JP2831454B2 - Control device of circulating fluidized bed boiler - Google Patents

Control device of circulating fluidized bed boiler

Info

Publication number
JP2831454B2
JP2831454B2 JP23981790A JP23981790A JP2831454B2 JP 2831454 B2 JP2831454 B2 JP 2831454B2 JP 23981790 A JP23981790 A JP 23981790A JP 23981790 A JP23981790 A JP 23981790A JP 2831454 B2 JP2831454 B2 JP 2831454B2
Authority
JP
Japan
Prior art keywords
signal
amount
air
detector
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23981790A
Other languages
Japanese (ja)
Other versions
JPH04161701A (en
Inventor
興和 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP23981790A priority Critical patent/JP2831454B2/en
Publication of JPH04161701A publication Critical patent/JPH04161701A/en
Application granted granted Critical
Publication of JP2831454B2 publication Critical patent/JP2831454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は循環流動層ボイラに係り、特に炉底部を流動
層温度及び蒸気圧力を適切な値に維持するのに好適な循
環流動層ボイラの制御装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating fluidized bed boiler, and more particularly to a circulating fluidized bed boiler suitable for maintaining a furnace bottom at appropriate values of fluidized bed temperature and steam pressure. It relates to a control device.

〔従来の技術〕[Conventional technology]

重油、石炭などを燃料とする流動層ボイラの層内温度
は通常800〜900℃とされ、この層内に伝熱管、蒸気管を
埋設した流動層ボイラにおいては、この伝熱管、蒸気管
の層中伝熱量(熱伝達率)が従来形ボイラのガス流のみ
からの伝熱量に比べて5〜10倍程度大きく、大量の伝熱
量をもたらす特徴がある。
The bed temperature of a fluidized bed boiler using heavy oil, coal, etc. as fuel is usually 800 to 900 ° C. In a fluidized bed boiler in which heat transfer tubes and steam pipes are embedded in this bed, the layers of the heat transfer tubes and steam pipes The medium heat transfer (heat transfer coefficient) is about 5 to 10 times larger than the heat transfer from the gas flow of the conventional boiler alone, and is characterized by a large amount of heat transfer.

そして、流動層ボイラは層中での伝熱特性が優れてい
ることから、従来はぼた山に投棄していたスラツジ炭の
ような低品位炭であつても流動層ボイラの燃料として有
効に活用することができ、しかもこれら低品位炭を焼却
することによつて低品位炭の減容にも役立つことから、
近年流動層ボイラは脚光をあびている。
Fluidized bed boilers have excellent heat transfer characteristics in the bed, so even low-grade coal such as sludge coal, which had previously been dumped in spilled mountains, can be effectively used as fuel for fluidized bed boilers. Incineration of these low-rank coals can also help reduce the volume of low-rank coals.
In recent years, fluidized bed boilers have been in the spotlight.

また、流動層ボイラにはバブリング型と循環型がある
が、循環流動層ボイラは燃料供給量に対し40〜100倍も
の媒体粒子を循環し、長い滞留時間により高い燃焼効率
が得られ、媒体粒子の循環量により負荷制御に対応でき
る特徴もある。
Fluidized bed boilers are of the bubbling type and the circulation type, and the circulating fluidized bed boiler circulates 40 to 100 times the amount of fuel supplied to the fuel supply amount. There is also a feature that can cope with load control by the amount of circulation.

以下、第2図を用いて循環流動層ボイラの概要につい
て説明する。
Hereinafter, an outline of the circulating fluidized bed boiler will be described with reference to FIG.

燃料バンカ1から供給される燃料と媒体粒子バンカ2
から供給される媒体粒子は、燃焼炉3に投入され、一
方、燃焼用空気は燃焼用空気供給管4より燃焼炉3の炉
底部へ供給される一次空気5及び炉側面から供給される
二次空気6と混合燃焼する。一次空気5及び二次空気6
により飛散した粗粒子は、燃焼炉3から流れ出て、炉出
口に設置された一次分離器7で捕集され、L型バルブ8
を通って自然落下し、エアレーシヨンブロワ9、エアレ
ーシヨン配管10からのエアレーシヨンノズル11から供給
されるエアレーシヨン空気によつて燃焼炉3内に戻さ
れ、再循環される。
Fuel and medium particle bunker 2 supplied from fuel bunker 1
Is supplied to the combustion furnace 3, while the combustion air is supplied from the combustion air supply pipe 4 to the primary air 5 supplied to the furnace bottom of the combustion furnace 3 and the secondary air supplied from the side of the furnace. Combustion with air 6 occurs. Primary air 5 and secondary air 6
The coarse particles scattered by the gas flow out of the combustion furnace 3, are collected by a primary separator 7 installed at the furnace outlet, and are collected by an L-shaped valve 8.
, And is returned to the combustion furnace 3 by the air rate blower 9 and the air rate air supplied from the air rate nozzle 11 from the air rate piping 10, and is recirculated.

一方、一次分離器7を通過した燃焼ガスは、過熱器12
及び節炭器13と熱交換した後、二次分離器14で燃焼ガス
中に残存する微粒子を分離し、空気炉熱器15で、押込通
風機16によつて供給される一次空気5、二次空気6など
の燃焼用空気と熱交換した後、集じん器17で除じんさ
れ、燃焼ガスは誘引通風機18で吸引されて煙突19より系
外へ排出される。
On the other hand, the combustion gas that has passed through the primary separator 7 is
After the heat exchange with the economizer 13, fine particles remaining in the combustion gas are separated by the secondary separator 14, and the primary air 5, 2 supplied by the forced draft fan 16 is separated by the air furnace heater 15. After heat exchange with the combustion air such as the secondary air 6, the dust is removed by the dust collector 17, and the combustion gas is sucked by the induction ventilator 18 and discharged from the chimney 19 to the outside of the system.

この循環流動層ボイラでは、炉底部に粒子濃度が比較
的高い濃厚層が形成されるが、この濃厚層での流動層温
度を適切に制御しないと、石炭灰が溶融して塊状とな
り、流動層として機能しなくなる。
In this circulating fluidized-bed boiler, a dense bed with a relatively high particle concentration is formed at the bottom of the furnace, but if the fluidized bed temperature in this dense bed is not properly controlled, the coal ash will melt and become massive, resulting in a fluidized bed. Will not function.

なお、第2図において20は一次粒し抜き出し管、21は
二次粒子抜き出し管、22はドラム、23は空気流量検出
器、24は濃厚層温度検出器、25は蒸気圧力検出器、26は
蒸気流量検出器、27は燃料流量検出器、28はエアレーシ
ヨン空気流量検出器、29はコールフイーダー、30はエア
レーシヨン空気流量調整弁である。
In FIG. 2, reference numeral 20 denotes a primary particle extraction pipe, 21 denotes a secondary particle extraction pipe, 22 denotes a drum, 23 denotes an air flow rate detector, 24 denotes a thick layer temperature detector, 25 denotes a steam pressure detector, and 26 denotes a steam pressure detector. A steam flow rate detector, 27 is a fuel flow rate detector, 28 is an air rate air flow rate detector, 29 is a call feeder, and 30 is an air rate air flow rate adjusting valve.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来技術の循環流動層ボイラにおいては濃厚層での流
動層温度を適切に制御するという点について配慮がされ
ておらず、石炭灰が溶融して塊状となり、流動層として
機能しなくなる欠点があつた。
In the prior art circulating fluidized bed boiler, no consideration was given to properly controlling the temperature of the fluidized bed in the dense bed, and coal ash was melted and formed into a lump, and did not function as a fluidized bed. .

本発明はかかる従来技術の欠点を解消しようとするも
ので、その目的とするところは、急速な負荷変化時を含
めたあらゆる運転状態においても燃料供給量、粒子循環
量及び燃焼用空気供給量を適切に操作し、濃厚層の温度
を設定値に維持するとともに、蒸気圧力を設定値に維持
することができる循環流動層ボイラの制御装置を提供す
るにある。
The present invention seeks to overcome the disadvantages of the prior art, and aims at reducing the fuel supply amount, the particle circulation amount, and the combustion air supply amount in all operating states including a rapid load change. It is an object of the present invention to provide a circulating fluidized-bed boiler control device that can be appropriately operated to maintain the temperature of a thick bed at a set value and maintain the steam pressure at a set value.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は前述の目的を達成するために、濃厚層温度設
定器と濃厚層温度検出器からの信号による温度偏差フイ
ードバツク信号と、蒸気圧力設定器と蒸気圧力検出器か
らの信号による圧力偏差フイードバツク信号と、蒸気流
量検出器からの信号による燃料先行信号から燃料供給量
デマンド信号を演算する演算器と、燃料供給量デマンド
信号から空気量デマンド信号を得る関数発生器と、濃厚
層温度設定器と濃厚層温度検出器からの温度偏差フイー
ドバツク信号と蒸気流量検出器からの信号による循環量
動的先行信号及び流動媒体粒子循環量先行信号から粒子
循環量デマンド信号を演算する演算器を設け、空気流量
検出器からの空気流量検出信号と空気量デマンド信号と
の空気流量偏差信号により押込通風機のコントロールド
ライブを制御し、燃料流量検出器からの燃料流量検出信
号と燃料供給量デマンド信号との燃料量偏差信号により
コールフイーダーを制御し、エアレーシヨン空気量検出
器からのエアレーシヨン空気流量検出信号と粒子循環量
デマンド信号との粒子循環量偏差信号によりエアレーシ
ヨン空気流量調整弁を制御するようにしたものである。
In order to achieve the above object, the present invention provides a temperature deviation feedback signal based on signals from a rich temperature setting device and a rich temperature detector, and a pressure deviation feedback signal based on signals from a steam pressure setting device and a steam pressure detector. A calculator for calculating a fuel supply amount demand signal from a fuel advance signal based on a signal from a steam flow rate detector, a function generator for obtaining an air amount demand signal from the fuel supply amount demand signal, a rich layer temperature setting device and a rich layer temperature setting device An air flow detector is provided to calculate the particle circulation amount demand signal from the temperature deviation feedback signal from the bed temperature detector and the circulation amount dynamic advance signal based on the signal from the steam flow amount detector and the fluid medium particle circulation amount advance signal. The control drive of the forced air ventilator is controlled by the air flow deviation signal between the air flow detection signal from the The call feeder is controlled by a fuel amount deviation signal between the fuel flow amount detection signal from the flow amount detector and the fuel supply amount demand signal, and the particles of the air rate air flow amount detection signal and the particle circulation amount demand signal from the air rate air amount detector are controlled. The air rate air flow control valve is controlled by the circulation amount deviation signal.

〔作用〕[Action]

燃料供給量及び燃焼用空気供給量に関しては、蒸発量
に対する先行信号によりベースデマンドを与え、流動層
の温度及び蒸気圧力の設定値によるフイードバツク補正
信号を加え、このトータルデマンド信号により、燃料供
給量及び燃焼用空気供給量を決定する。それによつて、
蒸気圧力は熱的バランスが維持できるので、蒸気圧力は
設定値に維持される。
With respect to the fuel supply amount and the combustion air supply amount, a base demand is given by a preceding signal for the evaporation amount, a feedback control signal based on the set values of the fluidized bed temperature and the steam pressure is added, and the fuel supply amount and Determine the supply of combustion air. Therefore,
Since the steam pressure can maintain the thermal balance, the steam pressure is maintained at the set value.

一方、流動媒体粒子循環量に関しては、蒸発量に対す
る先行信号及び動的先行信号によりベースデマンドを与
え、流動層の温度の設定値によるフイードバツク補正信
号を加え、このトータルデマンド信号により、流動媒体
粒子循環量を決定する。
On the other hand, with respect to the amount of circulating fluid particles, a base demand is given by a preceding signal and a dynamic precedence signal for the amount of evaporation, and a feedback correction signal based on the set value of the temperature of the fluidized bed is added. Determine the amount.

それによつて、燃料の燃焼による発熱量、燃焼炉水壁
への伝熱量、媒体粒子の循環による熱移動量がバランス
するので、流動層の温度は設定値からはずれることがな
い。
This balances the amount of heat generated by the combustion of the fuel, the amount of heat transferred to the combustion furnace water wall, and the amount of heat transferred by the circulation of the medium particles, so that the temperature of the fluidized bed does not deviate from the set value.

なお、媒体粒子循環量は、エアレーシヨン空気によつ
て増減させる。
Note that the circulation amount of the medium particles is increased or decreased by air-rate air.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。第1
図は本発明の実施例に係る循環流動層ボイラの制御系統
図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First
FIG. 1 is a control system diagram of a circulating fluidized bed boiler according to an embodiment of the present invention.

第1図において、符号23から符号30は第2図のものと
同一のものを示す。
In FIG. 1, reference numerals 23 to 30 indicate the same components as those in FIG.

31は濃厚層温度設定器、32は蒸気圧力設定器、33a、3
3b、33c、33d、33eは減算器、34a、34b、34c、34d、34e
は調節計、35a、35b、35cは関数発生器、36a、36bは演
算器、37は押込通風機16のコントロールドライブ、38は
微分器、39は係数器、40は燃料先行信号、41は燃料供給
量デマンド信号、42は空気量デマンド信号、43は流動媒
体粒子循環量先行信号、44は循環量動的先行信号、45は
循環量デマンド信号、46は蒸気流量検出信号、47は濃厚
層温度検出信号、48は濃厚層温度設定信号、49は温度偏
差信号、50は温度偏差フイードバツク信号、51は蒸気圧
力検出信号、52は蒸気圧力設定信号、53は蒸気圧力偏差
信号、54は圧力偏差フイードバツク信号、55は燃料流量
検出信号、56は燃料偏差信号、57は空気流量検出信号、
58は空気流量偏差信号、59はエアレーシヨン空気流量検
出信号、60は粒子循環量偏差信号である。
31 is a thick bed temperature setting device, 32 is a steam pressure setting device, 33a, 3
3b, 33c, 33d, 33e are subtractors, 34a, 34b, 34c, 34d, 34e
Is a controller, 35a, 35b, and 35c are function generators, 36a and 36b are operation units, 37 is a control drive for the forced-air ventilator 16, 38 is a differentiator, 39 is a coefficient unit, 40 is a fuel advance signal, and 41 is fuel. Supply amount demand signal, 42 is the air amount demand signal, 43 is the fluid medium particle circulation amount advance signal, 44 is the circulation amount dynamic advance signal, 45 is the circulation amount demand signal, 46 is the steam flow rate detection signal, 46 is the rich bed temperature A detection signal, 48 is a rich layer temperature setting signal, 49 is a temperature deviation signal, 50 is a temperature deviation feedback signal, 51 is a steam pressure detection signal, 52 is a steam pressure setting signal, 53 is a steam pressure deviation signal, and 54 is a pressure deviation feedback. Signal, 55 is a fuel flow detection signal, 56 is a fuel deviation signal, 57 is an air flow detection signal,
58 is an air flow rate deviation signal, 59 is an air rate air flow rate detection signal, and 60 is a particle circulation amount deviation signal.

この様な構造において、蒸気流量検出器26からの蒸気
流量検出信号46を関数発生器35aに入力し、燃料先行信
号40とする。
In such a structure, the steam flow rate detection signal 46 from the steam flow rate detector 26 is input to the function generator 35a, and is set as the fuel advance signal 40.

濃厚層温度検出器24からの濃厚層温度検出信号47と濃
厚層温度設定器31からの濃厚層温度設定信号48は減算器
33aで温度偏差信号49を作り、調節計34aで信号処理して
温度偏差フイードバツク信号50を演算器36aに入力す
る。
The thick layer temperature detection signal 47 from the thick layer temperature detector 24 and the thick layer temperature setting signal 48 from the thick layer temperature setter 31 are subtracters.
The temperature deviation signal 49 is generated by the controller 33a, the signal is processed by the controller 34a, and the temperature deviation feedback signal 50 is input to the calculator 36a.

蒸気圧力検出器25からの蒸気圧力検出信号51と蒸気圧
力設定器32からの蒸気圧力設定信号52は減算器33bで蒸
気圧力偏差信号53の信号処理を行ない、調節計34bで信
号処理して圧力偏差フイードバツク信号54を演算器36a
に入力する。
The steam pressure detection signal 51 from the steam pressure detector 25 and the steam pressure setting signal 52 from the steam pressure setting device 32 are subjected to signal processing of the steam pressure deviation signal 53 by the subtractor 33b, and are processed by the controller 34b to perform pressure processing. The deviation feedback signal 54 is calculated by the computing unit 36a.
To enter.

演算器36aでは、前述の燃料先行信号40と温度偏差フ
イードバツク信号50及び圧力偏差フイードバツク信号54
を加算し、燃料供給量デマンド信号41とする。この燃料
供給量デマンド信号41は燃料流量検出器27からの燃料流
量検出信号55と減算器33cで燃料偏差信号56とし、調節
計34cで信号処理し、コールフイーダー29により、燃料
流量を制御する。
In the computing unit 36a, the fuel preceding signal 40, the temperature deviation feedback signal 50 and the pressure deviation feedback signal 54 are provided.
Are added to obtain a fuel supply amount demand signal 41. This fuel supply amount demand signal 41 is converted into a fuel flow rate detection signal 55 from the fuel flow rate detector 27 and a fuel deviation signal 56 by a subtracter 33c, processed by a controller 34c, and controlled by a call feeder 29 to control the fuel flow rate. .

燃焼用空気供給量の制御に関しては、演算器36aから
の燃料供給量デマンド信号41を関数発生器35bに入力し
て、空気量デマンド信号42を生成させ、空気流量検出器
23の空気流量検出信号57との空気量偏差信号58を減算器
33dで求め、調節計34dで信号処理し、押込通風機16のコ
ントロールドライブ37により燃焼用空気量を制御する。
Regarding the control of the combustion air supply amount, the fuel supply amount demand signal 41 from the calculator 36a is input to the function generator 35b to generate the air amount demand signal 42, and the air flow detector
Subtracts the air flow deviation signal 58 from the 23 air flow detection signal 57
33d, the signal is processed by the controller 34d, and the amount of combustion air is controlled by the control drive 37 of the forced draft fan 16.

次に蒸気流量検出器26からの蒸気流量検出信号46を関
数発生器35cを介して流動媒体粒子循環量先行信号43を
求め、蒸気流量検出器26の蒸気流量検出信号46を微分器
38と係数器39に入力して循環量動的先行信号44を求め、
演算器36bに入力する。濃厚層温度設定器31からの濃厚
層温度設定信号48と濃厚層温度検出器24からの濃厚層温
度検出信号47との温度偏差信号49を減算器33aで求め、
調節計34aで信号処理して、温度偏差フイードバツク信
号50として演算器36bに入力する。
Next, the flow rate detection signal 46 from the steam flow rate detector 26 is used to obtain the fluid medium particle circulation amount advance signal 43 via the function generator 35c, and the steam flow rate detection signal 46 of the steam flow rate detector 26 is differentiated by the differentiator.
38 and input to the coefficient unit 39 to obtain the circulation amount dynamic leading signal 44,
It is input to the computing unit 36b. A subtractor 33a obtains a temperature deviation signal 49 between the thick layer temperature setting signal 48 from the thick layer temperature setter 31 and the thick layer temperature detection signal 47 from the thick layer temperature detector 24,
The signal is processed by the controller 34a and input to the computing unit 36b as a temperature deviation feedback signal 50.

