JP2826435B2 - Activation of prodrugs by catalytic antibodies - Google Patents

Activation of prodrugs by catalytic antibodies

Info

Publication number
JP2826435B2
JP2826435B2 JP5073980A JP7398093A JP2826435B2 JP 2826435 B2 JP2826435 B2 JP 2826435B2 JP 5073980 A JP5073980 A JP 5073980A JP 7398093 A JP7398093 A JP 7398093A JP 2826435 B2 JP2826435 B2 JP 2826435B2
Authority
JP
Japan
Prior art keywords
ser
represented
amino acid
acid sequence
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5073980A
Other languages
Japanese (ja)
Other versions
JPH06220072A (en
Inventor
郁雄 藤井
英昭 宮下
洋子 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANPAKU KOGAKU KENKYUSHO KK
Original Assignee
TANPAKU KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANPAKU KOGAKU KENKYUSHO KK filed Critical TANPAKU KOGAKU KENKYUSHO KK
Priority to JP5073980A priority Critical patent/JP2826435B2/en
Publication of JPH06220072A publication Critical patent/JPH06220072A/en
Application granted granted Critical
Publication of JP2826435B2 publication Critical patent/JP2826435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は触媒抗体(Catalytic
Antibody)によってプロドラッグを活性化させる技術に
関する。詳細には、本発明は、医薬品の毒性軽減あるい
は持続性の向上などを目的として非薬理活性型の誘導体
へと化学修飾された化合物(プロドラッグ)を分解し、プ
ロドラッグを本来の薬理活性型医薬品へと変換する抗体
に関する。このような抗体とプロドラッグ化された医薬
品との併用によって医薬品の毒性軽減、持続性の向上あ
るいは病巣への特異性などの種々の問題を改善すること
が可能になる。
The present invention relates to a catalytic antibody (Catalytic).
Antibody) to activate prodrugs. Specifically, the present invention decomposes a compound (prodrug) chemically modified into a non-pharmacologically active derivative for the purpose of reducing the toxicity or improving the sustainability of a drug, and converting the prodrug to the original pharmacologically active form. It relates to an antibody that is converted into a drug. By using such an antibody in combination with a drug that has been converted into a prodrug, it becomes possible to reduce various problems such as reduction in toxicity of the drug, improvement in persistence, and specificity to a lesion.

【0002】[0002]

【従来技術及び発明が解決しようとする課題】有用な薬
理活性を有する医薬品であるが強い副作用・毒性を伴な
うあるいは不安定で投与が困難な医薬品では、それらの
不都合を改善するためにしばしば医薬品のプロドラッグ
化が行なわれる。プロドラッグ化された医薬品はそれ自
身では薬理活性を持たないが、投与後体内のpHの変化
や生体内の酵素によって分解され、もとの医薬品へと変
換されて本来の薬理作用を発揮する。かかるプロドラッ
グを作成する化学修飾は、例えば副作用の強い制ガン剤
などでは目的とする病巣にそのプロドラッグが到達する
までは生体内の酵素に抵抗し、病巣に到達後はじめて分
解されて活性型の医薬品へと変換される修飾であること
が望ましい。そこで、プロドラッグを作製するための化
学修飾の選択に当たっては、プロドラッグの分解修飾を
行う酵素の生体内における存在の有無、及びかかる酵素
が生体内に存在する場合にはその酵素の反応特異性、基
質特異性あるいは生体内分布等を考慮すべきである。あ
る種の化学修飾によって得られるプロドラッグ候補化合
物が目的とする医薬品の安定化あるいは毒性の軽減化に
最も適した化合物であっても、その化合物に対して特異
性を示し、それを分解する酵素が天然、即ち生体内に存
在していなければ、その化合物は生体内において分解さ
れ得ないのでプロドラッグとして使用することはできな
い。しかし、かかる機能を発揮する酵素を人為的に製造
し、生体内に投与すれば、従来使用し得なかった候補化
合物もプロドラッグとして利用できるようになるはずで
ある。そこで、本発明者らは、世界で初めてかかる点に
着目し、プロドラッグ研究への新たな分野を拓くため鋭
意研究を重ねた。本発明は、望んだ基質(プロドラッグ)
に対し特異的に作用する生体触媒を開発することによっ
て、従来毒性などの問題で使用できなかった医薬品のプ
ロドラッグ化や病巣に特異的なプロドラッグの化学修飾
を大いに促進し、医療分野に多大の貢献をなすものであ
る。
2. Description of the Related Art Pharmaceuticals having useful pharmacological activity but accompanied by strong side effects and toxicity or unstable and difficult to administer are often required to improve their inconvenience. The prodrugs of pharmaceuticals are converted. Prodrugs have no pharmacological activity by themselves, but after administration, they are degraded by changes in pH in the body or by enzymes in the living body, converted into the original drug, and exert their original pharmacological action. The chemical modification for producing such a prodrug is, for example, an anticancer drug having a strong side effect, which resists enzymes in the living body until the prodrug reaches a target lesion, and is degraded only after reaching the lesion to become an active drug. It is desirable that the modification be converted to Therefore, in selecting a chemical modification for producing a prodrug, the presence or absence of an enzyme that degrades and modifies the prodrug in a living body, and when such an enzyme is present in a living body, the reaction specificity of the enzyme , Substrate specificity or biodistribution should be considered. Prodrug candidate compounds obtained by certain types of chemical modification, even if they are the most suitable compounds for stabilizing the target drug or reducing toxicity, show specificity for the compound and enzymes that degrade it If is not naturally occurring, i.e., not present in vivo, the compound cannot be used as a prodrug since it cannot be degraded in vivo. However, if an enzyme exhibiting such a function is artificially produced and administered into a living body, a candidate compound which could not be used conventionally can be used as a prodrug. Therefore, the present inventors have paid attention to this point for the first time in the world, and have conducted intensive research to open up a new field of prodrug research. The present invention provides the desired substrate (prodrug)
The development of biocatalysts that specifically act on steroids greatly promotes the conversion of drugs into drugs that could not be used due to problems such as toxicity, and the chemical modification of lesion-specific prodrugs, and greatly contributes to the medical field. It is a contribution of.

【0003】[0003]

【課題を解決するための手段】本発明は、その態様の一
つとして、下記式9で示されるクロラムフェニコールの
エステル誘導体プロドラッグを提供するものである。
The present invention provides, as one of its aspects, a prodrug of an ester derivative of chloramphenicol represented by the following formula 9.

【化4】 本発明の上記エステル誘導体(9)は抗生物質活性を持た
ないことが大腸菌を用いた生物試験によって確認されて
いる。従って、本化合物は、確かにプロドラッグとして
利用できる。
Embedded image It has been confirmed by a biological test using Escherichia coli that the ester derivative (9) of the present invention does not have antibiotic activity. Therefore, the present compound can certainly be used as a prodrug.

【0004】さらに、本発明は、上記エステル誘導体
(9)を特異的に加水分解し、本来のクロラムフェニコー
ル(1)を再生することのできる抗体を提供する。この本
発明抗体は下記反応式に従って、上記の本発明プロドラ
ッグ(9)を特異的に加水分解し、クロラムフェニコール
(1)を生成させる。
Further, the present invention relates to the above ester derivative
(9) An antibody capable of specifically hydrolyzing (9) to regenerate the original chloramphenicol (1). The antibody of the present invention specifically hydrolyzes the above-mentioned prodrug (9) of the present invention according to the following reaction formula to give chloramphenicol.
(1) is generated.

【化5】 かかる抗体は触媒抗体[catalytic antibody.Lerne
r,R.Aら:サイエンス(Science),252,659(19
91)]の技術を使って作製される。即ち、本発明の抗
体は下記式で示される加水分解反応の遷移状態アナログ
であるリン酸エステル誘導体(4)をハプテンとして免疫
することによって作製される。
Embedded image Such an antibody is a catalytic antibody. Lerne
r, RA et al .: Science, 252 , 659 (19
91)]. That is, the antibody of the present invention is produced by immunizing a phosphate derivative (4), which is a transition state analog of a hydrolysis reaction represented by the following formula, as a hapten.

【化6】 Embedded image

【0005】本発明抗体の基本構造は、それぞれ相同な
2本のH鎖及び2本のL鎖がジスルフィド結合及び非共
有結合によって結び合わされたペプチド鎖構成を有して
いる。本発明は1つの態様として、H鎖が配列番号1で
示されるアミノ酸配列を含有している抗体、L鎖が配列
番号2で示されるアミノ酸配列を含有している抗体、及
びH鎖が配列番号1の上記アミノ酸配列を含有しかつL
鎖が配列番号2の上記アミノ酸配列を含有している抗体
をも提供するものである。また、本発明は、H鎖におけ
る第1超可変領域のアミノ酸配列が式: Asn Tyr Ala Met Ser で示され、第2超可変領域のアミノ酸配列が式: Ser Ser Gly Gly Ser Ile Tyr Tyr Leu Asp Ser Val Ly
s Gly で示され、そして第3超可変領域のアミノ酸配列が式: Val Ser His Tyr Asp Gly Ser Arg Asp Trp Tyr Phe As
p Val で示される抗体、及びL鎖における第1超可変領域のア
ミノ酸配列が式: Arg Ser Ser Gln Thr Ile Val His Ser Asn Gly Asp Th
r Tyr Leu Asp で示され、第2超可変領域のアミノ酸配列が式: Lys Val Ser Asn Arg Phe で示され、そして第3超可変領域のアミノ酸配列が式: Phe Gln Gly Ser His Val Pro Pro Thr で示される抗体、及びそれらの超可変領域をそれぞれH
鎖及びL鎖に有している抗体をも提供するものである。
[0005] The basic structure of the antibody of the present invention has a peptide chain structure in which two homologous H chains and two homologous L chains are linked by disulfide bonds and non-covalent bonds. In one aspect of the present invention, an antibody in which the H chain contains the amino acid sequence represented by SEQ ID NO: 1, an antibody in which the L chain contains the amino acid sequence represented by SEQ ID NO: 2, and an H chain comprising the amino acid sequence represented by SEQ ID NO: 2 Containing the above amino acid sequence and L
It also provides an antibody whose chain contains the above amino acid sequence of SEQ ID NO: 2. In the present invention, the amino acid sequence of the first hypervariable region in the H chain is represented by the formula: Asn Tyr Ala Met Ser, and the amino acid sequence of the second hypervariable region is represented by the formula: Ser Ser Gly Gly Ser Ile Tyr Tyr Tyr Leu Asp Ser Val Ly
s Gly and the amino acid sequence of the third hypervariable region is of the formula: Val Ser His Tyr Asp Gly Ser Arg Asp Trp Tyr Phe As
The antibody represented by p Val and the amino acid sequence of the first hypervariable region in the L chain have the formula: Arg Ser Ser Gln Thr Ile Val His Ser Asn Gly Asp Th
r Tyr Leu Asp, the amino acid sequence of the second hypervariable region is represented by the formula: Lys Val Ser Asn Arg Phe, and the amino acid sequence of the third hypervariable region is represented by the formula: Phe Gln Gly Ser His Val Pro Pro Thr And their hypervariable regions are designated H
The present invention also provides an antibody having a chain and an L chain.

【0006】上記のリン酸エステル誘導体(4)は下記反
応式1に示す合成経路に従って合成することができる。
The above phosphate derivative (4) can be synthesized according to the synthetic route shown in the following reaction formula 1.

【化7】 即ち、クロラムフェニコール(1)を無水酢酸中で反応さ
せることによって1級水酸基のみを保護したアセチル体
(2)としたのち、N−トリフルオロアセチル−4−アミ
ノベンジルリン酸とピリジン中、N,N−ジシクロヘキ
シルカルボジイミドを縮合剤として反応させ縮合体(3)
を得る。これをアセトン中0.1N水酸化ナトリウムで
アセチル基を脱保護し、目的とするリン酸エステル体
(4)を得る。
Embedded image That is, an acetylated product in which only the primary hydroxyl group is protected by reacting chloramphenicol (1) in acetic anhydride.
After (2), a condensate (3) is obtained by reacting N, N-dicyclohexylcarbodiimide in N-trifluoroacetyl-4-aminobenzylphosphoric acid and pyridine as a condensing agent.
Get. The acetyl group is deprotected with 0.1N sodium hydroxide in acetone, and the desired phosphoric ester is obtained.
Obtain (4).

【0007】次いで、上記のリン酸エステル体(4)に担
体を結合させる準備として、これにジメチルホルムアミ
ド中トリエチルアミンの存在下グルタル酸無水物を反応
させて側鎖部分を付け、末端のカルボン酸とN−ヒドロ
キシスクシミドを反応させて活性化エステル体(6)を得
る(反応式2)。
Next, as preparation for binding the carrier to the above-mentioned phosphoric ester (4), glutaric anhydride is reacted with the carrier in the presence of triethylamine in dimethylformamide to attach a side chain portion, and the carboxylic acid at the terminal is reacted with carboxylic acid. The activated ester (6) is obtained by reacting N-hydroxysuccinide (reaction formula 2).

【化8】 Embedded image

【0008】得られた活性化エステル体(6)をKLH(k
ey hole limpet ヘモシアニン)とリン酸緩衝液(pH7.
4)中で縮合させ抗原とする。免疫はBalb/cマウスに
対してこのKLH縮合体を用いて行なった。10日後2
回目の免疫を行ない、さらに10日後3回目の免疫を行
なった。1ケ月後最終免疫を行ない、それより3日後脾
臓を摘出した。常法[Milstein,Cら、ネイチャー(Na
ture),256,495(1975)]に従って脾臓細胞と
ミエローマ細胞を細胞融合させハイブリドーマを作製し
た。ハプテンとして用いたリン酸エステル(4)に特異的
なモノクローナル抗体を産生するハイブリドーマはBS
A−縮合体を用いた酵素標識免疫吸着アッセイ(ELI
SA)法により選別された。最終的にハプテン結合特異
的な12種のモノクローナル抗体を得た。
The obtained activated ester (6) is converted to KLH ( k
ey hole limpet hemocyanin) and phosphate buffer (pH 7.
4) Condensation in step to form an antigen. Immunization was performed on Balb / c mice using this KLH condensate. 10 days later 2
A third immunization was performed 10 days later, and a third immunization was performed. One month later, final immunization was performed, and three days later, the spleen was removed. Conventional method [Milstein, C et al., Nature (Na
, 256 , 495 (1975)], and spleen cells were fused with myeloma cells to prepare hybridomas. The hybridoma producing a monoclonal antibody specific to the phosphate (4) used as the hapten was BS
Enzyme-labeled immunosorbent assay (ELI) using A-condensate
SA) method. Finally, 12 types of monoclonal antibodies specific for hapten binding were obtained.

【0009】このように、本発明抗体の利用性、可能性
を証明するため、本明細書ではクロラムフェニコールを
使用している。しかし、当業者であれば、別の有用医薬
品を用いても本発明と同様な抗体を作製できることは理
解されよう。また、本発明の抗体が、下記式で示される
反応を特異的に触媒する誘導体を作製するための、原料
物質として利用できる可能性があることも理解されよ
う。
As described above, in this specification, chloramphenicol is used to prove the utility and possibility of the antibody of the present invention. However, it will be understood by those skilled in the art that an antibody similar to the present invention can be produced using another useful drug. It will also be understood that the antibodies of the present invention may be used as a starting material for producing derivatives that specifically catalyze the reaction represented by the following formula.

【化9】 [式中、Rはあらゆる残基を意味する]Embedded image [Wherein, R represents any residue]

【0010】プロドラッグとして用いたエステル誘導体
(9)は下記反応式3に示す合成経路に従って合成され
る。
Ester derivatives used as prodrugs
(9) is synthesized according to the synthesis route shown in the following reaction formula 3.

【化10】 Embedded image

【0011】即ち、クロラムフェニコール(1)をジメチ
ルホルムアミド−ジクロロメタン混合溶媒中とt−ブチ
ルジメチルシリルクロライドと反応させ1級水酸基をシ
リル基で保護したシリル体(7)としたのちN−トリフル
オロアセチル−4−アミノフェニル酢酸と反応させ縮合
体(8)とした。これを酢酸:THF:水の3:1:1の混液
中で脱保護し目的とするエステル誘導体(9)を得た。
That is, chloramphenicol (1) is reacted with t-butyldimethylsilyl chloride in a mixed solvent of dimethylformamide-dichloromethane to obtain a silyl compound (7) in which a primary hydroxyl group is protected with a silyl group, and then N-triol is added. It was reacted with fluoroacetyl-4-aminophenylacetic acid to obtain a condensate (8). This was deprotected in a 3: 1: 1 mixture of acetic acid: THF: water to give the desired ester derivative (9).

【0012】[0012]

【発明の作用および効果】作製された12種類の抗体に
ついてエステル誘導体(9)の加水分解反応に対する触媒
活性を検討した。加水分解によるクロラムフェニコール
の生成量を液体クロマトグラフィー(HPLC)で追跡し
たところ15種の抗体中6種の抗体に触媒活性が観測さ
れた。さらに詳細に反応速度を検討し、触媒反応の速度
論量を決定した。得られた値はKm=64×10-6M、
kcat=0.133min-1であった(実施例15参照)。
Effects and Effects of the Invention The catalytic activity for the hydrolysis reaction of the ester derivative (9) was examined for the 12 kinds of produced antibodies. When the amount of chloramphenicol produced by the hydrolysis was monitored by liquid chromatography (HPLC), catalytic activity was observed in 6 of 15 antibodies. The reaction rate was examined in more detail, and the kinetic amount of the catalytic reaction was determined. The obtained value is Km = 64 × 10 −6 M,
kcat = 0.133 min -1 (see Example 15).

【0013】次に、エステル誘導体(9)からクロラムフ
ェニコール(1)への変換によるプロドラッグの活性化に
ついて、得られた抗体を大腸菌の発育阻害実験によって
試験した。抗体とエステル誘導体の溶液をしみこませた
ロ紙を培地上にのせ、大腸菌と培養したところ、ロ紙の
まわりに発育阻害による阻止円が観測された。比較実験
としてエステル誘導体(9)あるいは抗体だけで同様の実
験をしたところ、阻止円は観測されなかった。以上のこ
とからリン酸エステル(4)をハプテンとして免疫して得
られた抗体はクロラムフェニコールのプロドラッグであ
るエステル誘導体(9)を触媒的に加水分解すること、さ
らにエステル誘導体(9)は本抗体でのみ選択的に加水分
解され大腸菌に存在する加水分解酵素では分解され得な
いことが判明した。ここに、抗体によるプロドラッグ活
性化が世界で初めて証明されたことになる。本発明が証
明した新しいプロドラッグの活性化方法は、クロラムフ
ェニコールだけでなく、今後他の有用な医薬品へと応用
でき、医薬分野での多大な貢献が期待できる。以下に実
施例を挙げ本発明をさらに詳しく説明する。
Next, the resulting antibody was tested for the activation of the prodrug by conversion of the ester derivative (9) to chloramphenicol (1) by a growth inhibition experiment of Escherichia coli. When the paper containing the solution of the antibody and the ester derivative was soaked on the medium and cultured with Escherichia coli, an inhibition circle due to growth inhibition was observed around the paper. When a similar experiment was performed using only the ester derivative (9) or the antibody as a comparative experiment, no inhibition circle was observed. From the above, the antibody obtained by immunization with the phosphate ester (4) as a hapten can catalytically hydrolyze the ester derivative (9), which is a prodrug of chloramphenicol, and furthermore, the ester derivative (9) Was selectively hydrolyzed only by the present antibody and could not be degraded by the hydrolase present in E. coli. Here, activation of a prodrug by an antibody has been proved for the first time in the world. The novel prodrug activation method proved by the present invention can be applied not only to chloramphenicol but also to other useful drugs in the future, and is expected to make a great contribution in the pharmaceutical field. Hereinafter, the present invention will be described in more detail by way of examples.

【0014】[0014]

【実施例】【Example】

実施例1 化合物(2)の合成 クロラムフェニコール化合物(1)(500mg、1.55mm
ol)を無水酢酸(5ml)に懸濁し、100℃で1.5時間攪
拌した。減圧濃縮した後、残渣をジクロロメタンに溶解
し、シリカゲルカラムクロマトにより精製した(溶出溶
液: 酢酸エチル−ヘキサン(1:1))。目的物を含有す
る分画を減圧濃縮し、油状物を得た。収率:335mg
(59%)。
Example 1 Synthesis of Compound (2) Chloramphenicol Compound (1) (500 mg, 1.55 mm
ol) was suspended in acetic anhydride (5 ml) and stirred at 100 ° C. for 1.5 hours. After concentration under reduced pressure, the residue was dissolved in dichloromethane and purified by silica gel column chromatography (eluent: ethyl acetate-hexane (1: 1)). The fraction containing the desired product was concentrated under reduced pressure to obtain an oil. Yield: 335 mg
(59%).

【0015】実施例2 化合物(3)の合成 化合物(2)(200mg、548μmol)をピリジン(5ml)
に懸濁し、N−トリフルオロアセチル−4−アミノベン
ジルリン酸(258mg、1.096mmol)とN,N−ジシク
ロヘキシルカルボジイミド(565mg、2.739mmol)
を加えて40℃で一夜攪拌した。ジシクロヘキシル尿素
を濾過して除き減圧濃縮後、残渣をHPLCにより精製
した(ODSカラム、10×250mm、アセトニトリル
−0.1%トリフルオロ酢酸水溶液(2:3)、流速3ml/
分、検出254mm、保持時間180分)。保持時間18
0分のピークを分取し、凍結乾燥し、目的物を得た。収
量57mg(16%)。質量分析:630(M++1)。
Example 2 Synthesis of compound (3) Compound (2) (200 mg, 548 μmol) was added to pyridine (5 ml).
And N-trifluoroacetyl-4-aminobenzylphosphoric acid (258 mg, 1.096 mmol) and N, N-dicyclohexylcarbodiimide (565 mg, 2.739 mmol)
And stirred at 40 ° C. overnight. After dicyclohexylurea was removed by filtration, concentration was performed under reduced pressure, and the residue was purified by HPLC (ODS column, 10 × 250 mm, acetonitrile-0.1% trifluoroacetic acid aqueous solution (2: 3), flow rate 3 ml /
Min, detection 254 mm, retention time 180 minutes). Retention time 18
The peak at 0 min was collected and freeze-dried to obtain the desired product. Yield 57 mg (16%). Mass spec: 630 (M ++ 1).

【0016】実施例3 化合物(4)の合成 化合物(3)(10mg、15.9μmol)をアセトン(2.5m
l)に溶解し、−20℃に冷却した後、氷冷下0.1N−
水酸化ナトリウム水溶液(2.5ml)を加え、1時間攪拌
した。1N−塩酸で中和した後減圧濃縮した。残渣をH
PLCにより精製した(ODSカラム、10×250m
m、アセトントリル−0.1%トリフルオロ酢酸水溶液、
グラジエント30%−60%アセトニトリル(20分)、
流速3ml/分、検出254mm、保持時間14.8分)。保
持時間14.8分のピークを分取し、凍結乾燥して目的
とした化合物(4)を得た。収量:8.4mg(78%)。質量
分析:588(M++1)。 NMR(δ,ppm):3.18(dd,J=6.5,14.7Hz,1
H)、3.22(dd,J=6.6、14.7Hz,1H)、3.4
9(dd,J=5.9,11.2Hz,1H)、3.71(dd,J=
7.1,11.2Hz,1H)、4.21(m,1H)、5.69(d
d,J=3.6,19.7Hz,1H)、6.22(s,1H)、7.
26,7.48(ABX,J=8.3,2.1Hz,4H)、7.
47、8.11(ABq,J=8.7Hz,4H)。NMRはC
3ODでで測定した。
EXAMPLE 3 Synthesis of Compound (4) Compound (3) (10 mg, 15.9 μmol) was added to acetone (2.5 mM).
l), cooled to -20 ° C, and cooled to 0.1 N- under ice-cooling.
An aqueous sodium hydroxide solution (2.5 ml) was added, and the mixture was stirred for 1 hour. After neutralization with 1N-hydrochloric acid, the mixture was concentrated under reduced pressure. Residue is H
Purified by PLC (ODS column, 10x250m
m, acetone tolyl-0.1% trifluoroacetic acid aqueous solution,
Gradient 30% -60% acetonitrile (20 minutes),
Flow rate 3 ml / min, detection 254 mm, retention time 14.8 minutes). The peak having a retention time of 14.8 minutes was collected and freeze-dried to obtain the desired compound (4). Yield: 8.4 mg (78%). Mass spec: 588 (M ++ 1). NMR (δ, ppm): 3.18 (dd, J = 6.5, 14.7 Hz, 1
H), 3.22 (dd, J = 6.6, 14.7 Hz, 1H), 3.4
9 (dd, J = 5.9, 11.2 Hz, 1H), 3.71 (dd, J =
7.1, 11.2 Hz, 1H), 4.21 (m, 1H), 5.69 (d
d, J = 3.6, 19.7 Hz, 1H), 6.22 (s, 1H), 7.
26, 7.48 (ABX, J = 8.3, 2.1 Hz, 4H), 7.
47, 8.11 (ABq, J = 8.7 Hz, 4H). NMR is C
Measured at D 3 OD.

【0017】実施例4 化合物(5)の合成 化合物(4)(20mg、34.1μmol)をジメチルホルムア
ミド(3ml)に溶解し、グルタル酸無水物(37.6mg、3
30μmol)とトリエチルアミン(116μl、830μmo
l)を加えて80℃で2時間攪拌した。反応液をHPLC
により精製した(ODSカラム、10×250mm、アセ
トニトリル−0.1%トリフルオロ酢酸水溶液(2:3)、
流速3ml/分、検出254mm、保持時間15.1分)。保
持時間15.1分のピークを分取し、凍結乾燥して目的
物を得た。収量:20.9mg(87%)。質量分析:702
(M++1)。
Example 4 Synthesis of Compound (5) Compound (4) (20 mg, 34.1 μmol) was dissolved in dimethylformamide (3 ml), and glutaric anhydride (37.6 mg,
30 μmol) and triethylamine (116 μl, 830 μmo
l) was added and the mixture was stirred at 80 ° C for 2 hours. HPLC the reaction solution
(ODS column, 10 × 250 mm, acetonitrile-0.1% trifluoroacetic acid aqueous solution (2: 3),
Flow rate 3 ml / min, detection 254 mm, retention time 15.1 minutes). The peak having a retention time of 15.1 minutes was collected and freeze-dried to obtain the desired product. Yield: 20.9 mg (87%). Mass spectrometry: 702
(M ++ 1).

【0018】実施例5 化合物(6)の合成 化合物(5)(9mg、12.8μmol)を乾燥させたアセトニ
トリル(2ml)に懸濁し、N−ヒドロキシスクシミド(1.
8mg、15.4μmol)とN,N−ジシクロヘキシルカルボ
ジイミド(7.9mg、38.5μmol)を加え、室温で1時
間攪拌した。ジシクロヘキシル尿素を濾過して除いた後
減圧濃縮し、HPLCにより精製した(ODSカラム、
10×250mm、アセトニトリル−0.1%トリフルオ
ロ酢酸水溶液(1:1)、流速3ml/分、検出254mm、
保持時間11.2分)。保持時間11.2分のピークを分
取し、凍結乾燥して目的とする化合物(6)を得た。収
量:2.4mg(24%)。質量分析:799(M++1)。
Example 5 Synthesis of Compound (6) Compound (5) (9 mg, 12.8 μmol) was suspended in dried acetonitrile (2 ml), and N-hydroxysuccinimide (1.
8 mg, 15.4 μmol) and N, N-dicyclohexylcarbodiimide (7.9 mg, 38.5 μmol) were added, and the mixture was stirred at room temperature for 1 hour. After dicyclohexylurea was removed by filtration, the mixture was concentrated under reduced pressure, and purified by HPLC (ODS column,
10 × 250 mm, acetonitrile-0.1% trifluoroacetic acid aqueous solution (1: 1), flow rate 3 ml / min, detection 254 mm,
Retention time 11.2 minutes). The peak having a retention time of 11.2 minutes was collected and freeze-dried to obtain the desired compound (6). Yield: 2.4 mg (24%). Mass spec: 799 (M ++ 1).

【0019】実施例6 ハプテンと担体タンパク質との
縮合 担体タンパク質、KLH(6.6mg)をリン酸緩衝液(pH
7.4、1.32ml)に溶解し、化合物(6)(3.3mg)のジ
メチルホルムアミド溶液を加え、室温で一夜穏やかに攪
拌した。ゲル濾過により精製し、タンパク質量をブラッ
ドフォード法により決定した(濃度タンパク質1.1mg/
ml)。同様に、BSAを担体タンパク質として用いて縮
合体を作製し、得られた縮合体は、KLH縮合体によっ
て生成される抗体の抗体価を測定するELISA法に使
用した。
Example 6: Hapten and carrier protein
Condensation carrier protein, KLH (6.6 mg) was added to phosphate buffer (pH
7.4 (1.32 ml), a solution of compound (6) (3.3 mg) in dimethylformamide was added, and the mixture was gently stirred at room temperature overnight. Purification was performed by gel filtration, and the amount of protein was determined by the Bradford method (concentration of protein:
ml). Similarly, a condensate was prepared using BSA as a carrier protein, and the obtained condensate was used in an ELISA method for measuring the antibody titer of an antibody produced by the KLH condensate.

【0020】実施例7 化合物(7)の合成 化合物(1)(4g、12.38mg)を乾燥させたジメチルホ
ルムアミドとジクロロメタンの混合溶媒(5ml/100m
l)に溶解し、t−ブチルジメチルシリルクロライド(2.
2g、14.85mmol)とトリエチルアミン(2.07ml、
14.85mmol)とジメチルアミノピリジン(75.5mg、
620μmol)を加え室温で2.5時間攪拌した。反応液
を分液ロートによりクロロホルムで抽出し、水洗して硫
酸マグネシウムで乾燥した。減圧濃縮した後シリカゲル
カラムクロマトで精製した(溶出溶液:酢酸エチル−ヘ
キサン(1:4))。目的物の分画を減圧濃縮し、白色固体
を得た。収量:4.3g(80%)。質量分析:437
(M+)。
Example 7 Synthesis of Compound (7) Compound (1) (4 g, 12.38 mg) was dried in a mixed solvent of dimethylformamide and dichloromethane (5 ml / 100 m2).
l) and dissolved in t-butyldimethylsilyl chloride (2.
2 g, 14.85 mmol) and triethylamine (2.07 ml,
14.85 mmol) and dimethylaminopyridine (75.5 mg,
620 μmol) and stirred at room temperature for 2.5 hours. The reaction solution was extracted with chloroform using a separating funnel, washed with water and dried over magnesium sulfate. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (eluent: ethyl acetate-hexane (1: 4)). The fraction of the desired product was concentrated under reduced pressure to obtain a white solid. Yield: 4.3 g (80%). Mass spec: 437
(M + ).

【0021】実施例8 化合物(8)の合成 N−トリフルオロアセチル−4−アミノフェニル酢酸
(319.9mg、1.295mmol)を乾燥させたジメチルホ
ルムアミドとジクロロメタンの混合溶媒(2ml/20ml)
に溶解し、N,N−ジシクロヘキシルカルボジイミド(1
67mg、809μmol)を加え室温で1.5時間攪拌し
た。ジシクロヘキシル尿素を濾過して除き、濾液に化合
物(7)(141.5mg、324μmol)とトリエチルアミン
(135.8μl、971μmol)とジメチルアミノピリジ
ン(7.9mg、64.8μmol)を加え、室温で2時間攪拌
した。減圧濃縮した後、シリカゲルカラムクロマトによ
り精製した(溶出溶液:酢酸エチル−ヘキサン(1:2))。
目的物の分画を減圧濃縮し、白色固体を得た。収量:1
32.7mg(62%)。質量分析:665(M+)。
Example 8 Synthesis of compound (8) N-trifluoroacetyl-4-aminophenylacetic acid
(319.9 mg, 1.295 mmol) dried solvent mixture of dimethylformamide and dichloromethane (2 ml / 20 ml)
In N, N-dicyclohexylcarbodiimide (1
(67 mg, 809 μmol) and stirred at room temperature for 1.5 hours. The dicyclohexyl urea was removed by filtration, and the compound (7) (141.5 mg, 324 μmol) and triethylamine were added to the filtrate.
(135.8 μl, 971 μmol) and dimethylaminopyridine (7.9 mg, 64.8 μmol) were added, and the mixture was stirred at room temperature for 2 hours. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (eluent: ethyl acetate-hexane (1: 2)).
The fraction of the desired product was concentrated under reduced pressure to obtain a white solid. Yield: 1
32.7 mg (62%). Mass spec: 665 (M + ).

【0022】実施例9 化合物(9)の合成 化合物(8)(482mg、723μmol)のTHF溶液5ml
に水0.5ml及び酢酸15mlを加えたのち、温浴(50
℃)中で5時間攪拌した。その後、余剰の溶媒を減圧下
留去し残渣をシリカゲルカラムクロマトグラフィー(溶
出溶液:酢酸エチル:ヘキサン=1:1)にて精製し、目的
としたエステル誘導体(9)を得た。収量:221.5mg
(56%)。質量分析:551(M−H)-。 NMR(δ,ppm):3.46(dd,J=5.3,11.4Hz,1
H)、3.60(dd,J=5.9,11.4Hz,1H)、3.7
6(d,J=16.2Hz,1H)、3.77(d,J=16.2H
z,1H)、4.33(m,1H)、6.10(d,J=5.5Hz,
1H)、6.24(s,1H)、7.32、7.60(ABq,J
=8.41Hz,4H)、7.50、8.16(ABq,8.74
Hz,4H)。NMRはCD3ODで測定した。
Example 9 Synthesis of compound (9) 5 ml of a THF solution of compound (8) (482 mg, 723 μmol)
After adding 0.5 ml of water and 15 ml of acetic acid to the
C) for 5 hours. Thereafter, the excess solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: ethyl acetate: hexane = 1: 1) to obtain the desired ester derivative (9). Yield: 221.5 mg
(56%). Mass spec: 551 (M−H) . NMR (δ, ppm): 3.46 (dd, J = 5.3, 11.4 Hz, 1
H), 3.60 (dd, J = 5.9, 11.4 Hz, 1H), 3.7
6 (d, J = 16.2 Hz, 1 H), 3.77 (d, J = 16.2 H
z, 1H), 4.33 (m, 1H), 6.10 (d, J = 5.5 Hz,
1H), 6.24 (s, 1H), 7.32, 7.60 (ABq, J
= 8.41 Hz, 4H), 7.50, 8.16 (ABq, 8.74
Hz, 4H). NMR was measured by CD 3 OD.

【0023】実施例10モノクローナル抗体の調製: 免疫 抗原(KLH縮合体)50μg/50μl生理食塩水を等量
の完全フロイントアジュバントと混合し、その混合液を
Balb/cマウス(4週令、雌)に腹腔内注射した。10日
後、抗原50μg/50μl生理食塩水と等量の不完全フ
ロイントアジュバントの混合液で追加免疫を行ない、さ
らに10日後追加免疫を行なった。その7日後にマウス
の尾静脈より採血し、抗体価をBSA−縮合体を用いた
酵素標識免疫吸着アッセイ(ELISA)法(二次抗体
ビオチン化抗マウスIgG抗体、アビジン、ビオチン化
ペルオキシダーゼ)により測定し、1:106抗体価の値
を得た。2回目の追加免疫より1ケ月後に抗原100μ
g/100μl生理食塩水を尾静脈より投与(最終免疫)し
た。
Example 10 Preparation of Monoclonal Antibody: Immunization antigen (KLH condensate) 50 μg / 50 μl physiological saline was mixed with an equal volume of complete Freund's adjuvant, and the resulting mixture was used as a Balb / c mouse (four weeks old, female). Was injected intraperitoneally. Ten days later, booster immunization was performed with a mixture of 50 μg / 50 μl of physiological saline and an equal volume of incomplete Freund's adjuvant, and further 10 days later, booster immunization was performed. Seven days later, blood was collected from the tail vein of the mouse, and the antibody titer was determined by enzyme-linked immunosorbent assay (ELISA) using a BSA-condensate (secondary antibody).
It was measured with a biotinylated anti-mouse IgG antibody, avidin, biotinylated peroxidase) to obtain a value of 1:10 6 antibody titer. One month after the second boost, 100 μg of antigen
g / 100 μl physiological saline was administered via the tail vein (final immunization).

【0024】実施例11ハイブリドーマの作製 最終免疫より3日後にマウスより脾臓を摘出し、次いで
108個の脾臓細胞と2.5×107個のミエローマ細胞
(×63/Ag8.653)とをポリエチレングリコールを
用いて細胞融合し、105個/ウェルのフィーダー細胞
(マウス胸腺細胞)を含むHAT選択培地(0.1mMヒポ
キサンチン、0.4μMアミノプテリン、0.016mM
チミジン、10%ウシ胎児血清RPMI培地)、96ウ
ェルプレート8枚を用いて選別を行なった(37℃ 1
0%炭酸ガス)。8〜14日後にコロニーが現われて来
た。ウェルより上清を取りELISA法によりスクリー
ニングを行なった結果、165個の陽性ウェルが見ら
れ、その内45ウェルよりクローニングを行ない、36
株のクローンを得た。抗マウスIgG H鎖抗体を用いて
ELISA法を行なった結果、36株全てのクローンが
IgGを産生していた。ELISAの際にハプテンを加
えた拮抗阻害実験の結果、36株から産生される抗体の
うち28種の抗体がハプテンに結合した。
Example 11 Preparation of Hybridoma Three days after the final immunization, the spleen was removed from the mouse, and then 10 8 spleen cells and 2.5 × 10 7 myeloma cells were extracted.
(× 63 / Ag8.653) and cell fusion using polyethylene glycol, 10 5 cells / well of feeder cells
HAT selection medium containing (mouse thymocytes) (0.1 mM hypoxanthine, 0.4 μM aminopterin, 0.016 mM
Selection was carried out using thymidine, 10% fetal bovine serum RPMI medium) and eight 96-well plates (37 ° C. 1
0% carbon dioxide). Colonies appeared after 8-14 days. The supernatant was removed from the wells and screened by ELISA. As a result, 165 positive wells were found, and cloning was performed from 45 wells.
A clone of the strain was obtained. As a result of performing ELISA using an anti-mouse IgG heavy chain antibody, all 36 clones produced IgG. As a result of a competitive inhibition experiment in which a hapten was added during the ELISA, 28 of the antibodies produced from the 36 strains bound to the hapten.

【0025】実施例12ハイブリドーマの培養及びモノクローナル抗体の精製 12種のハイブリドーマを完全培地(10%ウシ胎児血
清、RPMI培地)でそれぞれ7日間培養し、1×107
個/500μl生理食塩水の各細胞懸濁液を、2週間前
に500μlのプリスタンを投与したBalb/cマウス(8
週齢 雌)に腹腔内注射し、次いで2週間後腹水を3〜
5mlずつ採取した。各腹水の遠心上清を等量の硫安飽和
水溶液で硫安沈澱し、次にS−セファロースカラムによ
る陽イオン交換クロマトグラフィー及びプロテインGカ
ラムによるアフィニティークロマトグラフィーを行な
い、それぞれ精製抗体10〜20mgを得た。
Example 12 Culture of Hybridoma and Purification of Monoclonal Antibody Twelve hybridomas were cultured in complete medium (10% fetal bovine serum, RPMI medium) for 7 days each, and 1 × 10 7
Balb / c mice (8 weeks) received 500 μl of pristane two weeks ago.
Week-old female), injected intraperitoneally, and 2 weeks later the ascites was
Each 5 ml was collected. The centrifugal supernatant of each ascites was precipitated with ammonium sulfate in an equal volume of a saturated aqueous solution of ammonium sulfate, and then subjected to cation exchange chromatography using an S-Sepharose column and affinity chromatography using a protein G column to obtain 10 to 20 mg of purified antibody, respectively. .

【0026】実施例13触媒活性の測定 実施例12により得た12種の精製抗体の各22.2μ
M溶液(55.6mM トリス緩衝溶液、pH8.0)90μ
lを室温に放置する。これに基質、化合物(9)のジメチ
ルスルホキシド溶液(25mM)10μlを加え、すばやく
振盪したのち、HPLCでクロラムフェニコールの吸収
(278nm)の増加をそれぞれ4時間追跡した(ODSカ
ラム、4.6×250mm、アセトニトリル−0.1%トリ
フルオロ酢酸水溶液(1:1)、流速1ml/分、保持時間
4.5分)。これにより触媒活性を示す6種の抗体を特定
し、その中で最も強い活性を有している抗体を6D9と
命名した。尚、抗体6D9を産生するハイブリドーマは
工業技術院微生物工業技術研究所に寄託されている(寄
託日:平成4年11月27日、受託番号:微工研菌寄第
13308号)。
Example 13 Determination of catalytic activity 22.2 μm of each of the 12 purified antibodies obtained in Example 12
M solution (55.6 mM Tris buffer solution, pH 8.0) 90 μ
Leave at room temperature. 10 μl of a dimethyl sulfoxide solution (25 mM) of the substrate and compound (9) was added thereto, and the mixture was quickly shaken. Then, absorption of chloramphenicol by HPLC was performed.
The increase in (278 nm) was followed for 4 hours (ODS column, 4.6 × 250 mm, acetonitrile-0.1% trifluoroacetic acid aqueous solution (1: 1), flow rate 1 ml / min, retention time 4.5 minutes). As a result, six types of antibodies exhibiting catalytic activity were specified, and the antibody having the strongest activity was named 6D9. The hybridoma producing antibody 6D9 has been deposited with the Institute of Microbial Industry and Technology, National Institute of Advanced Industrial Science and Technology (Deposit date: November 27, 1992, accession number: Microtechnical Laboratory No. 13308).

【0027】実施例14抗体6D9のさらなる調査 実施例13にて入手した6D9抗体のアミノ酸配列決定
を行った。抗体6D9を産生するハイブリドーマからm
RNAをクローニングし、それからcDNAを作成する
ことで、6D9抗体をコードしているヌクレオチド配列
を配列決定した。得られた結果を図1及び図2に示す
(それぞれの配列は配列番号3及び配列番号4に一致す
る)。図中の下線部分はcDNAをPCR法に供する際に
用いたプライマー部位である。次に、このヌクレオチド
配列からアミノ酸を推定することで、6D9抗体のアミ
ノ酸配列を決定した。得られた結果を図3、及び図4に
示す(それぞれの配列は配列番号1及び配列番号2と一
致する)。図中、CDR−1、CDR−2及びCDR−
3はそれぞれ第1超可変領域、第2超可変領域、及び第
3超可変領域を示している。なお、図3に記載したヌク
レオチド配列は、H鎖のFd断片の大部分を占めている
アミノ酸配列である。
Example 14 Further Investigation of Antibody 6D9 The amino acid sequence of the 6D9 antibody obtained in Example 13 was determined. M from hybridoma producing antibody 6D9
The nucleotide sequence encoding the 6D9 antibody was sequenced by cloning the RNA and generating cDNA from it. The obtained results are shown in FIGS.
(Each sequence corresponds to SEQ ID NO: 3 and SEQ ID NO: 4). The underlined portions in the figure are the primer sites used when the cDNA was subjected to the PCR method. Next, the amino acid sequence of the 6D9 antibody was determined by estimating the amino acid from this nucleotide sequence. The obtained results are shown in FIG. 3 and FIG. 4 (the respective sequences correspond to SEQ ID NO: 1 and SEQ ID NO: 2). In the figure, CDR-1, CDR-2 and CDR-
Reference numeral 3 denotes a first hypervariable region, a second hypervariable region, and a third hypervariable region, respectively. The nucleotide sequence described in FIG. 3 is an amino acid sequence that occupies most of the Fd fragment of the H chain.

【0028】実施例15速度論量の決定 抗体6D9の2.2μM溶液(55.6mMトリス緩衝溶
液、pH8.0)90μlを恒温槽で30℃に保つ。これに
基質の各種濃度(0.5mM、0.75mM、1mM、1.2
5mM、1.5mM)のジメチルスルホキシド溶液10μl
を加え、すばやく振盪したのち、HPLCでクロラムフ
ェニコール吸収(278nm)の増加を80分間追跡した
(ODSカラム、4.6×250mm、アセトニトリル−
0.1%トリフルオロ酢酸水溶液(1:1)、流速1ml/
分、保持時間4.5分)。得られた結果より抗体6D9の
基質に対するKm値を64×10-6M、kcat値を0.1
33min-1と決定した。
Example 15 Determination of Kinetic Amount 90 μl of a 2.2 μM solution of antibody 6D9 (55.6 mM Tris buffer, pH 8.0) is kept at 30 ° C. in a thermostat. This is followed by various concentrations of the substrate (0.5 mM, 0.75 mM, 1 mM, 1.2 mM).
10 mM dimethyl sulfoxide solution (5 mM, 1.5 mM)
Was added, and the mixture was shaken quickly, and the increase in chloramphenicol absorption (278 nm) was monitored by HPLC for 80 minutes.
(ODS column, 4.6 x 250 mm, acetonitrile-
0.1% trifluoroacetic acid aqueous solution (1: 1), flow rate 1 ml /
Min, retention time 4.5 minutes). From the results obtained, the Km value for the substrate of antibody 6D9 was 64 × 10 −6 M and the kcat value was 0.1.
It was determined to be 33 min -1 .

【0029】実施例16バイオアッセイ 45℃で保温したLB寒天培地(0.7%アガロース、p
H8.0)と枯草菌(.subtilis ISW1214)を混
ぜ、LB寒天プレート(1.5%寒天pH8.0)上に重層
した。寒天が固まった後、ペーパーディスク(6mm径)を
置きそれに10μlの20μM抗体(6D9)と10μlの
100mM基質(エステル誘導体)または10μlの20μ
M抗体(6D9)または10μlの100mM基質(エステ
ル誘導体)を染み込ませ、37℃で一晩培養した。その
結果、抗体(6D9)または基質(エステル誘導体)だけを
染み込ませたペーパーディスクの周りには増殖阻止円は
出来なかったが、抗体と基質(エステル誘導体)を同時に
染み込ませた場合には増殖阻止円が現われた。同様の実
験を大腸菌(.coli XLI−Blue)でも行ない、両者
を同時に染み込ませた場合のみの増殖阻止円を確認し
た。阻止円の径よりクロラムフェニコールの生成量は
0.7mMと算定された。
Example 16 Bioassay LB agar medium (0.7% agarose, p.
H8.0) and mixed with Bacillus subtilis (B. Subtilis ISW1214), was overlaid on LB agar plates (1.5% agar pH 8.0). After the agar has set, place a paper disc (6 mm diameter) on which 10 μl of 20 μM antibody (6D9) and 10 μl of 100 mM substrate (ester derivative) or 10 μl of 20 μl
M antibody (6D9) or 10 μl of 100 mM substrate (ester derivative) was infiltrated and cultured at 37 ° C. overnight. As a result, a growth inhibition circle could not be formed around the paper disk impregnated with only the antibody (6D9) or the substrate (ester derivative), but the growth inhibition was not achieved when the antibody and the substrate (ester derivative) were simultaneously impregnated. A circle has appeared. A similar experiment Escherichia coli (E. Coli XLI-Blue), even with no line, confirmed the growth inhibition circle of only when impregnated both at the same time. The amount of chloramphenicol produced was calculated to be 0.7 mM from the diameter of the inhibition circle.

【0030】[0030]

【配列表】[Sequence list]

配列番号:1 配列の長さ:222 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Ala Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val Val Ser Ile Ser Ser Gly Gly Ser Ile Tyr Tyr Leu Asp Ser Val Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ala Arg Asn Ile Leu Tyr Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Phe Cys Ala Arg Val Ser His Tyr Asp Gly Ser Arg Asp Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Thr Ser SEQ ID NO: 1 Sequence length: 222 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Sequence Leu Glu Gly Gly Gly Gly Gly Gly G Phe Ser Asn Tyr Ala Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val Val Ser Ile Ser Ser Gly Gly Ser Ile Tyr Tyr Leu Asp Ser Val Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ala Arg Asn Ile Leu Tyr Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Phe Cys Ala Arg Val Ser His Tyr Asp Gly Ser Arg Asp Trp Tyr Phe Asp Val Trp Gly Ala Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Thr Ser

【0031】配列番号:2 配列の長さ:219 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Glu Leu Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Thr Ile Val His Ser Asn Gly Asp Thr Tyr Leu Asp Trp Phe Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu CysSEQ ID NO: 2 Sequence length: 219 Sequence type: amino acid Topology: linear Sequence type: peptide sequence Glu Leu Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Thr Ile Val His Ser Asn Gly Asp Thr Tyr Leu Asp Trp Phe Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile V al Lys Ser Phe Asn Arg Asn Glu Cys

【0032】配列番号:3 配列の長さ:666 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列 10 20 30 40 50 60 CTCGAGTCTG GGGGAGGCTT AGTGAAGCCT GGAGGGTCCC TGAAACTCTC CTGTGCAGCC GAGCTCAGAC CCCCTCCGAA TCACTTCGGA CCTCCCAGGG ACTTTGAGAG GACACGTCGG 70 80 90 100 110 120 TCTGGATTCA CTTTCAGTAA CTATGCCATG TCTTGGGTTC GTCAGACTCC AGAGAAGAGG AGACCTAAGT GAAAGTCATT GATACGGTAC AGAACCCAAG CAGTCTGAGG TCTCTTCTCC 130 140 150 160 170 180 CTGGAGTGGG TCGTATCCAT TAGTAGTGGT GGTTCCATTT ACTATCTGGA CAGTGTGAAG GACCTCACCC AGCATAGGTA ATCATCACCA CCAAGGTAAA TGATAGACCT GTCACACTTC 190 200 210 220 230 240 GGCCGATTCA CCGTCTCCAG AGATAATGCC AGAAACATCC TGTACCTGCA AATGACCAGT CCGGCTAAGT GGCAGAGGTC TCTATTACGG TCTTTGTAGG ACATGGACGT TTACTGGTCA 250 260 270 280 290 300 CTGAGGTCTG AGGACACGGC CATGTATTTC TGTGCAAGAG TCTCCCATTA CGACGGTAGT GACTCCAGAC TCCTGTGCCG GTACATAAAG ACACGTTCTC AGAGGGTAAT GCTGCCATCA 310 320 330 340 350 360 CGCGACTGGT ACTTCGATGT CTGGGGCGCA GGGACCTCGG TCACCGTCTC CTCAGCCAAA GCGCTGACCA TGAAGCTACA GACCCCGCGT CCCTGGAGCC AGTGGCAGAG GAGTCGGTTT 370 380 390 400 410 420 ACGACACCCC CATCTGTCTA TCCACTGGCC CCTGGATCTG CTGCCCAAAC TAACTCCATG TGCTGTGGGG GTAGACAGAT AGGTGACCGG GGACCTAGAC GACGGGTTTG ATTGAGGTAC 430 440 450 460 470 480 GTGACCCTGG GATGCCTGGT CAAGGGCTAT TTCCCTGAGC CAGTGACAGT GACCTGGAAC CACTGGGACC CTACGGACCA GTTCCCGATA AAGGGACTCG GTCACTGTCA CTGGACCTTG 490 500 510 520 530 540 TCTGGATCCC TGTCCAGCGG TGTGCACACC TTCCCAGCTG TCCTGCAGTC TGACCTCTAC AGACCTAGGG ACAGGTCGCC ACACGTGTGG AAGGGTCGAC AGGACGTCAG ACTGGAGATG 550 560 570 580 590 600 ACTCTGAGCA GCTCAGTGAC TGTCCCCTCC AGCACCTGGC CCAGCGAGAC CGTCACCTGC TGAGACTCGT CGAGTCACTG ACAGGGGAGG TCGTGGACCG GGTCGCTCTG GCAGTGGACG 610 620 630 640 650 660 AACGTTGCCC ACCCGGCCAG CAGCACCAAG GTGGACAAGA AAATTGTGCC CAGGGATTGT TTGCAACGGG TGGGCCGGTC GTCGTGGTTC CACCTGTTCT TTTAACACGG GTCCCTAACA ACTAGT TGATCASEQ ID NO: 3 Sequence length: 666 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: cDNA to mRNA sequence 10 20 30 40 50 60 CTCGAGTCTG GGGGAGGCTT AGTGAAGCCT GGAGGGTCCC TGAAACTCTC CTGTGCAGCC GAGCTCAGAC CCCCTCCGAA TCACTTCGGA CCTCCCAGGG ACTTTGAGAG GACACGTCGG 70 80 90 100 110 120 TCTGGATTCA CTTTCAGTAA CTATGCCATG TCTTGGGTTC GTCAGACTCC AGAGAAGAGG AGACCTAAGT GAAAGTCATT GATACGGTAC AGAACCCAAG CAGTCTGAGG TCTCTTCTCC 130 140 150 160 170 180 CTGGAGTGGG TCGTATCCAT TAGTAGTGGT GGTTCCATTT ACTATCTGGA CAGTGTGAAG GACCTCACCC AGCATAGGTA ATCATCACCA CCAAGGTAAA TGATAGACCT GTCACACTTC 190 200 210 220 230 240 GGCCGATTCA CCGTCTCCAG AGATAATGCC AGAAACATCC TGTACCTGCA AATGACCAGT CCGGCTAAGT GGCAGAGGTC TCTATTACGG TCTTTGTAGG ACATGGACGT TTACTGGTCA 250 260 270 280 290 300 CTGAGGTCTG AGGACACGGC CATGTATTTC TGTGCAAGAG TCTCCCATTA CGACGGTAGT GACTCCAGAC TCCTGTGCCG GTACATAAAG ACACGTTCTC AGAGGGTAAT GCTGCCATCA 310 320 330 340 350 360 CGCGACTGGT ACTTCGATGT CTGGGGC GCA GGGACCTCGG TCACCGTCTC CTCAGCCAAA GCGCTGACCA TGAAGCTACA GACCCCGCGT CCCTGGAGCC AGTGGCAGAG GAGTCGGTTT 370 380 390 400 410 420 ACGACACCCC CATCTGTCTA TCCACTGGCC CCTGGATCTG CTGCCCAAAC TAACTCCATG TGCTGTGGGG GTAGACAGAT AGGTGACCGG GGACCTAGAC GACGGGTTTG ATTGAGGTAC 430 440 450 460 470 480 GTGACCCTGG GATGCCTGGT CAAGGGCTAT TTCCCTGAGC CAGTGACAGT GACCTGGAAC CACTGGGACC CTACGGACCA GTTCCCGATA AAGGGACTCG GTCACTGTCA CTGGACCTTG 490 500 510 520 530 540 TCTGGATCCC TGTCCAGCGG TGTGCACACC TTCCCAGCTG TCCTGCAGTC TGACCTCTAC AGACCTAGGG ACAGGTCGCC ACACGTGTGG AAGGGTCGAC AGGACGTCAG ACTGGAGATG 550 560 570 580 590 600 ACTCTGAGCA GCTCAGTGAC TGTCCCCTCC AGCACCTGGC CCAGCGAGAC CGTCACCTGC TGAGACTCGT CGAGTCACTG ACAGGGGAGG TCGTGGACCG GGTCGCTCTG GCAGTGGACG 610 620 630 640 650 660 AACGTTGCCC ACCCGGCCAG CAGCACCAAG GTGGACAAGA AAATTGTGCC CAGGGATTGT TTGCAACGGG TGGGCCGGTC GTCGTGGTTC CACCTGTTCT TTTAACACGG GTCCCTAACA ACTAGT TGATCA

【0033】配列番号:4 配列の長さ:666 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列 10 20 30
40 50 60 GAGCTCGTGA TGACCCAGAC TCCACTCTCC CTG
CCTGTCA GTCTTGGAGA TCAAGCCTCC CTCGAGCACT ACTGGGTCTG AGGTGAGAGG GAC
GGACAGT CAGAACCTCT AGTTCGGAGG 70 80 90
100 110 120 ATCTCTTGCA GATCTAGTCA GACCATTGTA CAT
AGTAATG GAGACACGTA TTTAGATTGG TAGAGAACGT CTAGATCAGT CTGGTAACAT GTA
TCATTAC CTCTGTGCAT AAATCTAACC 130 140 150
160 170 180 TTCCTGCAGA AACCAGGCCA GTCTCCAAAG CTC
CTGATCT ACAAAGTTTC CAACCGATTT AAGGACGTCT TTGGTCCGGT CAGAGGTTTC GAG
GACTAGA TGTTTCAAAG GTTGGCTAAA 190 200 210
220 230 240 TCTGGGGTCC CAGACAGGTT CAGTGGCAGT GGA
TCAGGGA CAGATTTCAC ACTCAAGATC AGACCCCAGG GTCTGTCCAA GTCACCGTCA CCT
AGTCCCT GTCTAAAGTG TGAGTTCTAG 250 260 270
280 290 300 AGCAGAGTGG AGGCTGAGGA TCTGGGAGTT TAT
TACTGCT TTCAAGGTTC ACATGTTCCT TCGTCTCACC TCCGACTCCT AGACCCTCAA ATA
ATGACGA AAGTTCCAAG TGTACAAGGA 310 320 330
340 350 360 CCGACGTTCG GTGGAGGCAC CAAGTTGGAA ATC
AAACGGG CTGATGCTGC ACCAACTGTA GGCTGCAAGC CACCTCCGTG GTTCAACCTT TAG
TTTGCCC GACTACGACG TGGTTGACAT 370 380 390
400 410 420 TCCATCTTCC CACCATCCAG TGAGCAGTTA ACA
TCTGGAG GTGCCTCAGT CGTGTGCTTC AGGTAGAAGG GTGGTAGGTC ACTCGTCAAT TGT
AGACCTC CACGGAGTCA GCACACGAAG 430 440 450
460 470 480 TTGAACAACT TCTACCCCAA AGACATCAAT GTC
AAGTGGA AGATTGATGG CAGTGAACGA AACTTGTTGA AGATGGGGTT TCTGTAGTTA CAG
TTCACCT TCTAACTACC GTCACTTGCT 490 500 510
520 530 540 CAAAATGGCG TCCTGAACAG TTGGACTGAT CAG
GACAGCA AAGACAGCAC CTACAGCATG GTTTTACCGC AGGACTTGTC AACCTGACTA GTC
CTGTCGT TTCTGTCGTG GATGTCGTAC 550 560 570
580 590 600 AGCAGCACCC TCACGTTGAC CAAGGACGAG TAT
GAACGAC ATAACAGCTA TACCTGTGAG TCGTCGTGGG AGTGCAACTG GTTCCTGCTC ATA
CTTGCTG TATTGTCGAT ATGGACACTC 610 620 630
640 650 660 GCCACTCACA AGACATCAAC TTCACCCATT GTC
AAGAGCT TCAACAGGAA TGAGTGTTAA CGGTGAGTGT TCTGTAGTTG AAGTGGGTAA CAG
TTCTCGA AGTTGTCCTT ACTCACAATT TTCTAGA AAGATCT
SEQ ID NO: 4 Sequence length: 666 Sequence type: number of nucleic acid chains: double-stranded Topology: linear Sequence type: cDNA to mRNA sequence 10 20 30
40 50 60 GAGCTCGTGA TGACCCAGAC TCCACTCTCC CTG
CCTGTCA GTCTTGGAGA TCAAGCCTCC CTCGAGCACT ACTGGGTCTG AGGTGGAGAGG GAC
GGACAGT CAGAACCCTCT AGTTCGGAGG 70 80 90
100 110 120 ATCTCTTGCA GATCTAGTCA GACCATTGTA CAT
AGTAATG GAGACACGTA TTTAGATTGG TAGAGAACGT CTAGATCAGT CTGGTAACAT GTA
TCATTAC CCTTGTGCAT AAATCTAACC 130 140 150
160 170 180 TTCCTGCGAGA AACCAGGCCA GTTCCCAAAG CTC
CTGATCT ACAAAGTTTTC CAACCGATTT AAGGACGTCT TTGGTCCGGT CAGAGGTTTC GAG
GACTTAGA TGTTTCAAAAG GTTGGCTAAA 190 200 210
220 230 240 TCTGGGGTCC CAGACAGGTT CAGTGGCAGT GGA
TCAGGGA CAGATTTCAC ACTCAAGATC AGACCCCAGGG GTCTGTCCAA GTTCACCGTCA CCT
AGTCCCT GTTCAAAGTG TGAGTCTAG 250 260 270
280 290 300 AGCAGAGTGG AGGCTGAGGGA TCTGGGAGGTTT TAT
TACTGCT TTCAAGGTTC ACATGTTCCT TCGTCTCACC TCCGACTCCT AGACCCTCAA ATA
ATGACGA AAGTTTCCAAG TGTACAAGGA 310 320 330
340 350 360 CCGACGTTCG GTGGAGGCAC CAAGTTTGGAA ATC
AAACGGG CTGATGCTGC ACCAACTGTA GGCTGCAAGC CACCTCCGTGG GTTCAACCTT TAG
TTTGCCCC GACTACGACG TGGTTGACAT 370 380 390
400 410 420 TCCATCTTCC CACCATCCAG TGAGCAGTTA ACA
TCTGGAG GTGCCTCAGT CGTGTGCTTC AGGTAGAAGG GTGGTAGGTC ACTCGTCAAT TGT
AGACCTC CACGGAGTCA GCACACGAAG 430 440 450
460 470 480 TTGAACAACT TCTACCCCAAGACACATCAAT GTC
AAGTGGA AGATTGATGG CAGTGAACGA AACTTGTTGA AGATGGGGTT TCTGTAGTTTA CAG
TTCACCT TCTAACTACC GTCACTTGCT 490 500 510
520 530 540 CAAAATGGCG TCCTGAACAG TTGGACTGAT CAG
GACAGCA AAGACAGCAC CTACAGCATG GTTTTACGC AGGACTTGTC AACCTGACTA GTC
CTGTCGT TTCTGTCGTG GATGTCCGTAC 550 560 570
580 590 600 AGCAGCACCC TCACGTTGAC CAAGGACGAG TAT
GAACGAC ATAACAGCTA TACCTGTGAG TCGTCGGTGGGG AGTGCAACTG GTTCCTGCTC ATA
CTTGCTG TATTGTCGAT ATGGACACTC 610 620 630
640 650 660 GCCACTCACA AGACATCAAC TTCACCCATT GTC
AAGAGCT TCAACAGGAA TGAGTGTTAA CGGTGAGTGT TCTGTAGTTTG AAGTGGGTAA CAG
TTCTCGA AGTTGTCCTT ACTCACAATT TTCTAGA AAGATCT

【図面の簡単な説明】[Brief description of the drawings]

【図1】 6D9抗体のH鎖のFd断片の大部分を構成
するアミノ酸配列をコードするヌクレオチド配列(配列
番号3)を示している。
FIG. 1 shows the nucleotide sequence (SEQ ID NO: 3) encoding the amino acid sequence that constitutes most of the Fd fragment of the H chain of the 6D9 antibody.

【図2】 6D9抗体のL鎖の大部分を構成するアミノ
酸配列をコードするヌクレオチド配列(配列番号4)示し
ている。
FIG. 2 shows the nucleotide sequence (SEQ ID NO: 4) encoding the amino acid sequence constituting the majority of the L chain of the 6D9 antibody.

【図3】 6D9抗体のH鎖のFd断片の大部分を構成
するアミノ酸配列(配列番号1)を示している。
FIG. 3 shows the amino acid sequence (SEQ ID NO: 1) constituting the majority of the Fd fragment of the H chain of the 6D9 antibody.

【図4】 6D9抗体のL鎖の大部分を構成するアミノ
酸配列(配列番号2)を示している。
FIG. 4 shows the amino acid sequence (SEQ ID NO: 2) constituting the majority of the L chain of the 6D9 antibody.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12P 21/08 C12P 21/08 // C12N 15/02 C12N 15/00 A 15/09 C (C12P 21/08 C12R 1:91) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C12P 21/08 C12P 21/08 // C12N 15/02 C12N 15/00 A 15/09 C (C12P 21/08 C12R 1:91 )

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記式4で表わされる化合物。 【化1】 1. A compound represented by the following formula 4. Embedded image 【請求項2】 請求項1に記載の化合物をハプテンとす
る抗原刺激により生成される抗体。
2. An antibody produced by antigen stimulation using the compound according to claim 1 as a hapten.
【請求項3】 下記式9で表わされるプロドラッグ化合
物を特異的に加水分解する請求項2に記載の抗体。 【化2】
3. The antibody according to claim 2, which specifically hydrolyzes a prodrug compound represented by the following formula 9. Embedded image
【請求項4】 H鎖における第1超可変領域のアミノ酸
配列が式: Asn Tyr Ala Met Ser で示され、第2超可変領域のアミノ酸配列が式: Ser Ser Gly Gly Ser Ile Tyr Tyr Leu Asp Ser Val Ly
s Gly で示され、そして第3超可変領域のアミノ酸配列が式: Val Ser His Tyr Asp Gly Ser Arg Asp Trp Tyr Phe As
p Val で示される請求項3に記載の抗体。
4. The amino acid sequence of the first hypervariable region in the H chain is represented by the formula: Asn Tyr Ala Met Ser, and the amino acid sequence of the second hypervariable region is represented by the formula: Ser Ser Gly Gly Ser Ile Tyr Tyr Tyr Leu Asp Ser Val Ly
s Gly and the amino acid sequence of the third hypervariable region is of the formula: Val Ser His Tyr Asp Gly Ser Arg Asp Trp Tyr Phe As
The antibody according to claim 3, which is represented by p Val.
【請求項5】 L鎖における第1超可変領域のアミノ酸
配列が式: Arg Ser Ser Gln Thr Ile Val His Ser Asn Gly Asp Th
r Tyr Leu Asp で示され、第2超可変領域のアミノ酸配列が式: Lys Val Ser Asn Arg Phe で示され、そして第3超可変領域のアミノ酸配列が式: Phe Gln Gly Ser His Val Pro Pro Thr で示される請求項3に記載の抗体。
5. The amino acid sequence of the first hypervariable region in the light chain has the formula: Arg Ser Ser Gln Thr Ile Val His Ser Asn Gly Asp Th
r Tyr Leu Asp, the amino acid sequence of the second hypervariable region is represented by the formula: Lys Val Ser Asn Arg Phe, and the amino acid sequence of the third hypervariable region is represented by the formula: Phe Gln Gly Ser His Val Pro Pro Thr The antibody according to claim 3, which is represented by:
【請求項6】 H鎖における第1超可変領域のアミノ酸
配列が式:Asn TyrAla Met Serで示され、第2超可変領
域のアミノ酸配列が式:Ser Ser Gly Gly Ser Ile Tyr
Tyr Leu Asp Ser Val Lys Glyで示され、第3超可変領
域のアミノ酸配列が式:Val Ser His Tyr Asp Gly Ser
Arg Asp Trp Tyr Phe Asp Valで示され、かつL鎖にお
ける第1超可変領域のアミノ酸配列が式:Arg Ser Ser
Gln Thr Ile Val His Ser Asn Gly Asp Thr Tyr Leu As
pで示され、第2超可変領域のアミノ酸配列が式:Lys V
al Ser Asn Arg Pheで示され、第3超可変領域のアミノ
酸配列が式:Phe Gln Gly Ser His Val Pro Pro Thrで
示される請求項3に記載の抗体。
6. The amino acid sequence of the first hypervariable region in the H chain is represented by the formula: Asn TyrAla Met Ser, and the amino acid sequence of the second hypervariable region is represented by the formula: Ser Ser Gly Gly Ser Ile Tyr
The amino acid sequence of the third hypervariable region is represented by the formula: Val Ser His Tyr Asp Gly Ser.
Arg Asp Trp Tyr Phe Asp Val, and the amino acid sequence of the first hypervariable region in the L chain is represented by the formula: Arg Ser Ser
Gln Thr Ile Val His Ser Asn Gly Asp Thr Tyr Leu As
The amino acid sequence of the second hypervariable region is represented by the formula: Lys V
The antibody according to claim 3, wherein the antibody is represented by al Ser Asn Arg Phe, and the amino acid sequence of the third hypervariable region is represented by the formula: Phe Gln Gly Ser His Val Pro Pro Thr.
【請求項7】 H鎖が配列番号1で示されるアミノ酸配
列を含有している請求項2から請求項6までのいずれか
に記載の抗体。
7. The antibody according to claim 2, wherein the H chain contains the amino acid sequence represented by SEQ ID NO: 1.
【請求項8】 L鎖が配列番号2で示されるアミノ酸配
列を含有している請求項2から請求項6までのいずれか
に記載の抗体。
8. The antibody according to claim 2, wherein the L chain comprises the amino acid sequence represented by SEQ ID NO: 2.
【請求項9】 H鎖が配列番号1で示されるアミノ酸配
列を含有し、かつL鎖が配列番号2で示されるアミノ酸
配列を含有している請求項2から請求項6までのいずれ
かに記載の抗体。
9. The method according to claim 2, wherein the H chain has the amino acid sequence represented by SEQ ID NO: 1, and the L chain has the amino acid sequence represented by SEQ ID NO: 2. Antibodies.
【請求項10】 H鎖が配列番号3で示されるヌクレオ
チド配列によってコードされている請求項7又は請求項
9に記載の抗体。
10. The antibody according to claim 7, wherein the H chain is encoded by the nucleotide sequence represented by SEQ ID NO: 3.
【請求項11】 L鎖が配列番号4で示されるヌクレオ
チド配列によってコードされている請求項8又は請求項
9に記載の抗体。
11. The antibody according to claim 8, wherein the L chain is encoded by the nucleotide sequence represented by SEQ ID NO: 4.
【請求項12】 配列番号1で示されるアミノ酸配列。12. An amino acid sequence represented by SEQ ID NO: 1. 【請求項13】 配列番号2で示されるアミノ酸配列。13. An amino acid sequence represented by SEQ ID NO: 2. 【請求項14】 配列番号3で示されるヌクレオチド配
列。
14. A nucleotide sequence represented by SEQ ID NO: 3.
【請求項15】 配列番号4で示されるヌクレオチド配
列。
15. A nucleotide sequence represented by SEQ ID NO: 4.
【請求項16】 下記式9で表わされる化合物。 【化3】 16. A compound represented by the following formula 9: Embedded image 【請求項17】 請求項16に記載の化合物を請求項2
から請求項8のいずれかに記載の抗体を用いて加水分解
し、クロラムフェニコールを製造する方法。
17. The compound according to claim 16, wherein the compound is
A method for producing chloramphenicol by hydrolysis using the antibody according to any one of claims 1 to 8.
JP5073980A 1992-12-01 1993-03-31 Activation of prodrugs by catalytic antibodies Expired - Lifetime JP2826435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5073980A JP2826435B2 (en) 1992-12-01 1993-03-31 Activation of prodrugs by catalytic antibodies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32175992 1992-12-01
JP4-321759 1992-12-01
JP5073980A JP2826435B2 (en) 1992-12-01 1993-03-31 Activation of prodrugs by catalytic antibodies

Publications (2)

Publication Number Publication Date
JPH06220072A JPH06220072A (en) 1994-08-09
JP2826435B2 true JP2826435B2 (en) 1998-11-18

Family

ID=26415123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5073980A Expired - Lifetime JP2826435B2 (en) 1992-12-01 1993-03-31 Activation of prodrugs by catalytic antibodies

Country Status (1)

Country Link
JP (1) JP2826435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872344A (en) * 2019-11-19 2020-03-10 中国农业大学 Chloramphenicol complete antigen and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9510830D0 (en) * 1995-05-27 1995-07-19 Zeneca Ltd Proteins
CN105372419B (en) * 2014-08-25 2018-05-22 中国农业大学 The preparation method and its application in quantum dot immune fluorescent kit of chloramphenicol haptens and antigen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872344A (en) * 2019-11-19 2020-03-10 中国农业大学 Chloramphenicol complete antigen and preparation method and application thereof
CN110872344B (en) * 2019-11-19 2021-07-16 中国农业大学 Chloramphenicol complete antigen and preparation method and application thereof

Also Published As

Publication number Publication date
JPH06220072A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
AU643186B2 (en) Peptide analogs and their use as haptens to elicit catalytic antibodies
Guo et al. Kinetic and mechanistic characterization of an efficient hydrolytic antibody: evidence for the formation of an acyl intermediate
US6602688B1 (en) Cytoplasmic expression of antibodies, antibody fragments and antibody fragment fusion proteins in E. coli
US5173408A (en) Mammalian pancreatic cholesterol esterase
JP2000508892A (en) Multivalent and multispecific antigen binding proteins
WO1991006574A1 (en) A process for preparing peroxycarboxylic acids
US5977314A (en) Catalytic antibodies against cocaine
JP3504963B2 (en) DNA fragment encoding amino acid sequence of anti-human high affinity IgE receptor monoclonal antibody
JP2826435B2 (en) Activation of prodrugs by catalytic antibodies
US5208152A (en) Catalysts of diels-alder reactions, methods and catalysts therefor
JPH04504664A (en) Autoantibodies that speed up chemical reactions
Green Monoclonal antibodies as catalysts and templates for organic chemical reactions
WO1994025573A1 (en) Catalytic antibodies which hydrolyze primary amides and methods for eliciting such antibodies
US5900237A (en) Catalytic antibodies which hydrolyze primary amides and methods for eliciting such antibodies
CA2190455C (en) Catalytic antibodies enantioselectively hydrolysing amino acid ester derivatives
AU7014194A (en) The isolation and production of catalytic antibodies using phage technology
Shi et al. Enantioselective hydrolysis of naproxen ethyl ester catalyzed by monoclonal antibodies
TW200811099A (en) Novel enzymatic process for BOC-DAP-OH
US5885816A (en) Catalytic antibodies enantioselectively hydrolysing amino acid ester derivatives
JP3015306B2 (en) Hapten compound of acid amide compound, antibody and measurement method
YANG et al. Preparation and characterization of monoclonal antibodies to cephalexin-synthesizing enzyme from Acetobacter turbidans
JP2001275682A (en) Gene encoding antimalathion monoclonal antibody
US5429941A (en) Process for antibody combining site-catalyzed epoxide formation from 1-benzyl-1-hydrocarbyl alkene molecules
JPH05252986A (en) Heterobifunctional antibody and its utilization
KR100468547B1 (en) Gene Coding for Lipase of Acinetobacter Species SY-01 and Protein Expressed Therefrom