JP2833080B2 - Electrophoresis analyzer - Google Patents

Electrophoresis analyzer

Info

Publication number
JP2833080B2
JP2833080B2 JP1329161A JP32916189A JP2833080B2 JP 2833080 B2 JP2833080 B2 JP 2833080B2 JP 1329161 A JP1329161 A JP 1329161A JP 32916189 A JP32916189 A JP 32916189A JP 2833080 B2 JP2833080 B2 JP 2833080B2
Authority
JP
Japan
Prior art keywords
substrate
groove
hole
sample
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1329161A
Other languages
Japanese (ja)
Other versions
JPH03188372A (en
Inventor
紀明 俵木
一郎 坪田
宗樹 蘭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1329161A priority Critical patent/JP2833080B2/en
Publication of JPH03188372A publication Critical patent/JPH03188372A/en
Application granted granted Critical
Publication of JP2833080B2 publication Critical patent/JP2833080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は,細管式等速電気泳動分析装置に関し,さら
に詳しくは電極形成時の生産性の向上をはかった電気泳
動分析装置に関する。
Description: TECHNICAL FIELD The present invention relates to a capillary type isotachophoresis analyzer, and more particularly, to an electrophoresis analyzer for improving productivity when forming electrodes.

<従来の技術> 等速電気泳動分析は,分離分析の一種でリーディング
液となる分析対象イオンよりも高移動度の同符号イオン
を含む電解液と,ターミナル液となる分析対象イオンよ
りも低移動度の同符号イオンを含む電解液を泳動細管内
で界面で接触させ,その界面に試料溶液(以下,単に試
料という)を注入して細管の両端に定電圧を印加するこ
とにより分析対象イオンをその移動度の順に分離させ,
分離したイオンの導電度や電位勾配を測定する事により
定性や定量を行う分析法である。
<Conventional technology> Isokinetic electrophoresis analysis is a type of separation analysis in which an electrolyte solution contains ions of the same sign that have higher mobilities than the analysis target ion that is the leading solution, and moves less than the analysis target ion that is the terminal solution. Electrolyte containing ions of the same sign is contacted at the interface in the electrophoresis capillary, and a sample solution (hereinafter, simply referred to as sample) is injected into the interface, and a constant voltage is applied to both ends of the capillary to remove the ions to be analyzed. Separated in order of their mobility,
This is an analysis method that performs qualitative and quantitative measurements by measuring the conductivity and potential gradient of separated ions.

第6図はこの様な装置の従来例を示すもので,1はター
ミナル電解液槽,2はリーディング電解液槽であり,これ
ら電解液層中には高電圧電源3に接続された電極4,5が
浸漬されている。6は泳動細管で,その両端は電解液層
1,2に接続されている。7は泳動細管の途中に設けられ
た検出器,8,9は電解液槽への液量の制御を行うストップ
バルブである。10は試料注入バルブでこのバルブを開閉
してマイクロシリンジ12により試料が注入される。な
お,泳動細管および検出器は恒温槽11内に配置されてい
る。
FIG. 6 shows a conventional example of such a device, in which 1 is a terminal electrolyte tank and 2 is a leading electrolyte tank. In these electrolyte layers, electrodes 4 and 4 connected to a high-voltage power supply 3 are provided. 5 are dipped. 6 is an electrophoresis capillary, both ends of which are electrolyte layers
Connected to 1,2. Reference numeral 7 denotes a detector provided in the middle of the electrophoresis capillary, and reference numerals 8 and 9 denote stop valves for controlling the amount of liquid to the electrolytic solution tank. Reference numeral 10 denotes a sample injection valve, which is opened and closed, and a sample is injected by the micro syringe 12. The electrophoresis capillary and the detector are arranged in a thermostat 11.

<発明が解決しようとする課題> 上記従来例において,検出器7は第7図(a)に断面
図で示す様に構成されている。第7図(b),(c)は
電極部の拡大図で(b)は電極をつき合わせて配置した
導電度測定用,(c)図は対向する電極を50μm程度ず
らして配置した電位勾配測定用である。これらの図にお
いて20は外径6mm程度のパイレックスガラス管,21はその
ガラスの一端を覆って形成された外径10mm程度のテフロ
ンキャップである。パイレックスガラス管20の中には試
料の導電度や電位勾配を測定するために泳動細管22の管
壁に対向して白金電極23,23′が埋め込まれるとともに
エポキシ樹脂24などにより封止されている。25,25′は
白金電極の一端に接続された引出し線,27は泳動細管を
保護するテフロンチューブである。
<Problem to be Solved by the Invention> In the above conventional example, the detector 7 is configured as shown in a sectional view in FIG. 7 (a). 7 (b) and 7 (c) are enlarged views of the electrode portion, (b) is for conductivity measurement in which the electrodes are arranged in contact with each other, and (c) is a potential gradient in which the opposing electrodes are displaced by about 50 μm. For measurement. In these figures, reference numeral 20 denotes a Pyrex glass tube having an outer diameter of about 6 mm, and reference numeral 21 denotes a Teflon cap having an outer diameter of about 10 mm formed so as to cover one end of the glass. In the Pyrex glass tube 20, platinum electrodes 23 and 23 'are buried opposite to the tube wall of the electrophoresis capillary 22 to measure the conductivity and potential gradient of the sample, and sealed with an epoxy resin 24 or the like. . Reference numerals 25 and 25 'denote lead wires connected to one end of the platinum electrode, and 27 denotes a Teflon tube for protecting the electrophoresis capillary.

ところで,上記検出器の構成においては泳動細管の外
径が320μm程度,内径が50μm程度であり,この様な
細管の中に白金電極を埋め込む際は細管に対向する貫通
孔や,一定のずれをもたせて貫通孔を開ける訳である
が、先に述べた様にこの孔は非常に小さく,また,ガラ
ス管が硬いことから従来はガスレーザを用いて形成して
いる。
By the way, in the configuration of the above detector, the outer diameter of the electrophoresis capillary is about 320 μm and the inner diameter is about 50 μm. When a platinum electrode is embedded in such a capillary, a through hole facing the capillary and a certain displacement are required. The through-hole is to be provided with a hole. However, as described above, this hole is very small and the glass tube is hard, so that the hole is conventionally formed using a gas laser.

しかしながら,ガスレーザで孔を開ける場合は位置合
せやレーザ光の強さを精密に制御することが非常に難し
く生産面,コスト面で問題があった。
However, when a hole is formed by a gas laser, it is extremely difficult to precisely control the alignment and the intensity of the laser beam, and there are problems in terms of production and cost.

本発明は上記従来技術の問題を解決するためになされ
たもので,シリコン基板上に薄膜技術を用いて対向して
検出電極を形成し,その対向する電極の中心を通るよう
にエッチングで溝を形成することにより,製作の容易な
低コストの電気泳動装置を実現することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art. In the present invention, a detection electrode is formed on a silicon substrate by using a thin film technique so as to face each other, and a groove is formed by etching so as to pass through the center of the facing electrode. An object of the present invention is to realize a low-cost electrophoresis apparatus which is easy to manufacture by forming.

<課題を解決するための手段> 上記従来技術の課題を解決する為の本発明の構成は,
ターミナル電解液槽およびリーディング電解液槽側から
泳動細管にターミナル電解液およびリーディング電解液
をそれぞれ導入し,これら電解液の境界に試料溶液を注
入し,試料液中のイオンを電気泳動速度の違いによって
泳動分離させ,そのイオンの電気伝導度や電位勾配を検
出電極により検出して前記試料液の成分を分析する電気
泳動分析装置において、表面にフォトリソグラフィとエ
ッチングの技術を用いて形成された溝を有する第1基板
と、前記溝の途中に設けられた薄膜からなる一対の検出
電極と、前記第1基板に設けられた検出電極に対応する
位置に貫通孔を有する第2基板からなり、前記第1,第2
基板を張り合わせて前記溝により泳動細管を形成すると
ともに、前記貫通孔を介して前記電極からの信号を取出
すようにしたことを特徴とするものである。
<Means for Solving the Problems> The configuration of the present invention for solving the above-mentioned problems of the prior art is as follows.
The terminal electrolyte and the leading electrolyte are introduced into the electrophoresis capillary from the terminal electrolyte tank and the leading electrolyte tank, respectively, and the sample solution is injected at the boundary between these electrolytes. In an electrophoresis analyzer that analyzes the components of the sample solution by detecting the electrical conductivity and potential gradient of the ions with a detection electrode, a groove formed on the surface by photolithography and etching techniques is used. A first substrate, a pair of detection electrodes made of a thin film provided in the middle of the groove, and a second substrate having a through hole at a position corresponding to the detection electrode provided on the first substrate; 1, second
The substrate is bonded to form a migration capillary by the groove, and a signal from the electrode is taken out through the through hole.

<作用> 薄膜技術を用いて検出電極を対向して形成し,その対
向する電極の中心を通るように溝をエッチングで形成す
るので半導体プロセスを用いて安価に大量に生産が可能
となる。
<Operation> The detection electrodes are formed facing each other by using the thin film technology, and the grooves are formed by etching so as to pass through the center of the facing electrodes. Therefore, mass production can be performed at low cost using a semiconductor process.

<実施例> 以下,図面に従い本発明を説明する。第1図は本発明
の一実施例を示す全体構成図である。第1図において10
は表面に渦巻き状の溝(泳動細管)12が形成された第1
のシリコン基板である。13は貫通孔15a〜d(一部を断
面で示している為15b,15cは省略している)が形成され
た第2のシリコン基板である。なお,上記第1,第2のシ
リコン基板の大きさは厚さ0.5mm,面積100mm2程度であ
る。18a,18bはパイプで吸入側のパイプ18aの一端はター
ミナル電解液槽1に挿入され他端は貫通孔(15cで示す
位置)を介して溝12の一端に連通している。
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. In FIG. 1, 10
The first has a spiral groove (electrophoresis capillary) 12 formed on the surface.
Silicon substrate. Reference numeral 13 denotes a second silicon substrate on which through holes 15a to 15d (15b and 15c are omitted because a part is shown in cross section). The first and second silicon substrates have a thickness of about 0.5 mm and an area of about 100 mm 2 . Reference numerals 18a and 18b denote pipes. One end of the pipe 18a on the suction side is inserted into the terminal electrolyte tank 1, and the other end communicates with one end of the groove 12 through a through hole (position indicated by 15c).

排出側のパイプ18bの一端はリーディング電解液槽2
に挿入され他端は貫通孔15dを介して溝12の他端に連通
している。21は高圧電源で負の電極4がターミナル電解
液槽1に正の電極5がリーディング電解液槽2に挿入さ
れている。22は溝の途中の両側に形成された検出電極,2
3は試料を注入するインジェクタである。
One end of the pipe 18b on the discharge side is a leading electrolyte tank 2
And the other end thereof communicates with the other end of the groove 12 through the through hole 15d. Reference numeral 21 denotes a high-voltage power supply, in which the negative electrode 4 is inserted into the terminal electrolyte tank 1 and the positive electrode 5 is inserted into the leading electrolyte tank 2. 22 is a detection electrode formed on both sides in the middle of the groove, 2
3 is an injector for injecting a sample.

上記構成において高圧電源21から電圧を印加するとイ
ンジェクタ23から電解液の界面に注入された試料中のイ
オンはその移動度の順に分離しながら細管12中をターミ
ナル液槽1側からリーディング液槽2側へ流れ,検出電
極22およびこれに接続された図示しない公知の信号検出
回路により試料の成分に応じた導電度や電位勾配を測定
することができる。
In the above configuration, when a voltage is applied from the high voltage power supply 21, ions in the sample injected from the injector 23 to the interface of the electrolyte are separated in the order of their mobilities while moving through the narrow tube 12 from the terminal liquid tank 1 side to the leading liquid tank 2 side. Then, the conductivity and potential gradient corresponding to the components of the sample can be measured by the detection electrode 22 and a known signal detection circuit (not shown) connected thereto.

第2図は溝(細管)と電極および貫通孔(電極取出し
孔)15a,15bの位置関係を示すもので,導電度を測定す
る場合の拡大斜視図である。図において符号は第1図と
同様であり,検出電極の一端(A)部の幅tは例えば20
μm程度とされ,溝12を介して対向して配置されている
(電位差を測定する場合は対向する電極を50μm程度ず
らす)。B部は接続端子となるもので第2の基板13に形
成された貫通孔15aおよび15bに露出する位置に形成され
る。
FIG. 2 shows the positional relationship between the groove (small tube), the electrode, and the through holes (electrode extraction holes) 15a and 15b, and is an enlarged perspective view in the case where the conductivity is measured. In the figure, the reference numerals are the same as those in FIG.
μm, and are arranged to face each other via the groove 12 (when measuring the potential difference, the facing electrodes are shifted by about 50 μm). The portion B serves as a connection terminal and is formed at a position exposed to the through holes 15a and 15b formed in the second substrate 13.

第3図(a)〜(d)はシリコン基板に第2図に示す
電極および溝を形成する概略工程を示すものである。工
程に従って説明する。
3 (a) to 3 (d) show schematic steps of forming the electrodes and grooves shown in FIG. 2 on a silicon substrate. A description will be given according to the steps.

工程(a) 第1のシリコン基板10に酸化膜30,窒化膜31,リフトオ
フ層32およびレジスト層33を順次積層し,そのレジスト
層を検出電極の形状にパターニングしてリフトオフ層32
を露出させる。(図a参照) 工程(b) パターニングで露出した部分のリフトオフ層32を除去
し,露出した窒化膜31の上に検出電極となるCrおよびPt
の薄膜35をスパッタや蒸着などにより形成する。(図b
参照) 工程(c) リフトオフを行って窒化膜31および検出電極35を残し
て他の層を除去する。(図c参照) 工程(d) 窒化膜31を溝の形状にパターニングし,硝弗酸液を用
いて等方性エッチングを行う。
Step (a) An oxide film 30, a nitride film 31, a lift-off layer 32, and a resist layer 33 are sequentially laminated on the first silicon substrate 10, and the resist layer is patterned into the shape of a detection electrode to form a lift-off layer 32.
To expose. (See FIG. A) Step (b) The lift-off layer 32 at the portion exposed by patterning is removed, and Cr and Pt as detection electrodes are formed on the exposed nitride film 31.
Is formed by sputtering or vapor deposition. (Figure b
Step (c) Lift-off is performed to remove other layers except the nitride film 31 and the detection electrode 35. (See FIG. C) Step (d) The nitride film 31 is patterned into a groove shape, and isotropically etched using a nitric hydrofluoric acid solution.

第4図(a),(b)は第2のシリコン基板に貫通孔
を形成する概略工程を示すものである。
FIGS. 4 (a) and 4 (b) show a schematic process of forming a through-hole in the second silicon substrate.

工程(a) シリコン基板13に酸化膜を形成後レジスト膜を形成
し,貫通孔を形成すべき箇所をパターニングし,露出さ
せた酸化膜を除去する。(図a参照) 工程(b) 残った酸化膜をマスクとしてヒドラジン液を用いて異
方性エッチングを行い貫通孔15を形成する。(b)図参
照) 第5図は第3図,第4図により作製した第1,第2のシ
リコン基板を張りあわせて泳動細管を形成した状態を示
している。2枚の基板は充分に熱酸化膜を形成後表面に
ポリイミド樹脂を塗布し加熱して固着する。
Step (a) After forming an oxide film on the silicon substrate 13, a resist film is formed, a portion where a through hole is to be formed is patterned, and the exposed oxide film is removed. Step (b) Using the remaining oxide film as a mask, anisotropic etching is performed using a hydrazine solution to form through holes 15. (See FIG. 5 (b).) FIG. 5 shows a state in which the first and second silicon substrates produced according to FIGS. 3 and 4 are bonded together to form a migration capillary. After a thermal oxide film is sufficiently formed on the two substrates, a polyimide resin is applied on the surface and fixed by heating.

なお,本実施例においては基板をシリコンとして説明
したが,シリコンに限らず例えばガラスであっても良
く,その組み合わせであってもよい。また,基板どうし
の固着はポリイミド樹脂に限定するものではない。
In this embodiment, the substrate is described as silicon, but the substrate is not limited to silicon, but may be glass, for example, or a combination thereof. Further, the adhesion between the substrates is not limited to the polyimide resin.

<発明の効果> 以上実施例とともに具体的に説明した様に本発明によ
れば、表面にフォトリソグラフィとエッチングの技術を
用いて形成された溝を有する第1基板と、前記溝の途中
に設けられた薄膜からなる一対の検出電極と、前記第1
基板に設けられた検出電極に対応する位置に貫通孔を有
する第2基板からなり、前記第1,第2基板を張り合わせ
て前記溝により泳動細管を形成するとともに、前記貫通
孔を介して前記検出電極からの信号を取出すように構成
したので、溝や薄膜の形成を半導体プロセスを用いて安
価に大量に生産することが可能になり生産性を飛躍的に
向上させることができる。
<Effects of the Invention> According to the present invention, as specifically described above with the embodiment, a first substrate having a groove formed on the surface by using photolithography and etching techniques, and a first substrate provided in the middle of the groove A pair of detection electrodes made of a thin film,
A second substrate having a through-hole at a position corresponding to a detection electrode provided on the substrate; the first and second substrates are attached to each other to form a migration capillary by the groove; and the detection is performed through the through-hole. Since it is configured to take out signals from the electrodes, it is possible to mass-produce grooves and thin films at a low cost by using a semiconductor process, thereby dramatically improving productivity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電気泳動分析装置の一実施例を示す構
成説明図,第2図は電極部分を拡大して示す斜視図,第
3図〜第5図は検出電極と泳動細管の製作工程の概略を
示す図,第6図は従来装置の全体構成図,第7図は従来
装置の検出器の拡大図である。 1……ターミナル電解液槽,2……リーディング電解液
槽,3……高電圧電源,10,13……シリコン基板,12……溝
(泳動細管),15……貫通孔,22a,22b……検出電極,23…
…インジェクタ。
FIG. 1 is an explanatory view showing the configuration of an embodiment of the electrophoresis analyzer of the present invention, FIG. 2 is a perspective view showing an enlarged electrode portion, and FIGS. FIG. 6 is a diagram schematically showing the process, FIG. 6 is an overall configuration diagram of a conventional device, and FIG. 7 is an enlarged view of a detector of the conventional device. 1 ... Terminal electrolyte tank, 2 ... Reading electrolyte tank, 3 ... High voltage power supply, 10,13 ... Silicon substrate, 12 ... Groove (migrating capillary), 15 ... Through hole, 22a, 22b ... ... detection electrodes, 23 ...
… Injector.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−26594(JP,A) 特開 平2−245655(JP,A) 特開 平3−131750(JP,A) 実開 昭51−161886(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01N 27/447──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-26594 (JP, A) JP-A-2-245655 (JP, A) JP-A-3-131750 (JP, A) 161886 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) G01N 27/447

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ターミナル電解液槽およびリーディング電
解液槽側から泳動細管にターミナル電解液およびリーデ
ィング電解液をそれぞれ導入し、これら電解液の境界に
試料溶液を注入し試料溶中のイオンを電気泳動速度の違
いによって泳動分離させ、そのイオンの電気伝導度や電
位勾配を検出電極により検出して前記試料液の成分を分
析する電気泳動分析装置において、表面にフォトリソグ
ラフィとエッチングの技術を用いて形成された溝を有す
る第1基板と、前記溝の途中に設けられた薄膜からなる
一対の検出電極と、前記第1基板に設けられた検出電極
に対応する位置に貫通孔を有する第2基板からなり、前
記第1,第2基板を張り合わせて前記溝により泳動細管を
形成するとともに、前記貫通孔を介して前記検出電極か
らの信号を取出すように構成したことを特徴とする電気
泳動分析装置。
1. A terminal electrolytic solution and a leading electrolytic solution are introduced into a migration capillary from a terminal electrolytic solution tank and a leading electrolytic solution side, respectively. A sample solution is injected into a boundary between these electrolytic solutions, and ions in the sample are electrophoresed. Electrophoretic separation is performed according to the difference in speed, and the electroconductivity and potential gradient of the ions are detected by a detection electrode to analyze the components of the sample solution. The electrophoresis analyzer is formed on the surface using photolithography and etching techniques. A first substrate having a groove formed therein, a pair of detection electrodes made of a thin film provided in the middle of the groove, and a second substrate having a through hole at a position corresponding to the detection electrode provided on the first substrate. The first and second substrates are bonded to each other to form an electrophoretic thin tube by the groove, and to extract a signal from the detection electrode through the through hole. Electrophoresis analysis apparatus characterized by the Uni configuration.
JP1329161A 1989-12-19 1989-12-19 Electrophoresis analyzer Expired - Lifetime JP2833080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1329161A JP2833080B2 (en) 1989-12-19 1989-12-19 Electrophoresis analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1329161A JP2833080B2 (en) 1989-12-19 1989-12-19 Electrophoresis analyzer

Publications (2)

Publication Number Publication Date
JPH03188372A JPH03188372A (en) 1991-08-16
JP2833080B2 true JP2833080B2 (en) 1998-12-09

Family

ID=18218327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1329161A Expired - Lifetime JP2833080B2 (en) 1989-12-19 1989-12-19 Electrophoresis analyzer

Country Status (1)

Country Link
JP (1) JP2833080B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE470347B (en) * 1990-05-10 1994-01-31 Pharmacia Lkb Biotech Microstructure for fluid flow systems and process for manufacturing such a system
CN112485208B (en) * 2020-11-20 2023-09-05 国网四川省电力公司电力科学研究院 Method and system for detecting solution ion migration under electric field

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557550B2 (en) * 1974-08-29 1980-02-26
JPS51161886U (en) * 1975-06-18 1976-12-23

Also Published As

Publication number Publication date
JPH03188372A (en) 1991-08-16

Similar Documents

Publication Publication Date Title
JP3001104B2 (en) Sensor structure and method of manufacturing the same
AU689625B2 (en) Method of measuring gas concentrations and microfabricated sensing device for practicing same
US4671852A (en) Method of forming suspended gate, chemically sensitive field-effect transistor
Berthold et al. Fabrication of a glass‐implemented microcapillary electrophoresis device with integrated contactless conductivity detection
US5352352A (en) Carbonic acid gas sensor
JP2937064B2 (en) Capillary electrophoresis chip
JP2790067B2 (en) Electrophoresis device
CA2011679A1 (en) Device and method for detecting ionic components in solution
US5223114A (en) On-column conductivity detector for microcolumn electrokinetic separations
JP2833080B2 (en) Electrophoresis analyzer
TWI404927B (en) A capillary electrophoresis chip with integrated top-bottom opposed electrochemical sensing electrodes and its fabrication methods
CN102770756B (en) Laminated electrochemical sensor with controlled variation of working electrode
JP3064468B2 (en) Component analyzer
JP3509064B2 (en) Electrochemical detector for capillary electrophoresis and method for producing the same
EP3968003B1 (en) Particle identification sensor and particle identification device
JP3417143B2 (en) Capillary electrophoresis device
JP2619003B2 (en) Oxygen detecting element and method for manufacturing the same
EP3341957B1 (en) Measurement of electric signals to detect presence or flow of electroactive species in solution
JPH11108890A (en) Electrophoresis detecting apparatus
JP2797531B2 (en) Electrophoresis analyzer
JP3938016B2 (en) Electrophoresis device
JP3210094B2 (en) Capacitor and fluid sensor using the same
JPS60229342A (en) N type silicon wafer with through hole and manufacture thereof
JPH10170374A (en) Manufacture of capacitive transducer and capacitive transducer
JP2861149B2 (en) Reference electrode