演算器36bでは、流動媒体粒子循環量先行信号43、循
環量動的先行信号44及び前述の温度偏差フイードバツク
信号50を加算して、粒子循環量デマンド信号45を求め、
減算器33eで、エアレーシヨン空気流量検出器28からの
エアレーシヨン空気流量検出信号59との粒子循環量偏差
信号60を求め、調節計34eで信号処理し、エアレーシヨ
ン空気流量調整弁30を開閉することにより、流動媒体粒
子循環量を制御する。
The arithmetic unit 36b adds the fluid medium particle circulation amount advance signal 43, the circulation amount dynamic advance signal 44, and the temperature deviation feedback signal 50 to obtain a particle circulation amount demand signal 45,
The subtractor 33e obtains the particle circulation amount deviation signal 60 with the air-rate air flow rate detection signal 59 from the air-rate air flow rate detector 28, processes the signal with the controller 34e, and opens and closes the air-rate air flow rate adjustment valve 30. Control the circulation amount of the fluid medium particles.

燃料供給量、燃焼用空気供給量の制御においては、蒸
気圧力だけでなく、流動層の層温に着目して、燃料供給
量を決定し、これに付随させて燃焼用空気供給量を制御
する点に特徴がある。
In controlling the fuel supply amount and the combustion air supply amount, the fuel supply amount is determined not only by the steam pressure but also by the bed temperature of the fluidized bed, and the combustion air supply amount is controlled in association with the fuel supply amount. There is a feature in the point.

媒体粒子循環量の制御においては、流動層の層温に着
目して、粒子循環量を決定するが、粒子循環量の変化は
燃焼炉1内の粒子密度を変化させる。燃焼炉1への熱伝
達は輻射よりも、むしろ媒体粒子の移動に伴なう熱伝達
が支配的であるので、粒子密度は燃焼炉1の水冷壁への
伝熱量に大きな影響を及ぼす。
In the control of the amount of circulating medium particles, the amount of circulating particles is determined by focusing on the bed temperature of the fluidized bed. The change in the amount of circulating particles changes the particle density in the combustion furnace 1. Since the heat transfer to the combustion furnace 1 is dominated by the heat transfer accompanying the movement of the medium particles rather than the radiation, the particle density has a great influence on the amount of heat transfer to the water cooling wall of the combustion furnace 1.

流動層の温度は、燃料の燃焼による発熱、燃焼炉1の
水冷壁への伝熱量、粒子の循環による熱移動によつてほ
ぼ決まるので、流動媒体粒子循環量は、流動層の温度に
対して非常に大きな影響を及ぼしているので、この循環
量による適切な制御により、流動層の温度は設定値に維
持できる。このため、媒体粒子循環量の制御では、蒸発
量の変化に伴なう動的先行制御を加えることにより、層
温の制御性を向上させたところに特徴がある。
The temperature of the fluidized bed is substantially determined by the heat generated by the combustion of the fuel, the amount of heat transferred to the water cooling wall of the combustion furnace 1, and the heat transfer caused by the circulation of the particles. The temperature of the fluidized bed can be maintained at a set value by appropriate control based on the amount of circulation, since it has a very large effect. For this reason, the control of the circulation amount of the medium particles is characterized in that the controllability of the bed temperature is improved by adding a dynamic advance control accompanying a change in the evaporation amount.

〔発明の効果〕〔The invention's effect〕

本発明によれば、急速な負荷変動時を含むすべての運
転状態において、燃焼炉の炉底部に形成される濃厚流動
層の層温を設定値に維持できるので、燃料中の灰分の凝
集による、いわゆるアグロメレーシヨン等の不都合な現
象を防止することができ安定した運用が可能となる。
According to the present invention, the bed temperature of the dense fluidized bed formed at the bottom of the combustion furnace can be maintained at the set value in all operation states including the time of a rapid load change. Inconvenient phenomena such as so-called agglomeration can be prevented, and stable operation can be achieved.

また、蒸気圧力に関しても良好な制御性が期待できる
ので、急速な負荷変動時にも蒸気圧力変動を小さく抑え
ることができ、ボイラの耐圧厚肉部の寿命消費を軽減で
きる。
Also, good controllability can be expected with respect to the steam pressure, so that the steam pressure fluctuation can be suppressed even at the time of rapid load fluctuation, and the life consumption of the pressure-resistant thick wall portion of the boiler can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る循環流動層ボイラの制御
系統図、第2図は循環流動層ボイラの概略構成図であ
る。 16……押込通風機、23……空気流量検出器、24……濃厚
層温度検出器、25……蒸気圧力検出器、26……蒸気流量
検出器、27……燃料流量検出器、28……エアレーシヨン
空気流量検出器、29……コールフイーダー、30……エア
レーシヨン空気流量調整弁、31……濃厚層温度設定器、
32……蒸気圧力設定器、35……関数発生器、36……演算
器、40……燃料先行信号、41……燃料供給量デマンド信
号、42……空気量デマンド信号、43……流動媒体粒子循
環量先行信号、44……循環量動的先行信号、45……粒子
循環量デマンド信号、50……温度偏差フイードバツク信
号、54……圧力偏差フイードバツク信号、55……燃料流
量検出信号、56……燃料偏差信号、57……空気流量検出
信号、58……空気流量偏差信号、59……エアレーシヨン
空気流量検出信号、60……粒子循環量偏差信号。
FIG. 1 is a control system diagram of a circulating fluidized bed boiler according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a circulating fluidized bed boiler. 16… Insert ventilator, 23… Air flow detector, 24… Dense layer temperature detector, 25… Steam pressure detector, 26 …… Steam flow detector, 27 …… Fuel flow detector, 28… … Air-rate air flow detector, 29 …… Coll feeder, 30 …… Air-rate air flow control valve, 31 …… Thick layer temperature setter,
32 …… Steam pressure setting device, 35 …… Function generator, 36 …… Calculator, 40 …… Fuel advance signal, 41 …… Fuel supply amount demand signal, 42 …… Air amount demand signal, 43 …… Fluid medium Particle circulating amount advanced signal, 44… Circulating amount dynamic advanced signal, 45… Particle circulating amount demand signal, 50… Temperature deviation feedback signal, 54… Pressure deviation feedback signal, 55… Fuel flow rate detection signal, 56 ... fuel deviation signal, 57 ... air flow rate detection signal, 58 ... air flow rate deviation signal, 59 ... air rate air flow rate detection signal, 60 ... particle circulation quantity deviation signal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃焼炉内に流動媒体を循環させる循環流動
層ボイラの炉底部に形成される媒体粒子密度の高い濃厚
層の温度及び燃焼炉を冷却する水/蒸気の流体圧力を、
燃料供給量、燃焼用空気供給量及び流動媒体粒子循環量
により、一定値に維持するものにおいて、 前記濃厚層温度設定器と濃厚層温度検出器からの信号に
よる温度偏差フイードバツク信号と、蒸気圧力設定器と
蒸気圧力検出器からの信号による圧力偏差フイードバツ
ク信号と、蒸気流量検出器からの信号による燃料先行信
号から燃料供給量デマンド信号を演算する演算器と、 燃料供給量デマンド信号から空気量デマンド信号を得る
関数発生器と、 濃厚層温度設定器と濃厚層温度検出器からの温度偏差フ
イードバツク信号と、蒸気流量検出器からの信号による
循環量動的先行信号及び流動媒体粒子循環量先行信号か
ら粒子循環量デマンド信号を演算する演算器を設け、 空気流量検出器からの空気流量検出信号と空気量デマン
ド信号との空気流量偏差信号により押込通風機のコント
ロールドライブを制御し、 燃料流量検出器からの燃料流量検出信号と燃料供給量デ
マンド信号との燃料量偏差信号によりコールフイーダー
を制御し、 エアレーシヨン空気量検出器からのエアレーシヨン空気
流量検出信号と粒子循環量デマンド信号との粒子循環量
偏差信号によりエアレーシヨン空気流量調整弁を制御す
るようにしたことを特徴とする循環流動層ボイラの制御
装置。
1. The temperature of a dense bed having a high media particle density formed at the bottom of a circulating fluidized bed boiler for circulating a fluidized medium in a combustion furnace, and the fluid pressure of water / steam for cooling the combustion furnace,
In the apparatus for maintaining a constant value by a fuel supply amount, a combustion air supply amount, and a flowing medium particle circulation amount, a temperature deviation feedback signal based on signals from the rich bed temperature setting device and the rich bed temperature detector, and a steam pressure setting. Calculator that calculates the fuel supply amount demand signal from the pressure deviation feedback signal based on the signal from the heater and the steam pressure detector, and the fuel advance signal based on the signal from the steam flow detector, and the air amount demand signal from the fuel supply amount demand signal From the function generator, the temperature difference feedback signal from the thick bed temperature setter and the thick bed temperature detector, and the circulating amount dynamic leading signal and the flowing medium particle circulating amount leading signal based on the signal from the steam flow rate detector. An arithmetic unit that calculates the circulation flow demand signal is provided, and the air flow between the air flow detection signal from the air flow detector and the air flow demand signal is provided. The control drive of the push-in ventilator is controlled by the amount deviation signal, the call feeder is controlled by the fuel amount deviation signal between the fuel flow amount detection signal from the fuel flow amount detector and the fuel supply amount demand signal, and from the air rate air amount detector A control device for a circulating fluidized-bed boiler, wherein the air-circulation air flow control valve is controlled by a particle circulating amount deviation signal between the air circulating air flow detection signal and the particle circulating amount demand signal.
JP23981790A 1990-09-12 1990-09-12 Control device of circulating fluidized bed boiler Expired - Fee Related JP2831454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23981790A JP2831454B2 (en) 1990-09-12 1990-09-12 Control device of circulating fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23981790A JP2831454B2 (en) 1990-09-12 1990-09-12 Control device of circulating fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH04161701A JPH04161701A (en) 1992-06-05
JP2831454B2 true JP2831454B2 (en) 1998-12-02

Family

ID=17050290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23981790A Expired - Fee Related JP2831454B2 (en) 1990-09-12 1990-09-12 Control device of circulating fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP2831454B2 (en)

Also Published As

Publication number Publication date
JPH04161701A (en) 1992-06-05

Similar Documents

Publication Publication Date Title
US4592293A (en) Method of controlling an air heater of a coal-fired boiler
JP2637449B2 (en) Fluidized bed combustion method
US4416418A (en) Fluidized bed residential heating system
US7770543B2 (en) Control of CFB boiler utilizing accumulated char in bed inventory
JPH0472122B2 (en)
CN107750320A (en) Control method for the operation of burning boiler
CN103339442B (en) Method to enhance operation of circulating mass reactor and reactor to carry out such method
CN108679603A (en) A kind of circulating fluidized bed boiler circulating ratio and grey balance regulator control system and method
US4541572A (en) Pulverizing, drying and transporting system for injecting a pulverized fuel into a blast furnace
JP2831454B2 (en) Control device of circulating fluidized bed boiler
CN105180161B (en) A kind of more air distribution plate fluidized-bed combustion boilers with built-in heat exchanger
JPH046304A (en) Steam pressure control device for circulating fluidized bed boiler
JPH06281108A (en) Method for mixed combustion of low calorific value gas/in circulation fludized bed type boiler
SU1710946A1 (en) Method of automatic combustion control in furnace with recirculating fluidized bed
JP2681748B2 (en) Stable combustion method and apparatus in fluidized bed furnace
JPH04124506A (en) Controller of medium particle volume of circulating fluidized bed boiler
JP2000018542A (en) Method and apparatus for controlling fluidized-bed furnace temperature for circulation fluidized-bed boiler
JPH0229373Y2 (en)
JP2686343B2 (en) Circulating fluidized bed combustor control method
JPH0419290Y2 (en)
SU1710947A1 (en) Method of automatic combustion control in furnace with recirculating fluidized bed
JP2663307B2 (en) Operating method of waste combustion furnace
JPH0443681Y2 (en)
JPH10500477A (en) A method for controlling the superheat temperature of steam in a circulating fluidized bed cooling tower.
JPS63315808A (en) Operation of circulating type fluidized bed boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees