JP2833626B2 - Polymer solid electrolyte - Google Patents

Polymer solid electrolyte

Info

Publication number
JP2833626B2
JP2833626B2 JP63237937A JP23793788A JP2833626B2 JP 2833626 B2 JP2833626 B2 JP 2833626B2 JP 63237937 A JP63237937 A JP 63237937A JP 23793788 A JP23793788 A JP 23793788A JP 2833626 B2 JP2833626 B2 JP 2833626B2
Authority
JP
Japan
Prior art keywords
segment
metal salt
solid electrolyte
film
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63237937A
Other languages
Japanese (ja)
Other versions
JPH0286658A (en
Inventor
隆一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP63237937A priority Critical patent/JP2833626B2/en
Publication of JPH0286658A publication Critical patent/JPH0286658A/en
Application granted granted Critical
Publication of JP2833626B2 publication Critical patent/JP2833626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a solid polyelectrolyte excellent in heat resistance, low- temperature properties and mechanical properties by mixing a specified polymeric compound with an alkali (alkaline earth) metal salt. CONSTITUTION:A solid polyelectrolyte is formed by mixing a specified polymeric compound with an alkali metal salt or an alkaline earth metal salt, wherein the polymeric compound is a polyparabanic acid or its imino precursor having segments (I) comprising repeating unit of formula I or comprising segments (I) and segments (II) comprising repeating units of formula II. In the formulas, Ar and Ar' are different bivalent aromatic groups; and X is NH or O. Examples of the desired alkali metal salts and alkaline earth metal salts include LiClO4, LiBF4, LiAsF6, Li[CF3SO3], LiI, LiBr, and LiPF6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電池、エレクトロクロミック装置およびコ
ンデンサーなどの電気化学的デバイスに用いられる高分
子固体電解質に関するものである。
Description: TECHNICAL FIELD The present invention relates to a solid polymer electrolyte used for electrochemical devices such as batteries, electrochromic devices, and capacitors.

(従来の技術) 従来この種の高分子固体電解質としては、ポリエチレ
ンオキシド、ポリプロプレンオキシド、またはエチレン
オキシドとポリプロピレンオキシドとの共重合体を主鎖
または側鎖に有する高分子化合物とアルカリ金属塩また
はアルカリ土類金属塩を錯体形成させたものが主に知ら
れている。
(Prior Art) Conventionally, as a polymer solid electrolyte of this type, a polymer compound having polyethylene oxide, polypropylene oxide, or a copolymer of ethylene oxide and polypropylene oxide in the main chain or side chain and an alkali metal salt or alkali A complex of an earth metal salt is mainly known.

これら従来の高分子固体電解質を構成する高分子材料
のポリエーテルは、一般的にガラス転移温度が低く(例
えば、ポリエチレンオキシドの場合は−67℃)、温度が
高くなると軟化して機械的強度が低下するという問題を
生ずる。また、例えば−100℃以下の低温になると脆性
を示すばかりか、種々の溶媒類や化学薬品類に対する安
定性が低下するという問題があった。
The polyether of the polymer material constituting these conventional polymer solid electrolytes generally has a low glass transition temperature (for example, -67 ° C. in the case of polyethylene oxide), and softens as the temperature increases, resulting in a decrease in mechanical strength. The problem of lowering occurs. Further, for example, when the temperature is lowered to -100 ° C. or lower, not only the brittleness is exhibited but also the stability to various solvents and chemicals is lowered.

しかしながら、近年電気機器類の進歩に伴って電池な
どの電気化学的デバイスを上記の例示温度より高温また
は低温で使用する要求が高まってきており、上記の問題
を克服してより広範な温度範囲で使用できるような高分
子固体電解質の開発が望まれている。
However, in recent years, there has been an increasing demand for using electrochemical devices such as batteries at higher or lower temperatures than the above-mentioned exemplary temperatures in accordance with the progress of electrical equipment, and overcoming the above-mentioned problems to cover a wider temperature range. Development of a solid polymer electrolyte that can be used is desired.

(発明が解決しようとする課題) 本発明は上記従来の高分子固体電解質の有する問題を
克服し、耐熱性、耐寒性に優れかつ高い機械的強度を有
する新しい高分子固体電解質を提供することを目的とす
るものである。
(Problems to be Solved by the Invention) The present invention overcomes the above-mentioned problems of the conventional polymer solid electrolyte and provides a new polymer solid electrolyte having excellent heat resistance and cold resistance and high mechanical strength. It is the purpose.

(課題を解決するための手段) 上記の目的を達成するための本発明の第1の実施態様
は、ポリパラバン酸系高分子化合物セグメントにアルカ
リ金属塩を含有させてなる高分子固体電解質を特徴とす
るものである。また本発明の第2の実施態様は第1の実
施態様にさらに極性溶剤を含有させてなる高分子固体電
解質を特徴とするものである。
(Means for Solving the Problems) A first embodiment of the present invention for achieving the above object is characterized by a solid polymer electrolyte comprising a polyparabanic acid-based polymer compound segment containing an alkali metal salt. Is what you do. Further, the second embodiment of the present invention is characterized by a polymer solid electrolyte further comprising a polar solvent in the first embodiment.

(作用) 本発明の高分子固体電解質の主要構成成分であるポリ
パラバン酸系高分子化合物は、下記化学式(5) で示される単位化合物1のセグメント(I)からなる高
分子化合物、または該セグメント(I)と下記化学式
(6) で示される単位化合物2のセグメント(II)とを結合さ
せてなる高分子化合物をいう。ここでセグメントとは上
記単位化合物1または2それぞれの任意数の連続結合鎖
からなるものをいう。
(Action) The polyparabanic acid-based polymer compound, which is a main component of the polymer solid electrolyte of the present invention, has the following chemical formula (5) Or a polymer compound comprising the segment (I) of the unit compound 1 represented by the following formula (1), or the segment (I) and the following chemical formula (6) And a polymer compound obtained by bonding to the segment (II) of the unit compound 2 represented by Here, the segment refers to a unit composed of an arbitrary number of continuous bonding chains of each of the unit compounds 1 and 2.

また、上記化学式(5)および化学式(6)中におけ
るArおよびAr′はそれぞれ異なる芳香族基を表し、Xは
OまたはNHを表す。そして以下、XがOのものをポリパ
ラバン酸といい、XがNH(イミノ基)のものをポリパラ
バン酸イミノ前躯体と称するので、本発明においては、
これらの高分子化合物のセグメントを総称してポリパラ
バン酸系高分子化合物という。
Ar and Ar ′ in the above chemical formulas (5) and (6) each represent a different aromatic group, and X represents O or NH. Hereinafter, those in which X is O are referred to as polyparabanic acid, and those in which X is NH (imino group) are referred to as a polyparabanic acid imino precursor.
These polymer compound segments are collectively referred to as polyparabanic acid-based polymer compounds.

本発明において用いられるポリパラバン酸系高分子化
合物セグメント(I)およびセグメント(II)を構成す
る単位化合物1および単位化合物2において含まれる互
いに異なる2価の芳香族基ArおよびAr′は、好ましくは
下記の化学式(7)〜(13)で示される2価の芳香族基
から選択される。
The different divalent aromatic groups Ar and Ar ′ contained in the unit compounds 1 and 2 constituting the polyparabanic acid-based polymer compound segment (I) and the segment (II) used in the present invention are preferably Selected from divalent aromatic groups represented by the following chemical formulas (7) to (13).

(但し、化学式(7)〜(13)中のR,R1,R2、R3は、
それぞれ独立にH原子または炭素原子数1から4のアル
キル基を表す。) そして、特に好ましい芳香族基は下記化学式(14)〜
(18)で示される基である。
(However, R, R 1 , R 2 and R 3 in the chemical formulas (7) to (13) are
Each independently represents an H atom or an alkyl group having 1 to 4 carbon atoms. In addition, particularly preferred aromatic groups are those represented by the following chemical formulas (14) to (14).
It is a group represented by (18).

本発明の高分子固体電解質を構成するポリパラバン酸
系高分子化合物は極めて高いガラス転移点を有する。即
ち、例えば、XがOで、Arが化学式(14)で示される芳
香族基を有する単位化合物からなるセグメント(I)の
高分子化合物(M型PPA)は、約290℃のガラス転移点を
有し、上記セグメント(I)とXがOでAr′が化学式
(16)で示されるセグメント(II)とを結合させた高分
子化合物(TM型PPA)は約350℃のガラス転移点を有す
る。また熱分解温度はいずれも400℃以上で十分な耐熱
性を有しており、長期耐熱性もUL温度指数で180℃を示
し、260℃におけるハンダ浴テストにも十分に耐え得る
ことが確認されている。
The polyparabanic acid-based polymer compound constituting the polymer solid electrolyte of the present invention has an extremely high glass transition point. That is, for example, the polymer compound (M-type PPA) of the segment (I) comprising a unit compound having an aromatic group represented by the chemical formula (14) where X is O and Ar has a glass transition point of about 290 ° C. The polymer compound (TM-type PPA) in which the segment (I) is bonded to the segment (II) in which X is O and Ar ′ is represented by the chemical formula (16) has a glass transition point of about 350 ° C. . In addition, the thermal decomposition temperature is 400 ° C or more, which has sufficient heat resistance, and the long-term heat resistance shows a UL temperature index of 180 ° C, and it is confirmed that it can sufficiently withstand the solder bath test at 260 ° C. ing.

また、これらのポリパラバン酸系高分子化合物は高い
耐薬品性と化学的安定性を持ち、しかも機械的強度も優
れている。一方これらの高分子化合物は極低温でもその
機械的強度は低下することがなく、例えば液体窒素中で
も十分に高い機械的強度を維持することができるという
特徴を有しており、また、これ以外のポリパラバン酸系
高分子化合物も類似の特性を有することが確認されてい
る。
Further, these polyparabanic acid-based polymer compounds have high chemical resistance and chemical stability, and also have excellent mechanical strength. On the other hand, these high molecular compounds have the feature that their mechanical strength does not decrease even at extremely low temperatures, for example, they can maintain a sufficiently high mechanical strength even in liquid nitrogen. It has been confirmed that polyparabanic acid-based polymer compounds also have similar properties.

本発明は、上記したような幅広い温度環境下において
高い化学的安定性と機械的強度を有するポリパラバン酸
系高分子化合物セグメントに、アルカリ金属塩を含有さ
せることにより錯体を形成させ、安定した固体電解質と
して使用に供することに成功したものである。また本発
明の固体電解質は、例えばN,N−ジメチルホルムアミド
(DMF)などの有機極性溶剤に溶解させることができる
ので、溶解後の溶液を任意の基板上に流延または塗布
し、その後溶剤を適宜温度に真空乾燥を行うなどにして
揮発除去しフィルム状固体電解質として使用することが
できるので使用上極めて便利である。なお、この場合に
おいて本発明のポリパラバン酸系高分子化合物は、DMF
などの有機極性溶剤に対して一定の親和力を有するの
で、フィルム作成に際してある程度の量が残留するが、
有機極性溶剤は誘電率が高いので、ポリパラバン酸系高
分子化合物またはアルカリ金属塩と相互作用をするの
で、残留しても固体電解質の性能に高影響を与えこそす
れ、性能を阻害することはない。
The present invention relates to a polyparabanic acid-based polymer compound segment having high chemical stability and mechanical strength under a wide temperature environment as described above, and forming a complex by containing an alkali metal salt to form a stable solid electrolyte. It has been successfully used as a product. Further, since the solid electrolyte of the present invention can be dissolved in an organic polar solvent such as N, N-dimethylformamide (DMF), the dissolved solution is cast or applied on an arbitrary substrate, and then the solvent is applied. It is very convenient in use because it can be volatilized and removed by performing vacuum drying at an appropriate temperature and used as a film-like solid electrolyte. In this case, the polyparabanic acid-based polymer compound of the present invention is DMF
Since it has a certain affinity for organic polar solvents such as, a certain amount remains when making the film,
Since the organic polar solvent has a high dielectric constant, it interacts with the polyparabanic acid-based polymer compound or the alkali metal salt, so that even if it remains, it will have a high effect on the performance of the solid electrolyte and will not hinder the performance. .

本発明において使用されるポリパラバン酸系高分子化
合物は、例えば特公昭49−20960号公報に開示されてい
る方法によって容易に得ることができる。また、本発明
において使用されるアルカリ金属塩としてはリチウム塩
が好ましい。そしてリチウム塩としては、過塩素酸リチ
ウム(LiClO4)、テトラフルオロ硼酸リチウム(LiB
F4)、トリフルオロメチルスルフォン酸リチウム(Li
[CF3SO3])、六フッ化ヒ素リチウム(LiAsF6)、ヨウ
化リチウム(LiI)、臭化リチウム(LiBr)、六フッ化
リンリチウム(LiPF6)などが挙げられる。
The polyparabanic acid-based polymer compound used in the present invention can be easily obtained, for example, by the method disclosed in JP-B-49-20960. Further, as the alkali metal salt used in the present invention, a lithium salt is preferable. As lithium salts, lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiB
F 4 ), lithium trifluoromethylsulfonate (Li
[CF 3 SO 3 ]), lithium arsenide hexafluoride (LiAsF 6 ), lithium iodide (LiI), lithium bromide (LiBr), and lithium phosphorus hexafluoride (LiPF 6 ).

(実施例) 以下に本発明の優れた効果を示すための幾つかの実施
例について説明する。
(Examples) Some examples for showing the excellent effects of the present invention will be described below.

実施例1: 154mgのTM型PPA(30℃でのN,N−ジメチルホルムアミ
ド中における固有粘度が約1.0dl/g)と104mgのトリフル
オロメチルスルフォン酸リチウム(Li[CF3SO3])を2.
5mgのDMFに均一に溶解し、プラスチック基板上に流延
し、9時間にわたり室温で真空乾燥してDMFを揮発さ
せ、厚さ220μmの高分子固体電解質フィルム(試料
1)を得た。
Example 1: 154 mg of TM-type PPA (intrinsic viscosity in N, N-dimethylformamide at 30 ° C. of about 1.0 dl / g) and 104 mg of lithium trifluoromethylsulfonate (Li [CF 3 SO 3 ]) 2.
DMF was uniformly dissolved in 5 mg of DMF, cast on a plastic substrate, and vacuum-dried at room temperature for 9 hours to volatilize DMF to obtain a polymer solid electrolyte film (sample 1) having a thickness of 220 μm.

このフィルムを15mmφに打ち抜き、13mmφの白金電極
で挟み、複素インピーダンス法によりイオン導電率を求
めた。得られたフィルムは淡黄色透明であり、上記リチ
ウム塩化合物が均一に高分子フィルム中に分散している
ことを示し、リチウムイオンが高分子化合物と錯体形成
などの化学的相互作用を有することを示している。上記
複素インピーダンス法により求められたイオン導電率
は、25℃で6.8×10-7Scm-1であり、78.6℃は1.3×10-4S
cm-1であった。なお、本実施例のフィルム中における、
高分子化合物とリチウム塩の総量に対するリチウム塩の
重量比は40.3%であった。
This film was punched into a 15 mmφ, sandwiched between 13 mmφ platinum electrodes, and the ionic conductivity was determined by a complex impedance method. The resulting film is pale yellow and transparent, indicating that the lithium salt compound is uniformly dispersed in the polymer film, and that lithium ions have a chemical interaction with the polymer compound, such as complex formation. Is shown. The ionic conductivity determined by the complex impedance method is 6.8 × 10 −7 Scm −1 at 25 ° C., and 1.3 × 10 −4 S at 78.6 ° C.
cm -1 . In addition, in the film of this example,
The weight ratio of the lithium salt to the total amount of the polymer compound and the lithium salt was 40.3%.

実施例2: 実施例1と同様のTM型PPAとトリフルオロメチルスル
フォン酸リチウムを用い、総量に対するリチウム塩の重
量比を種々変えたこと以外は実施例1と同様の手順で5
種類の高分子固体電解質フィルム(試料2〜6)を作製
し、25℃におけるイオン導電率を測定した。リチウム塩
の重量比に対応するイオン導電率の測定結果を表1に示
す。
Example 2: The same procedure as in Example 1 was repeated except that the same TM-type PPA and lithium trifluoromethyl sulfonate as in Example 1 were used and the weight ratio of the lithium salt to the total amount was variously changed.
Various kinds of polymer solid electrolyte films (samples 2 to 6) were prepared, and the ionic conductivity at 25 ° C. was measured. Table 1 shows the measurement results of the ionic conductivity corresponding to the weight ratio of the lithium salt.

通常本発明に用いられるようなポリパラバン酸系高分
子化合物は、DMFに対し親和性を有する。そこで室温で
9時間の真空乾燥を施した各フィルム試料をさらに加熱
昇温させて熱重量分析により加熱の影響を調べた。その
結果300℃まで昇温すると約5%乃至20%の重量減少が
見られた。しかし、160℃で9時間の真空乾燥を施した
ものについては重量減少は見られず、またフィルム透明
度の減少や型崩れなどが見られなかった。このことは、
本発明の固体電解質フィルムは少くとも200℃付近まで
は耐熱性が良好で固体電解質として安定使用が可能であ
ることを示す。また表1の試料4について3秒間の高周
波加熱により445℃に加熱した際に発生する揮発分をガ
スクロマトグラフィーにより分析することによって、該
試料4は重量比で6.5%のDMFを含有することが分かっ
た。
Usually, the polyparabanic acid-based polymer compound used in the present invention has an affinity for DMF. Therefore, each film sample that had been vacuum-dried at room temperature for 9 hours was further heated and heated, and the effect of heating was examined by thermogravimetric analysis. As a result, when the temperature was raised to 300 ° C., a weight loss of about 5% to 20% was observed. However, in the case of vacuum drying at 160 ° C. for 9 hours, no weight loss was observed, and no decrease in film transparency or shape loss was observed. This means
The solid electrolyte film of the present invention has good heat resistance up to at least around 200 ° C., indicating that it can be stably used as a solid electrolyte. The volatile content generated when the sample 4 in Table 1 was heated to 445 ° C. by high-frequency heating for 3 seconds was analyzed by gas chromatography to find that the sample 4 contained 6.5% DMF by weight. Do you get it.

実施例3: 実施例1と同様のTM型PPA205mgと77.6mgの過塩素酸リ
チウム(LiClO4)を2.5mgのDMFに均一に溶解し、プラス
チック基板上に流延し、室温乾燥後、70〜80℃で9時間
真空乾燥してDMFを取り除き、厚さ187μmの淡黄色透明
フィルムを得た。このようにして得られたフィルムの両
面に1cm×1cmの正方形状に金を蒸着し、実施例1と同様
白金極により複素インピーダンス法によるイオン導電率
を求めたところ、25℃のイオン導電率は、4.8×10-7Scm
-1であった。
Example 3: As in Example 1, 205 mg of TM-type PPA and 77.6 mg of lithium perchlorate (LiClO 4 ) were uniformly dissolved in 2.5 mg of DMF, cast on a plastic substrate, and dried at room temperature. DMF was removed by vacuum drying at 80 ° C. for 9 hours to obtain a light yellow transparent film having a thickness of 187 μm. Gold was vapor-deposited on both sides of the film thus obtained in a square shape of 1 cm × 1 cm, and the ionic conductivity was determined by a complex impedance method using a platinum electrode in the same manner as in Example 1. , 4.8 × 10 -7 Scm
It was -1 .

実施例4: TM型PPA(30℃のDMF中で固有粘度が0.8dl/g)とトリ
フルオロメチルスルフォン酸リチウムとを用い、総量に
対するリチウム塩の重量比を2種類に変えたこと以外は
実施例1と同様の手順でフィルム(試料番号7および
8)を作製し、実施例1と同様の手順で25℃におけるイ
オン導電率を測定した。リチウム塩の重量比に対応する
イオン導電率の測定結果を表2に示す。
Example 4: Performed except that TM-type PPA (intrinsic viscosity in DMF at 30 ° C .: 0.8 dl / g) and lithium trifluoromethylsulfonate were used and the weight ratio of lithium salt to the total amount was changed to two. Films (Sample Nos. 7 and 8) were prepared in the same manner as in Example 1, and the ionic conductivity at 25 ° C. was measured in the same manner as in Example 1. Table 2 shows the measurement results of the ionic conductivity corresponding to the weight ratio of the lithium salt.

また、70〜80℃で真空乾燥した以外は実施例1と同様
の手順で上記と同様のリチウム重量比のフィルムを作成
し、実施例1と同様の手順で25℃におけるイオン導電率
を測定したところ、その値はそれぞれ2.9×10-8Scm-1
よび1.4×10-7Scm-1であった。
Further, a film having the same lithium weight ratio as that described above was prepared in the same procedure as in Example 1 except that the film was vacuum-dried at 70 to 80 ° C, and the ionic conductivity at 25 ° C was measured in the same procedure as in Example 1. However, the values were 2.9 × 10 −8 Scm −1 and 1.4 × 10 −7 Scm −1 , respectively.

実施例5: リチウム塩としてテトラフルオロ硼酸リチウム(LiBF
4)を用い、また室温乾燥後160℃で9時間の真空乾燥を
行った以外は実施例3と同様の手順でフィルムを作成し
たところ、実施例3で得られたフィルムと少くとも何等
外見上の変化が認められなかった。該フィルムにおける
TM型PPAとLiBF4の総量に対するLiBF4の重量比は40%で
あった。また該フィルムについて実施例3と同様の手順
で複素インピーダンス法によるイオン導電率を測定し、
35℃から174℃付近までのイオン導電率の温度依存度を
求めた結果を表3に示す。
Example 5: Lithium tetrafluoroborate (LiBF
A film was prepared in the same manner as in Example 3 except that 4 ) was used, and vacuum drying was performed at 160 ° C. for 9 hours after drying at room temperature. No change was observed. In the film
The weight ratio of LiBF 4 relative to the total amount of TM type PPA and LiBF 4 was 40%. The film was measured for ionic conductivity by a complex impedance method in the same procedure as in Example 3,
Table 3 shows the results of determining the temperature dependence of the ionic conductivity from 35 ° C to around 174 ° C.

なお、フィルムは、173.7℃まで昇温しても型崩れを
起こすことなく安定した状態を維持していた。なお、比
較のため従来のポリエチレンオキシドとポリビニルアル
コールを基材とする高分子固体電解質を用いて同様のイ
オン導電率温度依存試験を実施したところ、90℃の温度
ですでにフィルムは変形を起こしイオン導電率の測定は
不可能となった。
Note that the film maintained a stable state without shape collapse even when the temperature was raised to 173.7 ° C. For comparison, when a similar ionic conductivity temperature dependence test was conducted using a conventional solid polymer electrolyte based on polyethylene oxide and polyvinyl alcohol, the film was already deformed at a temperature of 90 ° C. Measurement of the conductivity became impossible.

実施例6: リチウム塩としてトリフルオロメチルスルホン酸リチ
ウム(Li[CF3SO2])を用いた以外は、実施例5と同様
の手順で高分子固体電解質フィルムを作成した。該フィ
ルムにおけるTM型PPAとLi[CF3SO3]の総量に対するLi
[CF3SO3]の重量比は50.6%であった。このフィルムに
ついて実施例5と同様の手順で複素インピーダンス法に
よるイオン導電率を測定し、35℃から173℃付近までの
イオン導電率の温度依存度を求めた結果を表4に示す。
Example 6: A polymer solid electrolyte film was prepared in the same procedure as in Example 5, except that lithium trifluoromethylsulfonate (Li [CF 3 SO 2 ]) was used as the lithium salt. Li based on the total amount of TM-type PPA and Li [CF 3 SO 3 ] in the film
The weight ratio of [CF 3 SO 3 ] was 50.6%. The ionic conductivity of this film was measured by the complex impedance method in the same procedure as in Example 5, and the temperature dependence of ionic conductivity from 35 ° C. to around 173 ° C. was determined, and the results are shown in Table 4.

なおフィルムは173℃まで昇温しても型崩れを起こす
ことなく強度的にも安定した状態を維持していた。
The film maintained its stable state in terms of strength without causing shape collapse even when the temperature was raised to 173 ° C.

(発明の効果) 以上述べた通り本発明によるときは、広範な温度環境
下において、機械的強度や耐熱性、耐寒性および形状安
定性に優れた高分子固体電解質を提供することができる
ので、その工業的価値は極めて大きい。
(Effect of the Invention) As described above, according to the present invention, a polymer solid electrolyte having excellent mechanical strength, heat resistance, cold resistance and shape stability can be provided under a wide range of temperature environments. Its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01G 9/02 331 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01G 9/02 331

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記化学式(1)で示される単位化合物1
からなるセグメント(I)、または該セグメント(I)
と下記化学式(2)で示される単位化合物2からなるセ
グメント(II)とを結合させてなるポリパラバン酸系高
分子化合物にアルカリ金属塩を含有させてなる高分子固
体電解質。 (但し、化学式(1)、(2)中のArおよびAr′は、そ
れぞれ異なる2価の芳香族基であり、XはNHまたはOを
表す。)
1. A unit compound 1 represented by the following chemical formula (1)
Or a segment (I) consisting of
And a segment (II) consisting of a unit compound 2 represented by the following chemical formula (2): A solid polymer electrolyte comprising a polyparabanic acid-based polymer compound containing an alkali metal salt. (However, Ar and Ar ′ in the chemical formulas (1) and (2) are different divalent aromatic groups, and X represents NH or O.)
【請求項2】下記化学式(3)を単位化合物とするセグ
メント(I)、または該セグメント(I)と下記化学式
(4)を単位化合物とするセグメント(II)とを結合さ
せてなるポリパラバン酸系高分子化合物にアルカリ金属
塩を含有させ、さらに極性溶剤を含有させてなる高分子
固体電解質。 (但し、化学式(3)、(4)中のArおよびAr′は、そ
れぞれ異なる2価の芳香族基であり、XはNHまたはOを
表す。)
2. A polyparabanic acid-based segment obtained by bonding a segment (I) having the following chemical formula (3) as a unit compound, or a segment (II) having the segment (I) and a unit compound having the following chemical formula (4). A solid polymer electrolyte comprising a polymer compound containing an alkali metal salt and a polar solvent. (However, Ar and Ar ′ in the chemical formulas (3) and (4) are different divalent aromatic groups, and X represents NH or O.)
JP63237937A 1988-09-21 1988-09-21 Polymer solid electrolyte Expired - Fee Related JP2833626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63237937A JP2833626B2 (en) 1988-09-21 1988-09-21 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63237937A JP2833626B2 (en) 1988-09-21 1988-09-21 Polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JPH0286658A JPH0286658A (en) 1990-03-27
JP2833626B2 true JP2833626B2 (en) 1998-12-09

Family

ID=17022671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63237937A Expired - Fee Related JP2833626B2 (en) 1988-09-21 1988-09-21 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JP2833626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100695113B1 (en) 2005-12-12 2007-03-14 삼성에스디아이 주식회사 Proton conductive solid polymer electrolyte and fuel cell comprising the same
US7537853B2 (en) 2004-01-20 2009-05-26 Samsung Sdi Co., Ltd. Gel electrolyte, electrode for fuel cell, and fuel cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637488B2 (en) * 2004-01-20 2011-02-23 三星エスディアイ株式会社 Gel electrolyte and fuel cell electrode and fuel cell
WO2006001083A1 (en) * 2004-06-29 2006-01-05 Samsung Yokohama Research Institute Solid polymer electrolyte, electrode for fuel cell, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537853B2 (en) 2004-01-20 2009-05-26 Samsung Sdi Co., Ltd. Gel electrolyte, electrode for fuel cell, and fuel cell
KR100695113B1 (en) 2005-12-12 2007-03-14 삼성에스디아이 주식회사 Proton conductive solid polymer electrolyte and fuel cell comprising the same

Also Published As

Publication number Publication date
JPH0286658A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
US5548055A (en) Single-ion conducting solid polymer electrolytes
Watanabe et al. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4
Stephan et al. Characterization of poly (vinylidene fluoride–hexafluoropropylene)(PVdF–HFP) electrolytes complexed with different lithium salts
Jiang et al. Studies of some poly (vinylidene fluoride) electrolytes
Sylla et al. Electrochemical study of linear and crosslinked POE-based polymer electrolytes
Ogihara et al. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes
US5874185A (en) Polymer electrolyte material for use in lithium and lithium ion batteries
Yamamoto et al. Preparation and properties of polymer solid electrolytes using poly (vinyl alcohol) and thermally resistive poly [arylene (1, 3-imidazolidine-2, 4, 5-trione-1, 3-diyl)] as matrix polymers
US5691080A (en) Method of preparing thin film polymeric gel electrolytes
Huq et al. Effect of plasticizers on the properties of new ambient temperature polymer electrolyte
US6232019B1 (en) Gel electrolytes for electrochromic and electrochemical devices
Rajendran et al. Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes
Szczęsna-Chrzan et al. Lithium polymer electrolytes for novel batteries application: the review perspective
Magistris et al. PEO‐based polymer electrolytes
Wang et al. Ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with Li1. 3Al0. 3Ti1. 7 (PO4) 3 salt
JP2833626B2 (en) Polymer solid electrolyte
JPH1050141A (en) Highpolymer electrolyte and electrochemical device
Perera et al. Copper-ion conducting solid-polymer electrolytes based on polyacrylonitrile (PAN)
Bushkova et al. Lithium conducting solid polymer electrolytes based on polyacrylonitrile copolymers: ion solvation and transport properties
Kaskhedikar et al. Polymer electrolytes based on cross-linked cyclotriphosphazenes
Wu et al. Incombustible solid polymer electrolytes: A critical review and perspective
KR100832744B1 (en) Polymer electrolyte composite materials including imidazolium salts and lithium secondary battery comprising same
CN103515654B (en) The manufacture method of a kind of copolymer solid electrolyte
Regu et al. Al 2 O 3-incorporated proton-conducting solid polymer electrolytes for electrochemical devices: a proficient method to achieve high electrochemical performance
Jacobs et al. Impedance studies on the system LiClO4—MEEP

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees