JP2829558B2 - Equivalent temperature sensor - Google Patents

Equivalent temperature sensor

Info

Publication number
JP2829558B2
JP2829558B2 JP5020860A JP2086093A JP2829558B2 JP 2829558 B2 JP2829558 B2 JP 2829558B2 JP 5020860 A JP5020860 A JP 5020860A JP 2086093 A JP2086093 A JP 2086093A JP 2829558 B2 JP2829558 B2 JP 2829558B2
Authority
JP
Japan
Prior art keywords
sensor
temperature
temperature sensor
human body
equivalent temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5020860A
Other languages
Japanese (ja)
Other versions
JPH06213691A (en
Inventor
正洋 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP5020860A priority Critical patent/JP2829558B2/en
Publication of JPH06213691A publication Critical patent/JPH06213691A/en
Application granted granted Critical
Publication of JP2829558B2 publication Critical patent/JP2829558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、人体が感じる温熱感覚
〔等価温度Teq(EquivalentTemper
ature)〕を演算する温熱感覚演算装置に用いられ
る等価温度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal sensation felt by the human body [equivalent temperature Teq (Equivalent Temper).
at least one temperature sensor used in a thermal sensation calculation device that calculates the temperature.

【0002】[0002]

【従来の技術】人体が感じる温熱環境の評価指数、すな
わち温熱感覚として等価温度Teqがある。この等価温
度Teqは、現実の非等温{気温≠平均輻射温度MRT
(Mean Radiat Temperatur
e)}で、かつ有風の環境にいる人が無風で放射と対流
のみによって放熱するのと等量の熱を放散し得る等温
(気温=MRT)の仮想温度、つまり気温、輻射、気流
を含む乾性の体感温度である。等価温度Teqを求める
1つの方法として、センサ本体に加熱ヒータを組込み、
センサ本体の温度(センサ温度)Tcrを常に一定の値
(例えば36.5°C)に保つべく、加熱ヒータへの供
給電力量を制御する方法が提案されている(例;特公昭
60ー12569号公報、特開平4−131653号公
報等)。このような方法によれば、加熱ヒータへの供給
電力量を計測し、所定の演算を施すことによって等価温
度Teqを算出することができる。
2. Description of the Related Art There is an equivalent temperature Teq as an evaluation index of a thermal environment felt by a human body, that is, a thermal sensation. This equivalent temperature Teq is the actual non-isothermal / air temperature / average radiation temperature MRT
(Mean Radia n t Temperatur
e) The virtual temperature of the isotherm (air temperature = MRT), which is capable of dissipating the same amount of heat as that of a person in a windy environment and dissipating only by radiation and convection without wind, ie, temperature, radiation, and airflow It is a dry sensible temperature. As one method for obtaining the equivalent temperature Teq, a heater is incorporated in the sensor body,
There has been proposed a method of controlling the amount of electric power supplied to the heater to keep the temperature of the sensor body (sensor temperature) Tcr at a constant value (for example, 36.5 ° C.) (eg, Japanese Patent Publication No. 60-12569). JP, JP-A-4-131653, etc.). According to such a method, the equivalent temperature Teq can be calculated by measuring the amount of electric power supplied to the heater and performing a predetermined calculation.

【0003】図10はこのような熱環境度測定、例えば
室内の壁面に取付けられて室内の温度環境を測定し、空
調装置の制御を行うために用いられる等価温度センサの
従来例を示す図、図11は温熱感覚演算装置全体の構成
を示す図である。これらの図において、1はセンサ本
体、2はセンサ本体1内に配設された加熱ヒータ、3は
センサ本体1内に埋設された温度センサで、これらによ
って等価温度センサを構成している。センサ本体1は
銅、アルミニウム等の熱伝導性に優れた材料によって形
成されており、形状としては一般に人体の形状を模して
円柱形状とされる。温度センサ3は温度を電気信号に変
換できるものであれば種類を問わない。熱環境度の測定
に際しては、設定温度値演算部4にて気温Taと衣服の
熱抵抗Iclとに基づき設定温度値Tskを算出し、セ
ンサ温度Tcrを設定温度値Tskに合致させるよう
に、環境計測部(等価温度センサ)の加熱ヒータ2への
ヒーターパワーを制御し、気温Ta,衣服の熱抵抗I
cl,設定温度Tsk,ヒーターパワーに基ずき等価
温度Teqを算出する。これにより、気流速度Vai
rが大きい場合でも等価温度Teqが人体の感じる等価
温度Teqに高精度で合致するものとなり、正確な等価
温度の計測が可能となる。
FIG. 10 is a diagram showing a conventional example of such an equivalent temperature sensor used for measuring the degree of thermal environment, for example, measuring the indoor temperature environment mounted on a wall surface of a room and controlling an air conditioner. FIG. 11 is a diagram showing the configuration of the overall thermal sensation calculation device. In these drawings, reference numeral 1 denotes a sensor main body, 2 denotes a heater disposed in the sensor main body 1, and 3 denotes a temperature sensor embedded in the sensor main body 1, and these constitute an equivalent temperature sensor. The sensor main body 1 is formed of a material having excellent thermal conductivity, such as copper or aluminum, and has a generally cylindrical shape imitating the shape of a human body. The temperature sensor 3 may be of any type as long as it can convert the temperature into an electric signal. When measuring the degree of thermal environment, the set temperature value calculation unit 4 calculates a set temperature value Tsk based on the temperature Ta and the thermal resistance Icl of the clothes, and sets the sensor temperature Tcr to match the set temperature value Tsk. The heater power H to the heater 2 of the measuring unit (equivalent temperature sensor) is controlled, and the temperature Ta, the thermal resistance I of the clothes,
An equivalent temperature Teq * is calculated based on cl, set temperature Tsk , and heater power H. As a result, the airflow velocity Vai
Even when r is large, the equivalent temperature Teq matches the equivalent temperature Teq felt by the human body with high accuracy, and accurate measurement of the equivalent temperature becomes possible.

【0004】[0004]

【発明が解決しようとする課題】上記したように等価温
度Teqは人体の受ける輻射、気流、気温から求められ
るものである。従来の等価温度センサにあっては、上述
した通り人体の形状を円柱と見立て、センサ本体1をこ
れと相似な円柱状に形成していた。しかしながら、実際
の人体の形状は円柱ではないため、センサの気流特性と
輻射特性が人体のそれと異なり、測定誤差を生じるとい
う問題があった。
As described above, the equivalent temperature Teq is obtained from the radiation, airflow, and temperature received by the human body. In the conventional equivalent temperature sensor, as described above, the shape of the human body is regarded as a column, and the sensor main body 1 is formed in a columnar shape similar to this. However, since the shape of the actual human body is not a cylinder, the airflow characteristics and the radiation characteristics of the sensor are different from those of the human body, and there is a problem that a measurement error occurs.

【0005】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、センサの気流特性と輻射特性を人体のそれと近似
させることにより、測定誤差を生じず、等価温度をより
正確に測定し得るようにした等価温度センサを提供する
ことにある。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to reduce a measurement error by approximating the airflow characteristics and radiation characteristics of a sensor to those of a human body. An object of the present invention is to provide an equivalent temperature sensor that does not occur and can measure an equivalent temperature more accurately.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は、加熱ヒータと、センサ本体と、温度センサと
を備え、前記温度センサによって検出される前記センサ
本体の表面温度が一定となるように前記加熱ヒータを制
御して気温、風速等に対する変化を検出する等価温度セ
ンサにおいて、前記センサ本体は、前方、側方および上
方の三方向から見た投影面積係数が人体の投影面積係数
に近似した形状を有しているものである。
To achieve the above object, the present invention comprises a heater, a sensor body, and a temperature sensor, and the surface temperature of the sensor body detected by the temperature sensor is constant. In the equivalent temperature sensor that controls the heating heater to detect changes with respect to the temperature, wind speed, and the like, the sensor body includes front, side, and upper
The projection area coefficient viewed from the three directions has a shape similar to the projection area coefficient of the human body.

【0007】[0007]

【作用】本発明において、センサ本体は、前方、側方お
よび上方の三方向から見た投影面積係数が人体の投影面
積係数に近似した形状を有しているので、人体と同様な
輻射、気流感度を有する。
According to the present invention, the sensor main body is located on the front, side and side.
Since the projected area coefficient viewed from the three directions above and above has a shape similar to the projected area coefficient of the human body, it has the same radiation and airflow sensitivity as the human body.

