JP2822788B2 - Carbon fiber reinforced concrete - Google Patents
Carbon fiber reinforced concreteInfo
- Publication number
- JP2822788B2 JP2822788B2 JP4177136A JP17713692A JP2822788B2 JP 2822788 B2 JP2822788 B2 JP 2822788B2 JP 4177136 A JP4177136 A JP 4177136A JP 17713692 A JP17713692 A JP 17713692A JP 2822788 B2 JP2822788 B2 JP 2822788B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- concrete
- fiber reinforced
- reinforced concrete
- coating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/46—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
- C04B41/48—Macromolecular compounds
- C04B41/488—Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Panels For Use In Building Construction (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭素繊維補強コンクリ
ートの耐腐食性の改善に関する。The present invention relates to the improvement of the corrosion resistance of carbon fiber reinforced concrete.
【0002】[0002]
【従来の技術】コンクリートは本来脆性破壊しやすい性
質を有しており、コンクリート構造物とする場合には内
部に鉄筋や鉄骨を入れて補強する。そして、最近はさら
に炭素繊維を分散して混入することにより、脆性破壊に
強いコンクリート構造物を得られることがわかった。2. Description of the Related Art Concrete is inherently susceptible to brittle fracture, and when it is used as a concrete structure, it is reinforced by inserting a reinforcing bar or steel frame inside. Recently, it has been found that a concrete structure resistant to brittle fracture can be obtained by further dispersing and mixing carbon fibers.
【0003】そこで、このような炭素繊維補強コンクリ
ートの実用化が進められているが、さらに汎用化する上
で耐腐食性を高める必要がある。即ち、炭素繊維と、鉄
筋や鉄骨などの鉄材が接触していると、両者間の電位の
違いによって、両者間で腐食電池が形成され、炭素表面
でカソード反応が発生し、鉄材表面でアノード反応が発
生し、鉄材の腐食を促進するという現象がある。[0003] Therefore, such carbon fiber reinforced concrete is being put to practical use, but it is necessary to increase the corrosion resistance in order to make it more general-purpose. That is, when the carbon fiber is in contact with an iron material such as a rebar or a steel frame, a difference in potential between the two causes a corrosion battery to be formed between the two, causing a cathodic reaction on the carbon surface and an anodic reaction on the iron material surface. Occurs, and there is a phenomenon that corrosion of the iron material is accelerated.
【0004】この問題を解決する技術として、炭素繊維
と鉄筋との直接的な接触を避けるために鉄筋表面に絶縁
性のコーティングを施して実用化する方法,炭素繊維と
同程度の電位を示すステンレス鋼を鉄筋として用いる方
法(特公昭64−10457,特公昭64−1045
8)がある。[0004] As a technique for solving this problem, a method of applying an insulating coating to the surface of a reinforcing bar in order to avoid direct contact between the carbon fiber and the reinforcing bar, and a stainless steel exhibiting the same potential as that of the carbon fiber. Method of using steel as rebar (Japanese Patent Publication Nos. 64-10457 and 64-1045)
8).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、前記従
来技術には次のような欠点がある。However, the above prior art has the following disadvantages.
【0006】(1)炭素繊維そのものが比較的高価な材
料であり、更に高価なコーティングされた鉄筋やステン
レス鉄筋を組み合わせると、ますますコストがアップ
し、このコストアップのデメリットが炭素繊維を使うこ
とによって生じるメリットを越えてしまうものであっ
た。 (2)コーティングされた鉄筋はコンクリートとの付着
力が低下する現象がある。 (3)ステンレス鉄筋は供給体制が不充分であり、炭素
繊維補強コンクリートの汎用化に適さない。[0006] (1) Carbon fiber itself is a relatively expensive material, and the cost is further increased by combining more expensive coated rebars or stainless steel rebars. The benefits that would be caused by this were exceeded. (2) The coated rebar has a phenomenon in which the adhesive force with concrete is reduced. (3) The supply system of stainless steel bars is insufficient, and is not suitable for general use of carbon fiber reinforced concrete.
【0007】本発明は以上の問題点を解決するために成
されたもので、経済的で、鉄筋とコンクリートとの付着
力も維持でき、汎用化を計ることのできる炭素繊維補強
コンクリートを提供することを目的とする。The present invention has been made to solve the above problems, and provides a carbon fiber reinforced concrete which is economical, can maintain the adhesive force between the reinforcing steel and the concrete, and can be used for general purpose. The purpose is to:
【0008】[0008]
【課題を解決するための手段】以上の目的を達成するた
めに、本発明の炭素繊維補強コンクリートは、内部の鉄
材を腐食させる腐食要因物質を遮断する被覆材で、表面
を覆ったものである。被覆材は2液反応硬化型のエポキ
シ樹脂,ウレタン樹脂,アクリルウレタン樹脂、又はウ
レタンゴムの塗装材料とすることができる。In order to achieve the above object, a carbon fiber reinforced concrete according to the present invention has a surface covered with a coating material that blocks corrosion-causing substances that corrode internal iron materials. . The coating material can be a two-component reaction-curable epoxy resin, urethane resin, acrylic urethane resin, or urethane rubber coating material.
【0009】さらに被覆材はアルミニウム,ステンレス
系の金属板とすることができる。Further, the coating material may be an aluminum or stainless steel metal plate.
【0010】[0010]
【作用】内部に鉄筋や鉄骨などの鉄材を有する炭素繊維
補強コンクリートにおいて、前記鉄材を腐食させるの
は、コンクリートを中性化する炭酸ガスなどの酸性ガス
と、潮風などによって運ばれコンクリート内に侵入する
水溶性塩化物に起因する。そこで、これらの腐食要因物
質を炭素繊維補強コンクリートの表面で被覆材で遮断す
れば、実用上まったく問題ないことが明らかとなった。[Function] In carbon fiber reinforced concrete having iron materials such as steel bars and steel frames inside, the iron materials are corroded by acid gas such as carbon dioxide gas that neutralizes the concrete and carried by sea breeze to enter the concrete. Water-soluble chlorides. Therefore, it became clear that there was no practical problem if these corrosion factors were blocked by the covering material on the surface of the carbon fiber reinforced concrete.
【0011】[0011]
【実施例】以下、本発明の一実施例を図1〜図7と共に
説明する。炭素繊維補強コンクリートから成るコンクリ
ート構造物の表面を覆う被覆材として塗装材料を用いる
ことができる。この塗装材料は、例えば、2液反応硬化
型のエポキシ樹脂,ウレタン樹脂,アクリルウレタン樹
脂、又はウレタンゴムなどがある。これらの塗装材料に
よって表面を覆えば腐食要因物質である酸性ガスや水溶
性塩化物がコンクリート中に侵入することはなくなる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. A coating material can be used as a covering material for covering the surface of a concrete structure made of carbon fiber reinforced concrete. The coating material is, for example, a two-component reaction-curable epoxy resin, urethane resin, acrylic urethane resin, urethane rubber, or the like. If the surface is covered with these coating materials, acidic gases and water-soluble chlorides, which are corrosive substances, will not enter the concrete.
【0012】そこで発明者らは、鉄材である鉄筋と炭素
繊維を、コンクリート内部の雰囲気を模擬した数種類の
溶液に浸漬し、電位差及び発生電流を測定する実験を行
なった。Therefore, the inventors conducted an experiment in which a reinforcing rod and a carbon fiber, which are iron materials, were immersed in several types of solutions simulating the atmosphere inside concrete, and the potential difference and the generated current were measured.
【0013】即ち、浸漬するものとしては、まず鉄筋と
して径が16mmの異形鉄筋を長さ25cmに切断したもの
を用いる。また炭素繊維の短い繊維として、厚さ約1.
5mmのマット状の素材を幅約2cm、長さ約20cmの柱状
に切断したものを用いた。さらに炭素繊維の長い繊維と
して、ストランドの一束を長さ約20cmに切断したもの
を用いた。That is, as a material to be immersed, first, a deformed reinforcing bar having a diameter of 16 mm cut into a length of 25 cm is used as a reinforcing bar. In addition, as a short fiber of carbon fiber, a thickness of about 1.
A 5 mm mat-like material cut into a column having a width of about 2 cm and a length of about 20 cm was used. Further, as a long carbon fiber, a bundle of strands cut to a length of about 20 cm was used.
【0014】溶液は4種類を用いた。第1にはCa(O
H)2 を飽和した水道水である。これは正常なコンクリ
ートのアルカリ雰囲気を模擬した溶液である。第2には
水道水である。これはコンクリートが中性化した状態を
模擬した溶液である。第3にはCa(OH)2 を飽和し
た3%NaCl水溶液である。これは塩分の混入したコ
ンクリートのアルカリ雰囲気を模擬した溶液である。第
4には3%NaCl水溶液である。これは塩分を含みか
つコンクリートが中性化した条件を模擬した溶液であ
る。Four kinds of solutions were used. First, Ca (O
H) Tap water saturated with 2 . This is a solution simulating the alkaline atmosphere of normal concrete. Second is tap water. This is a solution simulating the neutralized state of concrete. Third is a 3% NaCl aqueous solution saturated with Ca (OH) 2 . This is a solution simulating the alkaline atmosphere of concrete mixed with salt. Fourth is a 3% NaCl aqueous solution. This is a solution that contains salt and simulates the conditions under which the concrete is neutralized.
【0015】測定結果として、炭素繊維と鉄筋との電位
差の経時的な変化は、図1および図2のようになった。
炭素繊維は鉄筋よりも貴な電位を示し、鉄筋が活性化し
た状態においては両者間の電位差は非常に大きい。特に
炭素短繊維は、炭素長繊維に比べて鉄筋との電位差が大
きくなる傾向にある。図3では、電位の最終測定値を基
にした鉄筋と炭素繊維との電位差を示している。図3中
の数字はmVであり、いづれの場合も炭素繊維がカソード
として働いたものである。As a result of the measurement, the change with time of the potential difference between the carbon fiber and the reinforcing bar was as shown in FIGS.
Carbon fiber shows a more noble potential than a reinforcing bar, and the potential difference between the two is very large when the reinforcing bar is activated. In particular, short carbon fibers tend to have a larger potential difference with a reinforcing bar than carbon long fibers. FIG. 3 shows the potential difference between the reinforcing bar and the carbon fiber based on the final measured value of the potential. The number in FIG. 3 is mV, and in each case, the carbon fiber worked as the cathode.
【0016】また、炭素繊維と鉄筋とをシャント抵抗を
介して短絡し、両極間の発生電流をエレクトロメータで
経時的に測定した結果を、図4〜図7に示す。この時、
発生電流がほぼ定常化した時点で、測定を継続しながら
溶液中に酸素をバブリングし、カソード反応の促進条件
を与え発生電流の変化を測定した。FIGS. 4 to 7 show the results obtained by short-circuiting the carbon fiber and the reinforcing bar via a shunt resistor and measuring the current generated between the two electrodes over time with an electrometer. At this time,
When the generated current became almost steady, oxygen was bubbled into the solution while the measurement was continued, conditions for accelerating the cathode reaction were given, and the change in the generated current was measured.
【0017】以上の結果、腐食要因物質である酸性ガス
がコンクリートに侵入しコンクリートを中性化した場合
(溶液を水道水とした場合)及び水溶性塩化物としての
塩分をコンクリートに混入した場合(Ca(OH)2 を
飽和した3%NaCl水溶液を溶液とした場合)などに
比べ、これら腐食要因物質の侵入を遮断した場合の正常
なコンクリートの場合(Ca(OH)2 を飽和した水道
水を溶液として場合)は、電位差はきわめて小さく(図
1)、弱材冷時100mV以下である。そして長期的には
むしろ鉄筋の方が約200mV以下の範囲で炭素繊維より
もカソード的となることがわかっている。この結果、炭
素繊維の影響によって鉄筋の腐食が促進されるおそれは
なくなると考えられる。As a result of the above, when the acid gas, which is a corrosive substance, enters the concrete and neutralizes the concrete (when the solution is tap water) and when the salt as a water-soluble chloride is mixed into the concrete ( In the case of normal concrete in which the intrusion of these corrosive substances has been blocked (in the case of using a 3% NaCl aqueous solution saturated with Ca (OH) 2 as a solution), tap water saturated with Ca (OH) 2 is used. In the case of a solution, the potential difference is extremely small (FIG. 1), and is 100 mV or less when the weak material is cooled. In the long term, it has been found that the reinforcing bar becomes more cathodic than carbon fiber in the range of about 200 mV or less. As a result, it is considered that there is no possibility that corrosion of the reinforcing bar is promoted by the influence of the carbon fiber.
【0018】同様に発生電流即ち腐食電流も、図4は他
の図5〜図7に対しきわめて小さい。また酸素吹き込み
による発生電流の急増も図4においてはみられない。こ
のことは、酸素吹き込みによって電流が急増している図
5,図7では、鉄筋の腐食を炭素繊維表面のカソード反
応が支配しており、図4においては炭素繊維のカソード
としての作用がないためと判断できる。Similarly, the generated current, that is, the corrosion current, is extremely small in FIG. 4 as compared with the other FIGS. Further, a sudden increase in the current generated by oxygen blowing is not seen in FIG. This is because in FIGS. 5 and 7 in which the current is rapidly increased by oxygen blowing, the corrosion of the rebar is governed by the cathode reaction on the carbon fiber surface, and in FIG. 4, the carbon fiber does not function as a cathode. Can be determined.
【0019】従って、腐食要因物質を遮断すれば(図
4)腐食電流の発生を抑えることができ、炭素繊維の影
響による腐食の発生はないと考えられる。Therefore, if the corrosion-causing substance is cut off (FIG. 4), the generation of the corrosion current can be suppressed, and it is considered that the corrosion due to the influence of the carbon fiber does not occur.
【0020】以上説明したように、被覆材である塗装材
料で炭素繊維補強コンクリートの表面を覆えば、炭素繊
維の影響による鉄筋の腐食促進はないと考えられる。従
って、従来のように非常に高価でかつ入手しにくいコー
ティングされた鉄筋やステンレス鉄筋を使わずに、旧来
の普通鉄筋が使えるので、コストアップをなくし、炭素
繊維補強コンクリートの汎用化を計ることができる。As described above, if the surface of the carbon fiber reinforced concrete is covered with the coating material as the coating material, it is considered that the corrosion of the reinforcing steel is not promoted by the influence of the carbon fiber. Therefore, the conventional ordinary rebar can be used without using coated or stainless steel rebar, which is very expensive and hard to obtain as in the past, so it is possible to eliminate the cost increase and to generalize carbon fiber reinforced concrete. it can.
【0021】なお、以上の実施例においては被覆材とし
て塗装材料を例に説明したが、他の実施例においてはア
ルミニウム系又はステンレス系の金属板を用いることも
できる。塗装材料や金属板は、設計者の意図に応じて仕
上材としての機能を有した材料を選択できる。In the above embodiments, the coating material is described as an example of the coating material. However, in other embodiments, an aluminum or stainless steel metal plate may be used. As the coating material or the metal plate, a material having a function as a finishing material can be selected according to the intention of the designer.
【0022】[0022]
【発明の効果】以上説明したように本発明の炭素繊維補
強コンクリートによれば、炭素繊維補強コンクリートの
表面を、仕上材にも兼用できる被覆材で覆うことで、内
部の鉄材を腐食させる腐食要因物質を遮断できるため、
内部で鉄材と炭素繊維とが接触した状態であっても実用
上まったく問題がなく、従ってコーティングされた鉄筋
やステンレス鉄筋を用いる必要がなく、経済的であり、
また鉄筋とコンクリートとの付着力も低下することがな
い。As described above, according to the carbon fiber reinforced concrete of the present invention, the surface of the carbon fiber reinforced concrete is covered with a covering material which can also be used as a finishing material, thereby corroding the internal iron material. Can block substances,
Even if the iron material and the carbon fiber are in contact inside, there is no problem at all in practice, so there is no need to use coated rebar or stainless steel rebar, and it is economical,
Also, the adhesion between the reinforcing steel and the concrete does not decrease.
【図1】コンクリート中の雰囲気を模擬したCa(O
H)2 飽和水中における炭素繊維と鉄筋との電位差を測
定した結果を示す図である。FIG. 1. Ca (O) simulating the atmosphere in concrete
H) It is a figure which shows the result of having measured the electric potential difference between carbon fiber and rebar in 2 saturated water.
【図2】コンクリート中の雰囲気を模擬したCa(O
H)2 飽和3%NaCl水中における炭素繊維と鉄筋と
の電位差を測定した結果を示す図である。FIG. 2 shows Ca (O) simulating the atmosphere in concrete.
H) It is a figure which shows the result of having measured the potential difference of the carbon fiber and rebar in 2 % saturated 3% NaCl water.
【図3】コンクリート中の雰囲気を模擬した溶液中にお
ける炭素繊維と鉄筋との電位差を測定した結果を示す図
である。FIG. 3 is a view showing a result of measuring a potential difference between a carbon fiber and a reinforcing bar in a solution simulating an atmosphere in concrete.
【図4】正常なコンクリートのアルカリ雰囲気を模擬し
た溶液中において炭素繊維と鉄筋との間に発生する電流
を示す図である。FIG. 4 is a diagram showing a current generated between a carbon fiber and a reinforcing bar in a solution simulating an alkaline atmosphere of normal concrete.
【図5】コンクリートが中性化した状態を模擬した溶液
中で炭素繊維と鉄筋との間に発生する電流を示した図で
ある。FIG. 5 is a diagram showing a current generated between a carbon fiber and a reinforcing bar in a solution simulating a neutralized state of concrete.
【図6】塩分の混入したコンクリートのアルカリ雰囲気
を模擬した溶液中で炭素繊維と鉄筋との間に発生する電
流を示す図である。FIG. 6 is a diagram showing a current generated between a carbon fiber and a reinforcing bar in a solution simulating an alkaline atmosphere of concrete mixed with salt.
【図7】塩分を含みかつコンクリートが中性化した状態
の雰囲気を模擬した溶液中で炭素繊維と鉄筋との間に発
生する電流を示す図である。FIG. 7 is a view showing a current generated between a carbon fiber and a reinforcing bar in a solution simulating an atmosphere containing salt and concrete being neutralized.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C04B 41/62 - 41/64 E04C 2/00 - 2/54 JICSTファイル(JOIS)Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C04B 41/62-41/64 E04C 2/00-2/54 JICST file (JOIS)
Claims (3)
遮断する被覆材で、表面を覆ったことを特徴とする炭素
繊維補強コンクリート。1. A carbon fiber reinforced concrete characterized in that its surface is covered with a covering material that blocks corrosion-causing substances that corrode an internal iron material.
脂,ウレタン樹脂,アクリルウレタン樹脂、又はウレタ
ンゴムの塗装材料であることを特徴とする請求項1記載
の炭素繊維補強コンクリート。2. The carbon fiber reinforced concrete according to claim 1, wherein the coating material is a two-component reaction-curable epoxy resin, urethane resin, acrylic urethane resin, or urethane rubber coating material.
ス系の金属板であることを特徴とする請求項1記載の炭
素繊維補強コンクリート。3. The carbon fiber reinforced concrete according to claim 1, wherein the coating material is an aluminum or stainless steel metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4177136A JP2822788B2 (en) | 1992-07-03 | 1992-07-03 | Carbon fiber reinforced concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4177136A JP2822788B2 (en) | 1992-07-03 | 1992-07-03 | Carbon fiber reinforced concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0624879A JPH0624879A (en) | 1994-02-01 |
JP2822788B2 true JP2822788B2 (en) | 1998-11-11 |
Family
ID=16025815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4177136A Expired - Fee Related JP2822788B2 (en) | 1992-07-03 | 1992-07-03 | Carbon fiber reinforced concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2822788B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101415955B1 (en) * | 2012-10-30 | 2014-07-04 | 코오롱글로벌 주식회사 | Method for detecting fiber additive and apparatus for performing the method in Fiber-Reinforced Concrete |
-
1992
- 1992-07-03 JP JP4177136A patent/JP2822788B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0624879A (en) | 1994-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chess et al. | Cathodic protection of steel in concrete | |
Gulikers | Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement | |
US6358397B1 (en) | Doubly-protected reinforcing members in concrete | |
EP0070482B1 (en) | Process for corrosion-protection of reinforcing iron elements or tension cables in building parts | |
Stratfull | Progress report on inhibiting the corrosion of steel in a reinforced concrete bridge | |
Sakr | Effect of cement type on the corrosion of reinforcing steel bars exposed to acidic media using electrochemical techniques | |
Avila-Mendoza et al. | Effect of superficial oxides on corrosion of steel reinforcement embedded in concrete | |
CA2189676A1 (en) | Galvanic protection of rebar by zinc wire and insulating coating | |
JP2966926B2 (en) | New electrode and cathodic protection system | |
JP2822788B2 (en) | Carbon fiber reinforced concrete | |
Broli et al. | Use of potentiokinetic and potentiostatic methods for the determination of characteristic potentials for pitting corrosion of an Fe–Cr alloy | |
JPH07232976A (en) | Method for passivating steel material in concrete | |
JP3438960B2 (en) | How to repair concrete | |
US6322691B1 (en) | Method for passivating steel in large structures formed of steel-reinforced concrete | |
JP2020196924A (en) | Back-fill for electric protection | |
JP7261387B2 (en) | Coating material for anode material, concrete structure, and cathodic protection method | |
Otero et al. | Electrochemical chloride removal from reinforced concrete structures and its ability to repassivate prerusted steel surfaces | |
Batis et al. | Dechlorination of large marine iron artifact using a novel technique involving impressed current | |
JPS62199784A (en) | Method for preventing corrosion of concrete structure | |
EP1111159A1 (en) | Method of supplying electric current to prestressed concrete | |
Polder et al. | A multi-element approach for cathodic protection of reinforced concrete | |
JP2000026174A (en) | Method for preventing corrosion of reinforcing bar in concrete | |
JPH0615792B2 (en) | Corrosion protection method for reinforcing bars in reinforced concrete structures and method for detecting corrosion state of reinforcing bars | |
Chauvin et al. | Evaluation of electrochemical chloride extraction (ECE) and fiber reinforced polymer (FRP) wrap technology | |
JPH0615069B2 (en) | Conductive coating and antifouling device for structures in contact with seawater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |