP 1124521A JP 12452189 A JP12452189 A JP 12452189A JP 2834474 B2 JP2834474 B2 JP 2834474B2
Authority
JP
Japan
Prior art keywords
longitudinal direction
mover
electromagnetic coil
coil
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1124521A
Other languages
English (en)
Other versions
JPH02307355A (ja
Inventor
一三 松井
隆 高末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIGASHINIPPON RYOKAKU TETSUDO KK
Furukawa Electric Co Ltd
Original Assignee
HIGASHINIPPON RYOKAKU TETSUDO KK
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIGASHINIPPON RYOKAKU TETSUDO KK, Furukawa Electric Co Ltd filed Critical HIGASHINIPPON RYOKAKU TETSUDO KK
Priority to JP1124521A priority Critical patent/JP2834474B2/ja
Publication of JPH02307355A publication Critical patent/JPH02307355A/ja
Application granted granted Critical
Publication of JP2834474B2 publication Critical patent/JP2834474B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は直流リニアモータに関するものであり、特
に直流転流方式の固定子側電磁コイル列を構成する各相
コイル列の矩形コイルと、前記電磁コイル列のコイル面
に空隙を介して両側から対面して直流磁束を鎖交させる
可動子側磁石の磁極との相対配置構造の改良に関するも
のである。
「従来の技術] 例えば磁気誘導反発浮上方式の超高速鉄道の列車推進
駆動系として、地上レール側にループ状または波状の複
数の矩形コイルをそのコイル面が縦になるように長手方
向に配列して相コイル列を構成し、このような相コイル
列を幅方向に複数相分重ねて固定子側電磁コイル列を形
成し、一方車両側には前記相コイル列の縦辺に流れる電
流と鎖交する磁束を発生して電磁誘導作用により前記電
磁コイル列の長手方向に推進力を発生する可動子側磁石
を搭載したものが知られている。従来のこの種の直流リ
ニアモータでは、前記可動子側磁石として前記長手方向
に複数の磁極を配列し、各磁極の極性の向きを全く同じ
に揃えると共に、各磁極と前記矩形コイルおよび各磁極
間隔の前記長手方向の寸法を全く等しくしている。
即ち第6図は従来のこの種の直流リニアモータの推進
駆動系の構成を概念的に示すものであり、(a)は電磁
コイル列60と可動子側磁石の各磁極64との平面配置関
係、(b)はその側面視、(c)は電磁コイル列60の長
手方向の位置に対する磁極64による磁束密度分布を示し
ている。
電磁コイル列60は、この列では三相分の相コイル列6
1,62,63を厚さ方向(電磁コイル列60の幅方向)に重ね
て成り、各相コイル列は長手寸法lのループ状矩形コイ
ルをそのコイル面が縦になるように長手方向に複数隣接
して配列してある。この場合、各相コイル列間で矩形コ
イルは位相がl/3ずつずれており、図示しない直流イン
バータなどの転流電源による制御により電気角で2π/3
ラジアン(120度)ずつの位相差をもった直流電流を各
相コイル列61,62,63に順番に流して、(b)に示すよう
な矢印の向きの電流パターンを転流周波数に応じた速度
で見掛上電磁コイル列60の長手方向に進行させるように
なっている。可動子側磁石の各磁極64は、例えば電磁コ
イル列60を上から非接触的に跨ぐ馬締型支持構造(図示
せず)によって一体に支持されており、(a)に示すよ
うに各々長手寸法lの一対の対面磁極N,Sを同じ極性の
向きで長手方向間隔lにて配列している。
このような構成において、可動子側磁石64の対面磁極
N,S間に発生する磁束は各矩形コイルの縦辺に上向きに
流れる電流と鎖交し、これにより可動子側磁石64には図
上で右方向に向う推力が生じる。適当な前記転流制御に
よって可動子側磁石64は連続的に所定速度で電磁コイル
列60に沿って移動することになる。
[発明が解決しようとする課題] 従来の直流リニアモータでは、前述のように可動子側
磁石64の各磁極の長手方向を電磁コイル列60の構成要素
である矩形コイルの長手寸法lに等しくし、また各磁極
の長手方向の配置間隔もlとしているので、可動子側磁
石の長手寸法Lがlの整数倍とならざるを得ず、磁極有
効長C・l(Cは磁極数)とLとの比、すなわちC・l/
Lを或る値以上には大きくできず、従って同じ重量の可
動子側磁石で得られる推力の上限に限界があり、換言す
れば同じ推力を得る場合に可動子側磁石の重量軽減に限
界があるという問題がある。
また、曲線部の電磁コイル列の曲率半径を短くするな
どの目的で矩形コイルと各磁極の長手寸法および磁極間
隔寸法のlを短くすると、例え同じ推力を得るために磁
極数を増加したとしても、磁極間隔が近付きすぎて第6
図(c)に示したように隣接する各磁極端部に生じてい
る漏洩磁束同志が重なり合い、これによって負の推力が
生じてしまうので全体としての推力に不足をきたすよう
になる。
更に、従来では矩形コイルと各磁極の長手寸法および
磁極間隔寸法を全て等しくlにしているので、磁極端部
が矩形コイル縦辺の部分に対面したときの推力低下の影
響による推力の脈動が相数の増加につれて大きく現れ、
また転流制御も丁度このときにコイル電流を切換なけれ
ばならないので時間的余裕がなく、切換の遅れ時間によ
って転流損失が発生し、これまた推力の低下による脈動
の発生原因になっている。
この発明の課題は、前述の従来例に比べて同じ推力を
得るのに磁極の長手寸法を短く、かつ可動子側磁石の重
量を軽くでき、推力の脈動と転流損失を少なくすること
のできる直流リニアモータを提供することである。
[課題を解決するための手段] 本発明では、ループ状または波状の複数の矩形コイル
をそのコイル面が縦になるように長手方向に配列した相
コイル列を幅方向に複数相分重ねてなる固定子側電磁コ
イル列と、転流電源から給電される相コイル列の縦辺に
流れる電流と鎖交する磁束を発生して電磁誘導作用によ
り固定子側電磁コイル列の長手方向に相対移動する可動
子側磁石とを含む直流リニアモータにおいて、 可動子側磁石が固定子側電磁コイル列の長手方向に沿
って交互の極性の異なる複数の磁極を配列したものと
し、各々の相コイル列における各矩形コイルは互いに前
記長手方向に隣接せしめると共に全ての矩形コイルの長
手方向寸法lを互いに等しくし、固定子側電磁コイル列
の相数がn(nは2以上の整数)として固定子側電磁コ
イル列を構成するn列の各相コイル列が互いにl/nに相
当する位相差で前記長手方向にずらして配列し、可動子
側磁石の各磁極の前記長手方向の長さ寸法を(n−1)
l/nに相当する寸法とし、各磁極間の間隔がl/nに相当す
る寸法とし、転流電源から電気角で2π/nラジアンずつ
の位相差をもった直流電流を各相コイル列に順番に流す
ことにより転流周波数に応じた速度で可動子側磁石が固
定子側電磁コイル列の長手方向に移動されることによっ
て前述の課題を解決したものである。
[作用] 実施例に対応する第1図によって本発明の基本原理を
説明する。
第1図は本発明の直流リニアモータの構成を概念的に
示すものであり、(a)は電磁コイル列10と可動子側磁
石の各磁極14との平面配置関係、(b)はその側面視、
(c)は電磁コイル列10の長手方向の位置に対する磁極
14による磁束密度分布を示している。
電磁コイル列10は、この列では三相分の相コイル列1
1,12,13を厚さ方向(電磁コイル列10の幅方向)に重ね
て成り、各相コイル列は長手寸法lのループ状矩形コイ
ルをそのコイル面が縦になるように長手方向に複数隣接
して配列してある。この場合、各相コイル列間で矩形コ
イルは位相がl/3ずつずれており、図示しない直流イン
バータなどの転流電源による制御により電気角で2π/3
ラジアン(120度)ずつの位相差をもった直流電流を各
相コイル列11,12,13に順番に流して、(b)に示すよう
な矢印の向きの電流パターンを転流周波数に応じた速度
で見掛上電磁コイル列10の長手方向に進行させるように
なっている。可動視側磁石の各磁極14は、例えば(b)
に添画したように電磁コイル列10を上から非接触的に跨
ぐ馬締型支持鉄心構造15によって一体に支持されてお
り、この場合、相数はn=3であるから、(a)に示す
ように各々長手寸法が(n−1)l/n=2l/3の一対の対
面磁極N,Sを交互に極性の向きを変えて長手方向間隔l/n
=l/3にて三対配列し、第6図のものと比較して可動子
側磁石の長手寸法を8L/9に短縮している。磁極有効長C
・lは第6図の従来例の2lと等しくしてあり、従って磁
極有効長と可動子側磁極の長手寸法との比は第6図の従
来例の2/3から3/4に増加している。種々のコイル相数の
場合の磁極長手寸法と磁極間隔の例は第2図に示してあ
る。第2図で(a)は二相、(b)は三相、(c)は四
相の場合である。なお、ここで前記磁極間隔は一般に対
面磁極14の磁極対面空隙の2倍以上に選ぶのがよい。
再び第1図に戻って、磁極14の磁性の向きを長手方向
に交互に変えて配列することにより、長手方向の磁束密
度分布は第1図の(c)に示す通りとなる。転流の電流
切換のタイミングは、磁極間隔の中間点に相コイルの矩
形コイル縦辺の境界が位置する時点の前後l/2nの範囲内
で行えばよい。第3図にはこの転流切換位置について従
来方式(a)と本発明の方式(b)との相違が示されて
いる。(a)に示すように従来方式では切換の余裕距離
が矩形コイル縦辺の太さdの2倍しかないが、本発明の
方式ではこれが三相の場合でl/3すなわちn相ではl/nと
広がることが判る。
このような構成において、可動子側磁石14の対面磁極
N,S間に発生する磁束は、三つの対面磁極のうち両端の
ものでは各矩形コイルの縦辺に上向きに流れる電流と鎖
交し、また中央のものでは矩形コイルの縦辺に下向きに
流れる電流と鎖交し、これにより可動子側磁石14には図
上で右方向に向う推力が生じる。適当な前記転流制御に
よって可動子側磁石14は連続的に所定速度で電磁コイル
列10に沿って移動することになる。
同じコイルピッチの場合、第6図の従来例による方式
では推力はkn(kはコイル導体の幅dおよび転流効率な
どによって定まる係数<1)の関数であるが、本発明の
方式では、推力はコイル相数nに対して(n−1)に比
例して発生する。従って同じ推力を得るためには従来に
比して磁極数をkn/(n−1)倍にするが、磁極の高さ
と厚さ(縦断面積A)を同じとした場合、従来は磁極長
手寸法がl、本発明では(n−1)l/nであるので、磁
極総重量W1,W2となり、W2/W1=kとなる。
即ち、可動子側磁石単位で考えた場合、同じ推力を得
るのに磁極個数は増しても総重量はkに応じて軽くな
り、k=0.75〜0.85であるので、かなりの軽量化が達成
できる。
また本発明の方式では磁極の長手方向が矩形コイルの
寸法lより小さいので小曲率半径の曲線路を移動させる
のに有利であり、転流制御の面でもこの長手寸法の差に
よってコイル電流の切換に時間的余裕が生れるので電源
切換時に生じる転流損失を少なくでき、これは高速にな
るほど効果が大きい。
さらに推力の脈動については、本発明の方式ではコイ
ル相数nに対して推力は(n−1)/nに比例して発生す
るので、電磁コイル列のどの位置においてもほぼ一定の
推力を得ることができ、推力の脈動が極めて小さくな
る。即ち、一般の直流リニアモータではコイル相数が少
ないほど脈動が大きくなるのに対し、本発明の方式では
コイル相数が少なくても推力の脈動は極めて小さくな
る。
本発明の方式では矩形コイルの長手寸法を大きくして
も可動子側磁石の磁極長手寸法はそれより短くできるの
で、同じ磁極長手寸法の場合は総体的に矩形コイルの長
手寸法を大きくでき、これによって転流周波数を下げて
転流電源のコンデンサに印加される電圧を低くし、直流
リニアモータの電気性能の向上を図ることもできる。
次に本発明の好ましい実施例を説明する。
[実施例] 第4図(a)(b)にこの発明の直流リニアモータを
推進駆動系に利用した滑走型誘導浮上方式のリニアモー
タ鉄道システムの例が模式的に示されている。
第4図(a)においては、U型支持桁41上には横桁42
が渡され、これらが長さ方向(図において紙面の表裏方
向)に間隔をあけて連設されると共に、横桁42の両側に
一対の鉄レール39が敷設されて高架走行路が形成されて
いる。この走行路の上面の幅方向両側には前記レール39
の外側位置において夫々浮上システム用の矩形短絡コイ
ル列31が縦配置で敷設され、これら両短絡コイル列31の
間の前記横桁42上に本発明に係る地上一次式直流リニア
モータの三相式電磁コイル列36が同様に縦配置で敷設さ
れ、この電磁コイル列36の支持構造体の両側面には幅方
向案内用の磁気吸引浮上式の一対の鉄系磁性体レール34
が別に敷設されている。
一方、前記移動体として車両30が高架走行路上に配置
されており、この車両30は、前記レール39上を転動可能
な車輪40を有する台車43の上に支持ばね44を介して支持
されている。
台車43は、前記浮上システム用の両矩形短絡コイル列
31に各々上から跨って協動する逆U字状の単極型磁石32
を両脇に有し、また、前記電磁コイル列36に上から跨っ
て推進駆動用の地上一次式直流リニアモータを構成する
別の逆U字状の単極型磁石装置37を中央部に有し、この
中央部の磁石装置37の両脇に前記一対の磁性体レール34
と協動して磁気吸引浮上方式の左右案内を行うための一
対の制御電磁石装置35を有している。磁気浮上システム
用の各単極型磁石32は各々一対の永久磁石33を対面させ
て間にコイル31の入り込む空隙を形成したものであり、
直流リニアモータ用の単極型磁石装置37は前述第1図で
述べたように馬締型支持鉄心構造の内側下部に一対の永
久磁石38をそれぞれ対面配置して、これを第4図(b)
に示すように台車43の一基につき四対をレール長手方向
に交互に極性の向きを変えて配列したものである。この
場合、車両30には一台当り前後二基の台車43を連結器46
で回動可能に連結して装備しており、各対面磁石38の長
手寸法は電磁コイル列36の矩形コイル長手寸法lに対し
て2l/3であり、また各台車43でレール長手方向の磁石38
の間隔はl/3、同じく磁石部全長は(3+2/3)lであ
る。このように車両側の単極型磁石32,37に永久磁石33,
38を使用する関係上、地上側の短絡コイル31または電磁
コイル列36との空隙をできるだけ小さくすることが必要
になるが、この目的のためには左右案内方式を最小空隙
で非接触案内ができる磁気吸引浮上方式を利用した磁性
体レール34と制御電磁石35との組みあわせによって構成
するのが有利である。
また、推進駆動用直流リニアモータ(36,37,38)は走
行路の中央に設けてあり、この場合、直流リニアモータ
の電磁コイル列36(電磁レールと呼ばれる)を第4図
(a)に示すように走行路中央に逆T字状に縦配列でき
るので、その両側面を利用して案内用の磁性体レール34
を敷設し、リニアモータの近傍で磁気吸引浮上方式を利
用した左右案内を効果的に行っている。尚、この実施例
で用いている滑走型誘導浮上方式では、車上界磁に永久
磁石33をもつ単極型磁石32を採用して中速度でも充分な
浮上力が得られるようになっており、また車両の最高運
転速度に応じて浮上高さを予め定め、誘導浮上時に発生
する抗力に対して駆動力が打ち勝つようにしてある。
さて、電磁コイル列に転流電流を流すとその矩形コイ
ル縦辺に上向きまたは下向きに流れる電流と磁石38の磁
束とによる電磁誘導作用によって第1図に示したように
各磁石38にフレミングの左手の法則に従って推力が発生
し、これにより、台車43、従って車両30が第4図(b)
で図の左方へ移動する。始めは車輪40がレール39上を転
動し、速度が上昇するにつれて左右両脇の浮上システム
(31,33)が浮上力を発生して車両30が浮上走行するよ
うになる。台車43の左右案内は、電磁コイル列36の基部
両脇に配置した磁気吸引式案内システム(34,35)で行
われる。
この実施例では、本発明の直流リニアモータを用いて
いることにより従来方式の直流リニアモータを利用した
ものに比べて台車43の磁石部の全長を短くして同等の推
力を得ることができる。
即ち第5図は第4図(b)に対応させた従来方式の直
流リニアモータによる鉄道システムを示している。この
第5図において、電磁コイル列36、車両30、台車43、お
よび連結器46は第4図(b)のものと基本的に変りな
い。同じ電磁コイル列36を用いて同じ推力を得るために
は、従来方式によれば台車43一基につき長手寸法lの対
面磁石58を有する磁石装置57を間隔lで三対ずつ配置し
なければならない。従ってこの従来方式による場合では
磁石装置57の磁石部全長は第5図に示すように5lとな
る。一方本発明の方式によるときは磁石部全長は(3+
2/3)lであるから、その比の値は0.73となり、本発明
の方式を採用することによって磁石部全長の大幅な短縮
が可能である。これによってより小半径の曲線部の通過
が可能になり、また前述のように転流損失や推力の脈動
の面で有利な鉄道システムが構成できるのである。
[発明の効果] 以上に述べたように、この発明によれば、従来方式に
比べて同じ推力を得るのに可動子側磁石の磁極長手寸法
および磁極重量を軽減でき、より小半径の曲線路の通過
が可能となり、また転流損失や推力の脈動の少ない直流
リニアモータが得られるものである。
【図面の簡単な説明】
第1図は本発明の直流リニアモータの構成を概念的に示
す模式図であり、(a)は電磁コイル列と可動子側磁石
の各磁極との平面配置関係を示す配置図、(b)はその
側面視に相当する配置図、(c)は電磁コイル列の長手
方向の位置に対する各磁極による磁束密度分布を示す線
図である。 第2図は種々の相数の場合の可動子側磁石の磁極配置を
示す模式図で、(a)二相の場合、(b)は三相の場
合、(c)は四相の場合を各々示す配置図である。 第3図(a)(b)は従来方式と本発明の方式との転流
電流切換タイミングの相違を示す説明図である。 第4図(a)(b)は本発明の実施例に係る直流リニア
モータによる推進駆動系を備えた磁気浮上鉄道システム
の一例を示す模式的な正面図と側面図である。 第5図は従来方式の直流リニアモータによる磁気浮上式
鉄道システムの駆動系の模式側面図である。 第6図は従来の直流リニアモータの構成を概念的に示す
模式図であり、(a)は電磁コイル列と可動子側磁石の
各磁極との平面配置関係を示す配置図、(b)はその側
面視に相当する配置図、(c)は電磁コイル列の長手方
向の位置に対する各磁極による磁束密度分布を示す線図
である。 (主要部分の符号の説明) 10:電磁コイル列、11〜13:相コイル列、 14:可動子側磁石の磁極、15:馬締型鉄心。
フロントページの続き (72)発明者 高末 隆 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 昭59−122353(JP,A) 特開 昭58−86861(JP,A) 特開 昭56−62059(JP,A) 実開 昭59−173479(JP,U) 実開 昭62−195375(JP,U)

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】ループ状または波状の複数の矩形コイルを
    そのコイル面が縦になるように長手方向に配列した相コ
    イル列を幅方向に複数相分重ねてなる固定子側電磁コイ
    ル列と、転流電源から給電される相コイル列の縦辺に流
    れる電流と鎖交する磁束を発生して電磁誘導作用により
    固定子側電磁コイル列の長手方向に相対移動する可動子
    側磁石とを含む直流リニアモータにおいて、 可動子側磁石が固定子側電磁コイル列の長手方向に沿っ
    て交互の極性の異なる複数の磁極を配列したものからな
    り、各々の相コイル列における各矩形コイルが互いに前
    記長手方向に隣接されていると共に全ての矩形コイルが
    互いに等しい長手方向寸法lをもち、固定子側電磁コイ
    ル列の相数がn(nは2以上の整数)であって固定子側
    電磁コイル列を構成するn列の各相コイル列が互いにl/
    nに相当する位相差で前記長手方向にずらして配列さ
    れ、可動子側磁石の各磁極の前記長手方向の長さ寸法が
    (n−1)l/nに相当する寸法とされ、各磁極間の間隔
    がl/nに相当する寸法とされ、転流電源から電気角で2
    π/nラジアンずつの位相差をもった直流電流を各相コイ
    ル列に順番に流すことにより転流周波数に応じた速度で
    可動子側磁石が固定子側電磁コイル列の長手方向に移動
    されることを特徴とする直流リニアモータ。
JP1124521A 1989-05-19 1989-05-19 直流リニアモータ Expired - Lifetime JP2834474B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124521A JP2834474B2 (ja) 1989-05-19 1989-05-19 直流リニアモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124521A JP2834474B2 (ja) 1989-05-19 1989-05-19 直流リニアモータ

Publications (2)

Publication Number Publication Date
JPH02307355A JPH02307355A (ja) 1990-12-20
JP2834474B2 true JP2834474B2 (ja) 1998-12-09

Family

ID=14887544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124521A Expired - Lifetime JP2834474B2 (ja) 1989-05-19 1989-05-19 直流リニアモータ

Country Status (1)

Country Link
JP (1) JP2834474B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173479U (ja) * 1983-05-04 1984-11-20 トヨタ車体株式会社 可動磁石型リニアモ−タ
JPS62195375U (ja) * 1986-05-29 1987-12-11

Also Published As

Publication number Publication date
JPH02307355A (ja) 1990-12-20

Similar Documents

Publication Publication Date Title
US6758146B2 (en) Laminated track design for inductrack maglev systems
US6633217B2 (en) Inductrack magnet configuration
CA1311282C (en) Levitation, propulsion and guidance mechanism for inductive repulsion-type magnetically levitated railway
US6664880B2 (en) Inductrack magnet configuration
KR101544383B1 (ko) 안내 전자석 변환 스위치부를 갖는 자기부상 시스템 및 이의 정지 방법
US3845720A (en) Magnetic-levitation vehicle with auxiliary magnetic support at track-branch locations
US6286434B1 (en) Propulsion system for a magnetic levitation vehicle
US4049983A (en) Electromagnetic levitation
US4953470A (en) Attraction type magnetic levitation vehicle system
KR101009465B1 (ko) 할바흐 배열을 이용한 자기 부상 시스템 및 자기 부상 방법
US3895585A (en) Two-sided linear induction motor especially for suspended vehicles
KR101069334B1 (ko) 세그먼트 구조를 갖는 리니어 모터 및 자기부상 시스템
JP3815870B2 (ja) 磁気浮上式鉄道用推進・浮上・案内用地上コイル、磁気浮上式鉄道用推進・浮上・案内用地上コイルの接続方法、磁気浮上式鉄道の支持・案内用構造物、磁気浮上式鉄道の支持・案内用構造物の施工方法、磁気浮上式鉄道の推進・浮上・案内装置、磁気浮上式鉄道の推進・浮上・案内方法、磁気浮上式鉄道システム、磁気浮上式鉄道の集電システム、及び磁気浮上式鉄道の集電方法
US5253592A (en) Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
JPS5857066B2 (ja) リニアモ−タ
US3967561A (en) Linear-induction motor especially for high-speed suspension vehicles
US3824414A (en) Secondary member for single-sided linear induction motor
US4216397A (en) Linear induction motor
US4027597A (en) Linear induction motor with damping cage
JP2834474B2 (ja) 直流リニアモータ
EP0222938A1 (en) Rail for use in magnetic propulsive levitation apparatus
JPH0669246B2 (ja) 誘導反撥式磁気浮上鉄道の浮上、案内、推進併用装置
KR20180115834A (ko) 비대칭 양측식 선형유도전동기를 이용한 추진, 부상, 안내 일체형 시스템
US4232237A (en) Asynchronous line-fed motor
JP2001008432A (ja) リニアモータ