【0008】[0008]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は本発明に係る等価温度センサの
一実施例を示す外観斜視図、図2は横断面図、図3は縦
断面図である。なお、図中図10に示した従来センサと
同一構成部材のものに対しては同一符号をもって示す。
これらの図において、本発明は等価温度センサ5のケー
スを構成するセンサ本体1を、人体の上下、左右、前後
方向からの投影面積係数の比に近似した縦長の薄箱型に
形成したものである。センサ本体1は、銅、アルミニウ
ム合金等の金属もしくはプラスチックによって形成さ
れ、大きさは、例えば高さ=60mm、長さL=24
mm、厚さB=16mmの中空形状で、外側面に加熱ヒ
ータ2が、内部中央に温度センサ3がそれぞれ配設され
ている。また、センサ本体1の前面の上下部には開口
6,7がそれぞれ形成されており、下方側開口部7には
配線基板8が挿入固定されている。なお、9は温度セン
サ3と配線基板8を接続するリード線で、このリード線
9は温度センサ3を支持する支持体としても用いられ
る。10は止めねじ(図示せず)が挿通されるねじ取付
孔である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is an external perspective view showing an embodiment of an equivalent temperature sensor according to the present invention, FIG. 2 is a transverse sectional view, and FIG. 3 is a longitudinal sectional view. In the drawing, the same components as those of the conventional sensor shown in FIG. 10 are denoted by the same reference numerals.
In these figures, the present invention is one in which the sensor main body 1 constituting the case of the equivalent temperature sensor 5 is formed in a vertically long thin box shape which approximates the ratio of the projected area coefficient from the top and bottom, left and right, and front and rear directions of the human body. is there. The sensor body 1 is formed of a metal such as copper or an aluminum alloy or a plastic, and has a size of, for example, a height U = 60 mm and a length L = 24.
mm and a thickness B = 16 mm, a heater 2 is provided on the outer surface, and a temperature sensor 3 is provided in the center of the inside. Openings 6 and 7 are formed in the upper and lower portions of the front surface of the sensor body 1, respectively, and a wiring board 8 is inserted and fixed in the lower opening 7. Reference numeral 9 denotes a lead wire connecting the temperature sensor 3 and the wiring board 8, and the lead wire 9 is also used as a support for supporting the temperature sensor 3. Reference numeral 10 denotes a screw mounting hole into which a set screw (not shown) is inserted.

【0009】投影面積係数Ksは、国際規格(ISO)
7726AnnexBによると次式によって示される。
[0009] The projected area coefficient Ks is determined by an international standard (ISO).
According to 7726AnnexB, it is represented by the following equation.

【0010】 [0010]

【0011】ここで、Aprはある方向に投影された表
面積、Arは全放射表面積である。この投影面積係数は
人体またはセンサの形状に関係するものであって、各方
向から放射熱の相対的な重要さを示すものである。
Here, Apr is the surface area projected in a certain direction, and Ar is the total radiation surface area. The projected area coefficient is related to the shape of the human body or the sensor, and indicates the relative importance of radiant heat from each direction.

【0012】下記表は人体、楕円体、および球の立位と
座位における各投影面積係数Ksについて示したもので
ある。
The following table shows the projected area coefficients Ks in the standing and sitting positions of the human body, the ellipsoid, and the sphere.

【0013】また投影面積係数Ksを使った平均輻射温
度Trは次式によって表される。
The average radiation temperature Tr using the projected area coefficient Ks is expressed by the following equation.

【0014】 [0014]

【0015】 そこで、センサ本体1の形状を次式の投影面積係数Ks
満足するような形状とする。
[0015] Therefore, the shape of the sensor main body 1 is calculated by using the following projected area coefficient Ks.
To satisfy the above.

【0016】 [0016]

【0017】ここで、Kは係数である。上記(3)式よ
り Ksa=K・Ksa’ ・・・・ () Ksb=K・Ksb’ ・・・・ () Ksc=K・Ksc’ ・・・・ () そこで、本発明は()式、()式および()式と
なるようなKsa’、Ksb’、Ksc’を満たす形状
のセンサ本体1を用いるようにしたものである。この場
合、上記センサ本体1の等価温度係数は、Ksa’=
0.071、Ksb’=0.207、Ksc’=0.3
11で、いずれも人体の投影温度係数に近似した値を満
足している。このようにセンサ本体1の形状を人体の投
影面積係数の値に近似した形状とすると、センサ自体の
輻射感度(放射熱伝達率)と気流感度(対流熱伝達率)
が人体のそれに近似するため、従来のセンサに比べて誤
差が小さく、より高精度に等価温度を測定することがで
きる。
Here, K is a coefficient. From the above equation (3) , Ksa = K · Ksa ′ ( 4 ) Ksb = K · Ksb ′ ( 5 ) Ksc = K · Ksc ′ ( 6 ) Therefore, the present invention provides The sensor body 1 having a shape that satisfies Ksa ', Ksb', and Ksc 'as represented by the expressions ( 4 ), ( 5 ), and ( 6 ) is used. In this case, the equivalent temperature coefficient of the sensor body 1 is Ksa ′ =
0.071, Ksb '= 0.207, Ksc' = 0.3
11 satisfies a value approximating the projected temperature coefficient of the human body. When the shape of the sensor body 1 is made to be a shape approximating the value of the projected area coefficient of the human body, the radiation sensitivity (radiant heat transfer coefficient) and the air flow sensitivity (convective heat transfer coefficient) of the sensor itself are obtained.
Is close to that of a human body, so the error is smaller than that of a conventional sensor, and the equivalent temperature can be measured with higher accuracy.

【0018】ここで、本発明において、H;発熱量〔W
/m 〕,hr;放射熱伝達率〔W/(m ・K)〕,
A・Vair ;対流熱伝達率〔W/(m ・K)〕,
A;定数,n;定数,Tr;平均輻射温度〔°C〕とす
ると、熱抵抗が有る場合のTeq誤差の理論式は次式
によって求められる。熱抵抗がない場合の計測部熱平
衡式
Here, in the present invention, H;
/ M 2 ], hr; radiant heat transfer coefficient [W / (m 2 · K)],
A · Vair n ; convective heat transfer coefficient [W / (m 2 · K)],
A: constant, n: constant, Tr: average radiation temperature [° C]
Then, the theoretical equation of the Teq error when there is the thermal resistance R is obtained by the following equation. Measurement part thermal equilibrium type without thermal resistance R

【0019】H=hr×(Tcr−hr)+A×Vai
×(Tcr−Ta)・・・・(7) 熱抵抗が有る場合の計測部熱平衡式
H = hr × (Tcr−hr) + A × Vai
r n × (Tcr−Ta) (7) Measurement part thermal equilibrium equation with thermal resistance R

【0020】 [0020]

【0021】B.W.Olesen等による「HOW
TO MEASURE MEANRADIANT OP
ERATIVE AN1〕として引用されている MA
DSEN,T.L.,”Measurement of
thermal comfot and desco
mfort”Indoor Climate”dani
sh Building research inst
itute,Copenhagen,1979によれ
ば、等価温度Teqを表す式は
B. W. "HOW" by Olesen et al.
TO MEASURE MEANRADIANT OP
MA quoted as "ERATIVE AN1"
DSEN, T .; L. , "Measurement of
thermal comfort and desco
mfort "Indoor Climate" dani
sh Building research inst
According to itute, Copenhagen, 1979.
For example, the equation representing the equivalent temperature Teq is

【0022】上記(8)式をTrについて解き上記
(9)式に代入して求めたTeqと、上記(7)式をT
rについて解き上記(9)式に代入して求めたTeqと
の差が誤差eであり、次式によって表される(ここで、
Tcr=Tsk)
Equation (8) is solved for Tr to obtain
Teq obtained by substituting into equation (9), and Teq
Teq obtained by solving for r and substituting it into equation (9)
Is the error e, which is expressed by the following equation (where:
Tcr = Tsk) .

【0023】上記()、()式より熱抵抗Rが有る
場合のTeqの誤差eは、次式によって表される。
From the above equations ( 7 ) and ( 8 ), the error e of Teq when there is a thermal resistance R is expressed by the following equation.

【0024】 [0024]

【0025】(10)式より熱抵抗Rが大きい程、誤差
eが大きくなるので、本発明のセンサ本体1は熱抵抗R
が小さいものが望ましい。
According to the equation (10), the larger the thermal resistance R, the larger the error
e increases, the sensor body 1 of the present invention has a thermal resistance R
Is desirable.

【0026】図4〜図9はそれぞれKsa、Ksb、K
scを満足するセンサ本体の他の一実施例を示す図で、
図4〜図8は立位、図9は座位の場合である。なお、寸
法は比率である。
FIGS. 4 to 9 show Ksa, Ksb and K, respectively.
FIG. 9 is a diagram showing another embodiment of the sensor main body satisfying sc.
4 to 8 show the case of standing, and FIG. 9 shows the case of sitting. The dimensions are ratios.

【0027】図4は高さ=950、L=400、B=
253の縦長の薄箱型に形成した例である。この場合、
Ksa’=0.0622、Ksb’=0.1789、K
sc’=0.2723となる。
FIG. 4 shows a height U = 950, L = 400, B =
253 is an example formed in a vertically long thin box type. in this case,
Ksa '= 0.0622, Ksb' = 0.1789, K
sc ′ = 0.2723.

【0028】図5は正面視形状を人体の正面視形状と略
等しく形成したものである。各部の寸法は、=237
5、L=1000、B=564、F=700、F=1
000、Ksa’=0.0622、Ksb’=0.17
89、Ksc’=0.2722である。
FIG. 5 is a view in which the front view shape is formed substantially equal to the human body front view shape. The dimensions of each part are: U = 237
5, L = 1000, B = 564, F = 700, F U = 1
000, Ksa '= 0.0622, Ksb' = 0.17
89, Ksc '= 0.2722.

【0029】図6は同じく正面視形状を人体の正面視形
状と略等しく形成したものである。各部の寸法は、
1000、L=400、B=2725、F=332.8
7、F=1500、T=50、TL=200で、Ks
a’=0.0609、Ksb’=0.1712、Ksc
=0.2665’である。
FIG. 6 shows a front view of the human body, which is formed to be substantially the same as the front view of the human body. The size of each part, U =
1000, L = 400, B = 2725, F = 332.8
7, F U = 1500, T = 50, TL = 200, Ks
a '= 0.0609, Ksb' = 0.1712, Ksc
= 0.2665 '.

【0030】図7は平面視楕円形の縦長薄箱型に形成し
た例を示す。各部の寸法は、=50、L=26、B=
16、T=9、D=15で、Ksa’=0.0079、
Ksb’=0.226、Ksc’=0.347であっ
た。
FIG. 7 shows an example in which it is formed in a vertically long thin box shape having an elliptical shape in plan view. The dimensions of each part are: U = 50, L = 26, B =
16, T = 9, D = 15, Ksa ′ = 0.0079,
Ksb '= 0.226 and Ksc' = 0.347.

【0031】図8は縦長の薄箱型に形成し、=39
4、L=90、B=137に設定した例を示す。この場
合、Ksa’=0.0006、Ksb’=0.174
2、Ksc’=0.2652である。
FIG. 8 shows a vertically long thin box shape, U = 39.
4, an example is shown in which L = 90 and B = 137. In this case, Ksa ′ = 0.0006, Ksb ′ = 0.174
2. Ksc '= 0.652.

【0032】図9は縦長の薄箱型に形成したものであ
る。=3333、L=2727、B=2000で、K
sa’=0.1286、Ksb’=0.1571、Ks
c’=0.2143であった。これらの形状はいずれも
人体の投影面積係数Ksa、Ksb、Kscに近似した
値を有している。
FIG. 9 shows a vertically long thin box. U = 3333, L = 2727, B = 2000, K
sa ′ = 0.1286, Ksb ′ = 0.571, Ks
c ′ = 0.2143. Each of these shapes has a value approximating the projected area coefficient Ksa, Ksb, Ksc of the human body.

【0033】[0033]

【発明の効果】以上説明したように本発明に係る等価温
度センサによれば、センサ本体の形状を三方向から見た
投影面積係数が人体の投影面積係数に近似した形状とし
たので、人体と同様な輻射、気流感度が得られ、等価温
度をより高精度に求めることができる。
As described above, according to the equivalent temperature sensor according to the present invention, the shape of the sensor body is viewed from three directions.
Since the projected area coefficient has a shape similar to the projected area coefficient of the human body, radiation and airflow sensitivity similar to that of the human body can be obtained, and the equivalent temperature can be obtained with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る等価温度センサの一実施例を示す
外観斜視図である。
FIG. 1 is an external perspective view showing an embodiment of an equivalent temperature sensor according to the present invention.

【図2】横断面図である。FIG. 2 is a cross-sectional view.

【図3】縦断面図である。FIG. 3 is a longitudinal sectional view.

【図4】Ksa、Ksb、Kscを満足するセンサ本体
の他の実施例を示す図である。
FIG. 4 is a diagram showing another embodiment of the sensor body satisfying Ksa, Ksb, and Ksc.

【図5】Ksa、Ksb、Kscを満足するセンサ本体
の他の実施例を示す図である。
FIG. 5 is a diagram showing another embodiment of the sensor body satisfying Ksa, Ksb, and Ksc.

【図6】Ksa、Ksb、Kscを満足するセンサ本体
の他の実施例を示す図である。
FIG. 6 is a view showing another embodiment of the sensor body satisfying Ksa, Ksb, and Ksc.

【図7】Ksa、Ksb、Kscを満足するセンサ本体
の他の実施例を示す図である。
FIG. 7 is a diagram showing another embodiment of the sensor body satisfying Ksa, Ksb, and Ksc.

【図8】Ksa、Ksb、Kscを満足するセンサ本体
の他の実施例を示す図である。
FIG. 8 is a diagram showing another embodiment of the sensor body satisfying Ksa, Ksb, and Ksc.

【図9】Ksa、Ksb、Kscを満足するセンサ本体
の他の実施例を示す図である。
FIG. 9 is a diagram showing another embodiment of the sensor body satisfying Ksa, Ksb, and Ksc.

【図10】従来の等価温度センサを示す断面図である。FIG. 10 is a sectional view showing a conventional equivalent temperature sensor.

【図11】温熱感覚演算装置の全体を示す概略構成図で
ある。
FIG. 11 is a schematic configuration diagram showing the entire thermal sensation calculating device.

【符号の説明】[Explanation of symbols]

1 センサ本体 2 加熱ヒータ 3 温度センサ 5 等価温度センサ DESCRIPTION OF SYMBOLS 1 Sensor main body 2 Heater 3 Temperature sensor 5 Equivalent temperature sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱ヒータと、センサ本体と、温度セン
サとを備え、前記温度センサによって検出される前記セ
ンサ本体の表面温度が一定となるように前記加熱ヒータ
を制御して気温、風速等に対する変化を検出する等価温
度センサにおいて、前記センサ本体は、三方向から見た
投影面積係数が人体の投影面積係数に近似した形状を有
していることを特徴とする等価温度センサ。
1. A heater, comprising: a heater, a sensor body, and a temperature sensor, wherein the heater is controlled so that a surface temperature of the sensor body detected by the temperature sensor is constant, thereby controlling a temperature, a wind speed, and the like. In an equivalent temperature sensor for detecting a change, the sensor body is viewed from three directions.
An equivalent temperature sensor, wherein a projected area coefficient has a shape similar to a projected area coefficient of a human body.
JP5020860A 1993-01-14 1993-01-14 Equivalent temperature sensor Expired - Lifetime JP2829558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020860A JP2829558B2 (en) 1993-01-14 1993-01-14 Equivalent temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020860A JP2829558B2 (en) 1993-01-14 1993-01-14 Equivalent temperature sensor

Publications (2)

Publication Number Publication Date
JPH06213691A JPH06213691A (en) 1994-08-05
JP2829558B2 true JP2829558B2 (en) 1998-11-25

Family

ID=12038885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020860A Expired - Lifetime JP2829558B2 (en) 1993-01-14 1993-01-14 Equivalent temperature sensor

Country Status (1)

Country Link
JP (1) JP2829558B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125242A (en) * 1988-11-02 1990-05-14 Mitsubishi Rayon Co Ltd Reflection type screen
JPH04136654A (en) * 1990-09-25 1992-05-11 Yamatake Honeywell Co Ltd Average radiation temperature measurement average radiation temperature sensor

Also Published As

Publication number Publication date
JPH06213691A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
Winslow et al. A new method of partitional calorimetry
US20050209813A1 (en) Temperature sensing device
US4433923A (en) Operative temperature sensing system
JP2581625B2 (en) Method and apparatus for calculating thermal sensation, method and apparatus for calculating predicted average thermal sensation
JP2829558B2 (en) Equivalent temperature sensor
US4164869A (en) Thermostat system for radiant room heating
EP0274077B1 (en) Thermal sensing system
JP2588792B2 (en) Method and apparatus for calculating thermal sensation
JP2829559B2 (en) Equivalent temperature sensor
JP3832185B2 (en) Wind direction calculation method for 3D wind direction measuring device
US4964115A (en) Thermal sensing system
JPH0713573B2 (en) Predicted average temperature sensation calculation method and apparatus
NL2028142B1 (en) Thermal comfort measuring system
JP3021738B2 (en) Thermal sensation sensor
JP2002310488A (en) Temperature detecting device and air conditioner employing the same
JPH0672820B2 (en) Thermal detector
JPH0672821B2 (en) Thermal detector
JPH0142046Y2 (en)
JPH0672814B2 (en) Thermal detector
JPH0672816B2 (en) Thermal detector
JP2022152884A (en) Temperature measurement device
Jones et al. Performance comparison for thermal comfort sensors
JPH0672823B2 (en) Thermal detector
EP0143112A1 (en) Operative temperature sensing system
JPH0672815B2 (en) Thermal detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100925

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100925

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120925

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120925

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120925

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130925

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130925

Year of fee payment: 15