JPH0443681Y2 - - Google Patents

Info

Publication number
JPH0443681Y2
JPH0443681Y2 JP1985026628U JP2662885U JPH0443681Y2 JP H0443681 Y2 JPH0443681 Y2 JP H0443681Y2 JP 1985026628 U JP1985026628 U JP 1985026628U JP 2662885 U JP2662885 U JP 2662885U JP H0443681 Y2 JPH0443681 Y2 JP H0443681Y2
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
particles
heat exchanger
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985026628U
Other languages
Japanese (ja)
Other versions
JPS61144301U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985026628U priority Critical patent/JPH0443681Y2/ja
Publication of JPS61144301U publication Critical patent/JPS61144301U/ja
Application granted granted Critical
Publication of JPH0443681Y2 publication Critical patent/JPH0443681Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は流動層ボイラに係り、特に流動層燃焼
炉及びこの流動燃焼炉で加熱された粒子が導入さ
れる流動層熱交換器を備えた流動層ボイラに関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fluidized bed boiler, and particularly includes a fluidized bed combustion furnace and a fluidized bed heat exchanger into which particles heated in the fluidized bed combustion furnace are introduced. It relates to a fluidized bed boiler.

[従来の技術] 流動燃焼炉は、低質で燃焼の難しい燃料の燃焼
法として古くから用いられてきており、また最近
においては、石炭の無公害燃焼法として急速に開
発が進められている。
[Prior Art] Fluidized combustion furnaces have been used for a long time as a combustion method for low-quality and difficult-to-combust fuels, and have recently been rapidly developed as a pollution-free combustion method for coal.

ところで、従来の一般的な流動層ボイラにおい
ては、流動燃焼炉の流動層部にて主要な燃焼反応
を行わせると同時に、流動層内に伝熱管(水管)
を配置しておき、この伝熱管によつて燃焼熱を回
収するよう構成されている。
By the way, in a conventional general fluidized bed boiler, the main combustion reaction is carried out in the fluidized bed section of the fluidized combustion furnace, and at the same time heat transfer tubes (water tubes) are installed in the fluidized bed.
are arranged in advance, and the combustion heat is recovered by the heat transfer tubes.

しかしながら、この従来の一般的なタイプのも
のでは燃焼負荷の変化、即ちガス空塔速度の変化
に伴い、層温度が変化するため、出力の大幅な調
整が難しい。また、2段燃焼時に、層部と上部空
間のフリーボード部に温度差が生じ、低NOx、
脱SO2性能が低下し易い。更に、伝熱管が流動燃
焼炉内に設置され、例えば800℃以上の高温の燃
焼ガスに晒されるので、この伝熱管の寿命が短い
という問題があつた。
However, with this conventional general type, the bed temperature changes with changes in combustion load, that is, changes in superficial gas velocity, making it difficult to significantly adjust the output. In addition, during two-stage combustion, a temperature difference occurs between the layer section and the freeboard section of the upper space, resulting in low NOx and
SO 2 removal performance tends to deteriorate. Furthermore, since the heat transfer tube is installed in a fluidized combustion furnace and exposed to high temperature combustion gas of, for example, 800° C. or higher, there is a problem that the life of the heat transfer tube is short.

これに対し近年、特開昭54−107474,58−
64123のように、高速流動層より成る流動燃焼炉
と熱交換器とを別体とした高速流動層ボイラが提
案されている。
On the other hand, in recent years, JP-A No. 54-107474, 58-
A high-speed fluidized bed boiler, such as No. 64123, has been proposed in which a fluidized combustion furnace composed of a high-speed fluidized bed and a heat exchanger are separately provided.

これは、流動燃焼炉内の空塔速度を3〜10m/
sとし、細かい粒子を燃焼ガスに同伴させて飛散
させ、これをサイクロンで捕集し熱交換器に導入
するものである。なお、これらの公開公報に記載
のボイラにおいては、流動燃焼炉内に比較的粒径
の大きな粒子(デンスベツド)を装入して高密度
の流動層を形成し、この高密度流動層内において
主要な燃焼反応を進行させるようにしている。
This increases the superficial velocity in the fluidized combustion furnace by 3 to 10 m/
s, fine particles are scattered along with the combustion gas, collected by a cyclone, and introduced into the heat exchanger. In addition, in the boilers described in these publications, particles with a relatively large particle size (dense bed) are charged into the fluidized combustion furnace to form a high-density fluidized bed. This allows a combustion reaction to proceed.

[考案が解決しようとする問題点] しかしながら、上記特開昭54−107474や58−
64123のように、粒子を燃焼ガスに同伴させて流
動燃焼炉から取り出すよう構成したタイプのもの
においては、粒子がサイクロンで捕集しきれず相
当量の損失が伴うので、特に灰分の少ない燃料を
燃焼させる場合は、運転中に粒子(流動化剤)を
連続的ないしは間欠的に補給しなければならず、
それだけランニングコストが高いものとなつてい
た。
[Problems that the invention attempts to solve] However, the above-mentioned Japanese Patent Application Laid-open Nos. 54-107474 and 58-
64123, in which the particles are taken out from the fluidized combustion furnace along with the combustion gas, the particles cannot be collected by the cyclone and a considerable amount of loss occurs, so it is especially important to burn fuel with a low ash content. If this is the case, particles (plastic fluidizer) must be continuously or intermittently replenished during operation.
Running costs were correspondingly high.

また、粒子による装置内部の摩擦を防止するた
め、高級な耐火材を使用する必要があつた。
Additionally, in order to prevent friction inside the device due to particles, it was necessary to use high-grade refractory materials.

[問題点を解決するための手段] 上記従来型流動層ボイラ及び高速流動層ボイラ
の問題点を解決するために、本考案の流動層ボイ
ラは、別体に設置された流動燃焼炉及び流動層熱
交換器を備えてなるものにおいて、ガス空塔速度
が0.5〜3m/sの流動燃焼炉の流動層部から流動
化剤もしくは燃料粒子を抜き出し、これを流動層
熱交換器へ供給する。そして、この流動層熱交換
器内にて熱交換した粒子を流動燃焼炉の流動層部
もしくは、この直上部と燃焼炉、炉頂部に分割し
て戻すよう構成したものである。
[Means for Solving the Problems] In order to solve the problems of the conventional fluidized bed boiler and high speed fluidized bed boiler, the fluidized bed boiler of the present invention has a fluidized combustion furnace and a fluidized bed installed separately. In a device equipped with a heat exchanger, a fluidizing agent or fuel particles are extracted from the fluidized bed section of a fluidized combustion furnace with a gas superficial velocity of 0.5 to 3 m/s and supplied to the fluidized bed heat exchanger. The particles heat-exchanged in the fluidized bed heat exchanger are divided and returned to the fluidized bed section of the fluidized combustion furnace, or directly above the fluidized bed section, the combustion furnace, and the top of the furnace.

[作用] 流動燃焼炉内に燃料を補給して流動燃焼炉を運
転すると、燃料の燃焼によつて流動化剤たる粒子
が加熱される。本考案においては、ガス空塔速度
が0.5〜3m/sの範囲のため、この粒子や燃料粒
子の大部分は、燃焼ガスによつて飛散されること
なく流動層内に滞留し、この流動層底部から抜き
出され流動層熱交換器に供給される。熱交換の終
了した粒子は流動層熱交換器から流動燃焼炉へ分
割して戻される。
[Operation] When the fluidized combustion furnace is operated by replenishing fuel into the fluidized combustion furnace, the particles serving as the fluidizing agent are heated by combustion of the fuel. In this invention, since the gas superficial velocity is in the range of 0.5 to 3 m/s, most of these particles and fuel particles remain in the fluidized bed without being scattered by the combustion gas. It is extracted from the bottom and supplied to a fluidized bed heat exchanger. The particles that have undergone heat exchange are divided and returned from the fluidized bed heat exchanger to the fluidized combustion furnace.

本考案においては、熱交換が流動燃焼炉とは別
体に設置された流動層熱交換器で行われ燃焼炉の
温度は、循環する粒子量でコントロールされる。
従つて、負荷変動と独立に燃焼温度を制御できる
ため、ガス空塔速度0.5〜3m/sの変化範囲に対
応した1:6の大幅な出力調整が可能である。
In the present invention, heat exchange is performed in a fluidized bed heat exchanger installed separately from the fluidized combustion furnace, and the temperature of the combustion furnace is controlled by the amount of circulating particles.
Therefore, since the combustion temperature can be controlled independently of load fluctuations, a large output adjustment of 1:6 corresponding to a change range of gas superficial velocity of 0.5 to 3 m/s is possible.

また、本方式では、熱交換器からの戻り粒子を
流動層部もしくは、その直上部と炉頂部に分割す
ることにより、燃焼部の軸方向温度差を極力防止
することができる。特にフリーボード部の温度を
コントロールするために、戻り粒子管の1つを炉
頂部に設けることが重要である。空塔速度が0.5
〜3m/sと高速流動層に比べて比較的低いため、
フリーボード中間部の側壁からでは充分なガス−
粒子間の熱交換が行えない。本方式では、炉頂部
から戻り粒子が流動層部に落下する間に、充分な
滞留時間が得られると共に、粒子の偏流が防止で
き、フリーボードの温度を均一にコントロールで
きる。
In addition, in this system, by dividing the return particles from the heat exchanger into the fluidized bed section or directly above the fluidized bed section and the furnace top section, it is possible to prevent temperature differences in the axial direction of the combustion section as much as possible. It is important to have one of the return particle tubes at the top of the furnace, especially to control the temperature in the freeboard section. sky velocity is 0.5
~3m/s, which is relatively low compared to high-speed fluidized beds,
There is sufficient gas from the side wall in the middle of the freeboard.
Heat exchange between particles is not possible. In this method, sufficient residence time is obtained while the returned particles fall from the top of the furnace into the fluidized bed section, and uneven flow of particles can be prevented and the temperature of the freeboard can be controlled uniformly.

この効果により、特に2段燃焼実施時に生じる
軸方向温度差を極力少なくでき、より大きな
NOx低減効果が得られる。
This effect makes it possible to minimize the axial temperature difference that occurs especially during two-stage combustion, and to increase
A NOx reduction effect can be obtained.

また、石灰石を供給してNOx,SO2同時除去
を行う場合、従来の流動層ボイラでは、脱硫反応
が層内で行われるため、2段燃焼実施時には、層
内のO2濃度の低下による脱硫性能の低下という
問題があつた。
Furthermore, when simultaneously removing NOx and SO 2 by supplying limestone, in conventional fluidized bed boilers, the desulfurization reaction takes place within the bed, so during two-stage combustion, desulfurization occurs due to a decrease in the O 2 concentration within the bed. There was a problem with decreased performance.

本方式では、炉頂部からの戻り管により脱硫反
応が酸素濃度の高いフリーボード部でも行われ、
この領域のガス−粒子の相対速度も高いことか
ら、効率的な炉内脱硫効果を得ることができる。
In this method, the desulfurization reaction is carried out even in the freeboard area, where the oxygen concentration is high, using the return pipe from the top of the furnace.
Since the gas-particle relative velocity in this region is also high, an efficient in-furnace desulfurization effect can be obtained.

また本考案の流動層ボイラにおいては、粒子を
一旦飛散させた後、これを捕集するようにした高
速流動層ボイラとは異なり、ガス空塔速度が0.5
〜3m/sと比較的低い流速で運転される。その
ため、粒子による摩擦が少ないので耐火材等の寿
命が長く、保守管理が容易である。また、粒子の
損失も極めて少ないので、運転中にこれを補給す
る必要がなく、それだけ運転コストを引き下げる
ことが可能である。
In addition, in the fluidized bed boiler of the present invention, unlike a high-speed fluidized bed boiler in which particles are once scattered and then collected, the superficial gas velocity is 0.5.
It operates at a relatively low flow velocity of ~3 m/s. Therefore, since there is little friction caused by particles, the life of the refractory material is long and maintenance is easy. Furthermore, since the loss of particles is extremely small, there is no need to replenish particles during operation, and operating costs can be reduced accordingly.

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本考案の実施例に係る流動層ボイラの
構成図である。
FIG. 1 is a block diagram of a fluidized bed boiler according to an embodiment of the present invention.

1は流動燃焼炉であつて、その下部には流動化
空気を吹き込むための配管2が差し込まれ、この
配管2の上面に設けられた多数の孔(図示せず)
から吹き出される空気により流動層3が形成可能
とされている。4は流動燃焼炉1内に燃料を供給
するための配管である。
Reference numeral 1 denotes a fluidized combustion furnace, into which a pipe 2 for blowing fluidized air is inserted, and a large number of holes (not shown) are provided on the upper surface of this pipe 2.
A fluidized bed 3 can be formed by the air blown out. 4 is a pipe for supplying fuel into the fluidized combustion furnace 1.

流動燃焼炉1の上部には、燃焼ガスを抜き出す
ための配管5が接続され、燃焼ガスはサイクロン
6に導入される。
A pipe 5 for extracting combustion gas is connected to the upper part of the fluidized combustion furnace 1, and the combustion gas is introduced into a cyclone 6.

一方、流動燃焼炉1とは別体に、流動層熱交換
器7が設置されている。この流動層熱交換器は伝
熱管8を有し、かつその下部には流動化空気を吹
き込むための配管9が差し込まれている。この配
管9の上面にも多数の孔(図示せず)が穿設され
ており、この孔から吹き出された空気によつて流
動層熱交換器7内に流動層が形成可能とされてい
る。
On the other hand, a fluidized bed heat exchanger 7 is installed separately from the fluidized combustion furnace 1. This fluidized bed heat exchanger has a heat exchanger tube 8, and a pipe 9 for blowing fluidizing air is inserted into the lower part of the tube. A large number of holes (not shown) are also bored in the upper surface of this pipe 9, and a fluidized bed can be formed in the fluidized bed heat exchanger 7 by air blown out from these holes.

而して、流動燃焼炉1内の流動層3から粒子を
抜き出すために、流動燃焼炉1の底部に配管10
が接続され、ライザ11によつて粒子が流動層熱
交換器7へ供給可能とされている。また、流動層
熱交換器7の底部には配管12及び13が接続さ
れ、この流動層熱交換器7の底部から粒子を抜き
出し流動燃焼炉1へ返送し得るようになつてい
る。なお配管13の途中にはライザ14が設けら
れており、流動燃焼炉の炉頂部の位置から流動燃
焼炉1内に粒子を返送、投入し得るようになつて
いる。
In order to extract particles from the fluidized bed 3 in the fluidized combustion furnace 1, a pipe 10 is installed at the bottom of the fluidized combustion furnace 1.
is connected, and particles can be supplied to the fluidized bed heat exchanger 7 by the riser 11. Further, pipes 12 and 13 are connected to the bottom of the fluidized bed heat exchanger 7 so that particles can be extracted from the bottom of the fluidized bed heat exchanger 7 and returned to the fluidized combustion furnace 1. A riser 14 is provided in the middle of the pipe 13 so that particles can be returned and introduced into the fluidized combustion furnace 1 from the top of the fluidized combustion furnace.

なお、流動燃焼炉1に空気を供給するための配
管2は、その途中で分岐されており、分岐配管2
aは流動層3の層面よりも上方の空間部に燃焼用
空気を供給し得るよう流動燃焼炉1の比較的上部
の部分に接続されている。
Note that the pipe 2 for supplying air to the fluidized combustion furnace 1 is branched in the middle, and the branch pipe 2
a is connected to a relatively upper portion of the fluidized combustion furnace 1 so as to supply combustion air to a space above the bed surface of the fluidized bed 3.

また、流動層熱交換器7に配管9から吹き込ま
れた流動化空気は、流動層熱交換器7の上部から
取り出され、配管15を通つて流動燃焼炉1内に
供給される。図中16,17はそれぞれライザ1
1及び14へ粒子押し上げ用の空気を供給するた
めの配管を示す。
Further, the fluidized air blown into the fluidized bed heat exchanger 7 from the piping 9 is taken out from the upper part of the fluidized bed heat exchanger 7 and supplied into the fluidized combustion furnace 1 through the piping 15. In the figure, 16 and 17 are respectively riser 1
1 and 14 are shown to supply air for pushing up particles.

次に上記実施例装置の作動について説明する。 Next, the operation of the above embodiment device will be explained.

配管2から流動化用空気を吹き込むと共に配管
4から燃料を供給し、流動層3内にてこの燃料を
燃焼させる。なお、運転の開始に際しては、流動
化剤たる粒子を流動燃焼炉1内に装入しておく。
Fluidizing air is blown in from the pipe 2 and fuel is supplied from the pipe 4, and this fuel is combusted in the fluidized bed 3. Incidentally, at the start of operation, particles as a fluidizing agent are charged into the fluidized combustion furnace 1.

燃料の燃焼によつて加熱された粒子もしくは燃
料粒子は、流動燃焼炉1の底部から抜き出され、
配管10及びライザ11を通つて流動層熱交換器
7に導入される。流動層熱交換器7には、配管9
から空気が吹き込まれて流動層が形成されてお
り、この熱交換器7内に導入された粒子は流動状
態となつて伝熱管8と接触し熱交換する。熱交換
の終つた粒子は配管12及び13によつて抜き出
され、それぞれ流動燃焼炉1に戻される。
Particles or fuel particles heated by combustion of the fuel are extracted from the bottom of the fluidized combustion furnace 1,
It is introduced into the fluidized bed heat exchanger 7 through the piping 10 and the riser 11. The fluidized bed heat exchanger 7 has piping 9
Air is blown into the heat exchanger 7 to form a fluidized bed, and the particles introduced into the heat exchanger 7 become fluidized and come into contact with the heat exchanger tubes 8 to exchange heat. After the heat exchange, the particles are extracted through pipes 12 and 13 and returned to the fluidized combustion furnace 1, respectively.

流動層3を脱した燃焼ガスは、若干の粒子を同
伴しつつ配管5からサイクロン6に導かれ、この
サイクロン6にて粒子が捕集される。
The combustion gas that has escaped from the fluidized bed 3 is guided through a pipe 5 to a cyclone 6 while carrying some particles with it, and the cyclone 6 collects the particles.

捕集された粒子は配管18から流動層熱交換器
7に導入され、一方粒子が除去されたガスは配管
19からボイラや対流伝熱部等の熱交換手段に送
られる。
The collected particles are introduced into the fluidized bed heat exchanger 7 through the pipe 18, while the gas from which the particles have been removed is sent from the pipe 19 to heat exchange means such as a boiler or a convection heat transfer section.

このように、流動燃焼炉1内の粒子は、流動層
3の部分から直に抜き出されて、配管10,ライ
ザ11を経て流動層熱交換器7に供給され、次い
で、配管12,13を経て流動層1に戻されるよ
う循環する。
In this way, the particles in the fluidized combustion furnace 1 are directly extracted from the fluidized bed 3 and supplied to the fluidized bed heat exchanger 7 via the pipes 10 and riser 11, and then through the pipes 12 and 13. The liquid is then circulated and returned to the fluidized bed 1.

而して、この粒子の循環量を調整することによ
つて、流動燃焼炉1内の温度制御や流動層熱交換
器7での熱交換量を極めて容易かつ迅速に調整す
ることができる。そのため、従来の一般的な流動
層ボイラの様に伝熱管を流動燃焼炉内に設けたも
のと異なり、ボイラの出力を大幅に変更したり、
負荷の変化に迅速に追従した調整などが可能であ
る。また、伝熱管8が流動燃焼炉1とは別体の流
動層熱交換器7に設けられているので、従来のよ
うな伝熱管の早期損傷が回避される。
By adjusting the amount of circulation of these particles, the temperature inside the fluidized combustion furnace 1 and the amount of heat exchanged in the fluidized bed heat exchanger 7 can be adjusted extremely easily and quickly. Therefore, unlike conventional fluidized bed boilers in which heat exchanger tubes are installed inside the fluidized combustion furnace, the output of the boiler can be significantly changed.
Adjustments that quickly follow changes in load are possible. Furthermore, since the heat exchanger tubes 8 are provided in the fluidized bed heat exchanger 7 which is separate from the fluidized combustion furnace 1, early damage to the heat exchanger tubes as in the conventional case is avoided.

本考案の流動層ボイラにおいては、粒子を飛散
させて流動燃焼炉から取り出すものと異なり、流
動燃焼炉1内の空塔速度が小さい。そのため、燃
焼ガスに同伴される粒子も微量であつて、かつそ
の流速も小さいので、装置内壁面の磨耗が極めて
少なく、耐火材などの寿命が長い。
In the fluidized bed boiler of the present invention, the superficial velocity in the fluidized combustion furnace 1 is small, unlike the one in which particles are scattered and taken out from the fluidized combustion furnace. Therefore, since the amount of particles entrained in the combustion gas is small and the flow rate thereof is also low, there is extremely little wear on the inner wall surface of the device, and the life of the refractory material etc. is long.

本考案の流動層ボイラは、前述のように、加熱
された粒子が流動燃焼炉1内の流動層部3から直
に抜き出されて循環されるので、コークスや石炭
の燃料粒子そのものを循環させることが可能であ
る。そのため、燃料以外に必要とする流動化剤た
る粒子量は、極めて少量で足りる。そして、流動
化剤の損失も、空塔速度が小さいところから僅少
であるので、運転中に流動化剤たる粒子を補給す
る必要が殆どなく、本考案の流動層ボイラにおい
ては、そのランニングコストが低廉なものとな
る。
As mentioned above, in the fluidized bed boiler of the present invention, the heated particles are directly extracted from the fluidized bed section 3 in the fluidized combustion furnace 1 and circulated, so that the fuel particles of coke and coal themselves are circulated. Is possible. Therefore, an extremely small amount of particles as a fluidizing agent other than the fuel is sufficient. In addition, since the loss of fluidizer is small because the superficial velocity is small, there is almost no need to replenish fluidizer particles during operation, and the running cost of the fluidized bed boiler of the present invention is reduced. It becomes cheaper.

なお上記実施例においては、粒子を搬送させる
手段の一部としてライザが採用されているが、ラ
イザ以外の輸送手段を採用してもよいことは明ら
かである。
In the above embodiment, a riser is employed as part of the means for transporting the particles, but it is clear that transport means other than the riser may be employed.

[効果] 以上詳述した通り、本考案の流動層ボイラによ
れば、 流動化粒子が少量で足り、かつ補給も不要で
ある。
[Effects] As detailed above, according to the fluidized bed boiler of the present invention, a small amount of fluidized particles is sufficient and there is no need for replenishment.

負荷変化への追従が迅速であり、かつ大幅な
出力調整が可能である。
It can quickly follow load changes and can make large output adjustments.

伝熱管や耐火材の寿命が長い。 Heat exchanger tubes and refractory materials have a long lifespan.

デンスベツド材が不要である。 Dense bed material is not required.

等の優れた効果が奏される。そのため、本考案の
流動層ボイラは、保守管理が容易であり、ランニ
ングコストも低廉なものとなる。
Excellent effects such as these can be achieved. Therefore, the fluidized bed boiler of the present invention is easy to maintain and manage, and its running costs are low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例に係る流動層ボイラの
構成図である。 1……流動燃焼炉、3流動層、6……サイクロ
ン、7流動層熱交換器、8……伝熱管、10……
粒子抜出用配管、12,13……粒子返送用配
管。
FIG. 1 is a block diagram of a fluidized bed boiler according to an embodiment of the present invention. 1... fluidized combustion furnace, 3 fluidized bed, 6... cyclone, 7 fluidized bed heat exchanger, 8... heat transfer tube, 10...
Piping for extracting particles, 12, 13...Piping for returning particles.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流動燃焼炉及び該流動燃焼炉で加熱された粒子
が導入される流動層熱交換器を備えてなり、該流
動燃焼炉と該流動層熱交換器とは別体に設けられ
た流動層ボイラにおいて、流動燃焼炉の流動層部
から粒子を抜き出して流動層熱交換器へ供給する
手段と、該流動層熱交換器から粒子を抜き出して
流動燃焼炉のベツド部と流動燃焼炉の炉頂部とに
分割して返送する手段とを有しており、空塔速度
が0.5〜3m/secであることを特徴とする流動層
ボイラ。
In a fluidized bed boiler comprising a fluidized combustion furnace and a fluidized bed heat exchanger into which particles heated in the fluidized bed heat exchanger are introduced, the fluidized bed boiler is provided separately from the fluidized combustion furnace and the fluidized bed heat exchanger. , means for extracting particles from a fluidized bed section of a fluidized combustion furnace and supplying them to a fluidized bed heat exchanger; 1. A fluidized bed boiler having a means for dividing and returning the boiler, and having a superficial velocity of 0.5 to 3 m/sec.
JP1985026628U 1985-02-26 1985-02-26 Expired JPH0443681Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985026628U JPH0443681Y2 (en) 1985-02-26 1985-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985026628U JPH0443681Y2 (en) 1985-02-26 1985-02-26

Publications (2)

Publication Number Publication Date
JPS61144301U JPS61144301U (en) 1986-09-05
JPH0443681Y2 true JPH0443681Y2 (en) 1992-10-15

Family

ID=30522814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985026628U Expired JPH0443681Y2 (en) 1985-02-26 1985-02-26

Country Status (1)

Country Link
JP (1) JPH0443681Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124332A (en) * 1977-01-31 1978-10-30 Johnson William Benedict Boiler heated by combustion in fluidisd bed* method of combustion of fuel therein and apparatus for transfer of heat to fluid
JPS57131901A (en) * 1981-02-07 1982-08-16 Babcock Hitachi Kk Load control method of fluidized bed boiler
JPS58120007A (en) * 1982-01-12 1983-07-16 Kawasaki Heavy Ind Ltd Fluidized bed boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124332A (en) * 1977-01-31 1978-10-30 Johnson William Benedict Boiler heated by combustion in fluidisd bed* method of combustion of fuel therein and apparatus for transfer of heat to fluid
JPS57131901A (en) * 1981-02-07 1982-08-16 Babcock Hitachi Kk Load control method of fluidized bed boiler
JPS58120007A (en) * 1982-01-12 1983-07-16 Kawasaki Heavy Ind Ltd Fluidized bed boiler

Also Published As

Publication number Publication date
JPS61144301U (en) 1986-09-05

Similar Documents

Publication Publication Date Title
JP2564163B2 (en) Fluidized bed equipment
KR100306026B1 (en) Method and apparatus for driving a circulating fluidized bed system
KR100338695B1 (en) How to Drive a Circulating Fluidized Bed Reactor System and a Circulating Fluidized Bed Reactor System
AU732542B2 (en) Fluidized-bed gasification and combustion furnace
EP0431163B1 (en) Composite circulation fluidized bed boiler
JPH0443681Y2 (en)
JP3034865B1 (en) Method and apparatus for recovering heat from a fluidized bed
JP2972631B2 (en) Fluidized bed boiler and heat exchange method thereof
JP2005300077A (en) Circulating fluidized bed furnace
KR930005289B1 (en) Desulphurization method and apparatus of exhaust gas
JP2939338B2 (en) Fluidized bed reactor and method for producing the same
JP2641826B2 (en) Combustion method of liquid fuel in circulating fluidized bed
JPS62261808A (en) Fluidized-bed combustion method
KR102102189B1 (en) Sand falling type circulating fluidized bed boiler having a plurality of individually controllable risers and its operation method
JP2758167B2 (en) Fluidized bed boiler
EP3597996B1 (en) Falling fluid sand type circulating fluidized bed boiler with a plurality of risers and method of operating the same
JP2902625B1 (en) Fluid bed furnace heat recovery method and apparatus
CZ117198A3 (en) Process and apparatus for controlling bed temperature of a boiler with bubbling through bed
JPH0355407A (en) Heat recovery method for circulating fluidized bed
JPH0322530B2 (en)
JPH0238169Y2 (en)
JPS61205708A (en) Re-burning method for unburnt residual in fluidized bed burning boiler
JP2002181315A (en) Method and equipment for combustion of circulating fluidized bed boiler
JPS62255712A (en) Combustion of fluidized bed
JPH06281108A (en) Method for mixed combustion of low calorific value gas/in circulation fludized bed type boiler