JP2818851B2 - Method for manufacturing boron phosphide-based semiconductor device - Google Patents

Method for manufacturing boron phosphide-based semiconductor device

Info

Publication number
JP2818851B2
JP2818851B2 JP2198630A JP19863090A JP2818851B2 JP 2818851 B2 JP2818851 B2 JP 2818851B2 JP 2198630 A JP2198630 A JP 2198630A JP 19863090 A JP19863090 A JP 19863090A JP 2818851 B2 JP2818851 B2 JP 2818851B2
Authority
JP
Japan
Prior art keywords
boron phosphide
mol
semiconductor device
based semiconductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2198630A
Other languages
Japanese (ja)
Other versions
JPH0483382A (en
Inventor
正之 平林
忍 高木
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2198630A priority Critical patent/JP2818851B2/en
Publication of JPH0483382A publication Critical patent/JPH0483382A/en
Application granted granted Critical
Publication of JP2818851B2 publication Critical patent/JP2818851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリン化ホウ素系半導体素子の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a boron phosphide-based semiconductor device.

〔発明の背景〕 リン化ホウ素(BP)は高い温度の熱源に対して安定に
作動するので変換効率を上げることが出来、高温用の熱
電素子として最近注目されてきている。
BACKGROUND OF THE INVENTION Boron phosphide (BP) operates stably with respect to a high-temperature heat source, can increase the conversion efficiency, and has recently been attracting attention as a high-temperature thermoelectric element.

〔従来の技術〕[Conventional technology]

従来、リン化ホウ素を熱電素子として使用する場合に
は、単結晶の形態で用いたり、基体表面に薄膜状に形成
した状態で用いているが、焼結体の形態で使用すること
によって、その応用範囲の拡大が期待されている。
Conventionally, when boron phosphide is used as a thermoelectric element, it is used in the form of a single crystal or in a state of being formed in a thin film on the surface of a substrate, but by using it in the form of a sintered body, The application range is expected to expand.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、リン化ホウ素は融点3000℃以上の物質であ
るため難焼結性であり、2500℃以上の温度に加熱しなけ
れば焼結せずまた得られた焼結体の比抵抗値も大であ
る。したがって比抵抗値の小さいリン化ホウ素焼結体を
容易に製造する方法の開発が望まれている。
However, since boron phosphide is a substance having a melting point of 3000 ° C or higher, it is difficult to sinter, and if it is not heated to a temperature of 2500 ° C or higher, it does not sinter, and the specific resistance of the obtained sintered body is large. is there. Therefore, development of a method for easily producing a boron phosphide sintered body having a small specific resistance value is desired.

本発明の目的はしたがって、低い焼結温度で比抵抗値
の小さいリン化ホウ素焼結体を製造する方法を提供する
ことにある。
Accordingly, an object of the present invention is to provide a method for producing a boron phosphide sintered body having a small specific resistance value at a low sintering temperature.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記従来の課題を解決するための手段として
リン化ホウ素粉末に、金属粉末5モル%〜50モル%を添
加し、1300℃〜1600℃の温度および500kg f/cm2〜2000k
g f/cm2の圧力で焼結するリン化ホウ素系半導体素子の
製造方法を提供するものである。
According to the present invention, as a means for solving the above-mentioned conventional problems, 5 mol% to 50 mol% of a metal powder is added to a boron phosphide powder, a temperature of 1300 ° C. to 1600 ° C., and 500 kg f / cm 2 to 2000 k.
An object of the present invention is to provide a method for producing a boron phosphide-based semiconductor device that sinters at a pressure of gf / cm 2 .

〔リン化ホウ素〕(Boron phosphide)

本発明において、リン化ホウ素粉末としては望ましく
は平均粒径1〜50μmの範囲のものであり、該リン化ホ
ウ素は例えば特開平2−9713号公報に記載の方法で製造
される。
In the present invention, the boron phosphide powder desirably has an average particle size of 1 to 50 μm, and the boron phosphide is produced, for example, by the method described in JP-A-2-9713.

〔金属粉末〕(Metal powder)

本発明において、金属粉末としては、望ましくはII A
族、III A族、I B族、III B族、IV B族、V B族、VI B
族、および希土類金属から選択された金属が使用され
る。これらの金属は2種以上組合わせて使用してもよ
い。その場合、使用する金属粉末は混合物の形でも合金
の形でもよい。本発明において好ましく使用される金属
の例としては、Mg、Y、Ag、Al、Ge、Bi、Se、Gd等があ
げられる。
In the present invention, desirably, the metal powder is II A
Tribe, IIIA, IB, IIIB, IVB, VB, VIB
A metal selected from the group 1 and rare earth metals is used. These metals may be used in combination of two or more. In that case, the metal powder used may be in the form of a mixture or an alloy. Examples of metals preferably used in the present invention include Mg, Y, Ag, Al, Ge, Bi, Se, Gd and the like.

上記金属粉末の粒径は特に制限されることはないが、
リン化ホウ素粉末と均一に混合出来るようにするため
に、リン化ホウ素粉末の粒径とあまり差異がないものが
好ましい。
The particle size of the metal powder is not particularly limited,
In order to be able to mix uniformly with the boron phosphide powder, it is preferable that the particle diameter of the boron phosphide powder does not significantly differ from that of the boron phosphide powder.

〔配合〕[Formulation]

上記金属は、リン化ホウ素に対して5モル%ないし50
モル%添加すべきである。添加量が5モル%よりも低い
場合は、十分な焼結密度と小さい比抵抗値を有する焼結
体を得ることが出来ず、また50モル%よりも多くなると
リン化ホウ素の熱電性能が低下する。
The metal is 5 mol% to 50 mol% based on boron phosphide.
Mole% should be added. If the amount is less than 5 mol%, a sintered body having a sufficient sintering density and a small specific resistance cannot be obtained, and if it exceeds 50 mol%, the thermoelectric performance of boron phosphide decreases. I do.

〔焼結体の製造〕[Manufacture of sintered body]

リン化ホウ素に金属粉末を添加した混合物は、例えば
ホットプレス、静水圧プレス等によって500kg f/cm2〜2
000kg f/cm2、好ましくは1000kg f/cm2〜2000kg f/cm2
の圧力を及ぼしつゝ焼結温度1300℃〜1600℃、好ましく
は1400℃〜1500℃で焼結する。
A mixture obtained by adding a metal powder to boron phosphide is, for example, 500 kgf / cm 2 to 2
000 kg f / cm 2 , preferably 1000 kg f / cm 2 to 2000 kg f / cm 2
Sintering is performed at a sintering temperature of 1300 ° C to 1600 ° C, preferably 1400 ° C to 1500 ° C.

〔実施例〕〔Example〕

平均粒径5μmのリン化ホウ素粉末に、250メッシュ
(63μm以下)の下記第1表に示される金属粉末を第1
表に示される量で添加して混合した。得られた混合物の
約0.4gを直径10φmmの金型に充填し、圧力1000kg f/c
m2、温度1400℃〜1500℃、2〜5時間の条件でホットプ
レス処理した。
First, 250 mesh (63 μm or less) metal powder shown in Table 1 below was added to boron phosphide powder having an average particle size of 5 μm.
It was added and mixed in the amounts shown in the table. About 0.4 g of the obtained mixture was filled into a mold having a diameter of 10 mm, and the pressure was set to 1000 kgf / c.
Hot pressing was performed under the conditions of m 2 , temperature of 1400 ° C. to 1500 ° C., and 2 to 5 hours.

得られた焼結体について、焼結密度および比抵抗値
(常温)を測定したところ、第1表に示される結果が得
られた。
When the sintered density and the specific resistance (normal temperature) of the obtained sintered body were measured, the results shown in Table 1 were obtained.

次にGeについては、熱電特性を測定した。熱電能は材
料両端の温度差における熱起電力を測定し、電気伝導率
は改良型4端子法で測定した。
Next, the thermoelectric characteristics of Ge were measured. The thermoelectric power measured the thermoelectromotive force at the temperature difference between both ends of the material, and the electric conductivity was measured by an improved four-terminal method.

結果を第1図および第2図に示す。 The results are shown in FIG. 1 and FIG.

素粉末を焼結して得られた焼結体 第1表をみるとリン化ホウ素粉末に5モル%の金属粉
末を添加すると相対密度は70%以上となり比抵抗値は2.
5Ω・cm以下となり、更に10モル%に金属粉末を添加す
ると相対密度は85%以上となり、また更にAlでは20モル
%の添加で相対密度は97%と極めて高くかつ比抵抗値は
0.0583Ω・cmと極めて低くなり、Geでは20モル%の添加
で相対密度は90%、比抵抗値は0.790Ω・cmとと良好な
結果が得られる。
Sintered body obtained by sintering elementary powder According to Table 1, when 5 mol% of metal powder is added to boron phosphide powder, the relative density becomes 70% or more and the specific resistance value becomes 2.
When the metal powder is added to 10 mol%, the relative density becomes 85% or more. Further, when Al is added to 20 mol%, the relative density becomes extremely high at 97%, and the specific resistance value is increased.
With a very low value of 0.0583 Ω · cm, the addition of 20 mol% of Ge gives a good result of a relative density of 90% and a specific resistance of 0.790 Ω · cm.

特にGeについては第1図をみるとグラフ(×−×)で
表わされる7モル%混合率(試料No12)では約200K以下
で起電力が負になり試料はこの温度以下でn型素子に変
換し、グラフ(○−○)で表わされる15モル%混合率
(試料No13)では約600K以下で起電力が負になり試料は
この温度以下でn型素子に変換し、グラフ(□−□)で
表わされる20モル%混合率(試料No14)では約700K以下
で起電力が負になり試料はこの温度以下でn型素子に変
換することが判明する。しかしGeを含まないグラフ(●
−●)で表わされる試料No15では測定温度範囲において
高い正の起電力を示す。
In particular, as for Ge, the electromotive force becomes negative at about 200K or less at a 7 mol% mixing ratio (sample No. 12) represented by a graph (×-×) in FIG. At a mixing rate of 15 mol% (sample No. 13) represented by the graph (○-○), the electromotive force becomes negative below about 600K, and the sample is converted to an n-type element below this temperature. At a mixing ratio of 20 mol% (sample No. 14) represented by, the electromotive force becomes negative at about 700 K or lower, and it is found that the sample is converted to an n-type element at this temperature or lower. However, a graph that does not include Ge (●
Sample No. 15 represented by-●) shows a high positive electromotive force in the measurement temperature range.

また第2図をみると測定温度範囲においてGeを含まな
い試料No15では格段に低い電気伝導率(高い比抵抗値)
を示すが、Ge混合率が大きくなるにつれて電気伝導率は
顕著に上昇する。
FIG. 2 shows that the sample No. 15 which does not contain Ge in the measurement temperature range has a much lower electric conductivity (high specific resistance).
However, as the Ge mixing ratio increases, the electric conductivity increases significantly.

〔作用効果〕(Effects)

本発明によればリン化ホウ素粉末に金属粉末を5モル
%〜50モル%添加することにより、金属粉末のバインダ
ー作用によって1300℃〜1600℃の低温でかつ500kg f/cm
2〜2000kg f/cm2の低圧下において高い相対密度と小さ
い比抵抗値を有する焼結体であるリン化ホウ素系半導体
素子が得られる。また特にGeでは5モル%以上の添加で
比較的高温でもn型に変換する素子が得られる。
According to the present invention, by adding 5 to 50 mol% of the metal powder to the boron phosphide powder, a low temperature of 1300 ° C. to 1600 ° C. and 500 kg f / cm by the binder action of the metal powder.
A boron phosphide-based semiconductor device which is a sintered body having a high relative density and a small specific resistance under a low pressure of 2 to 2000 kg f / cm 2 is obtained. In particular, when Ge is added in an amount of 5 mol% or more, an element that can be converted to an n-type even at a relatively high temperature can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は種々の混合率のGeを含む試料の熱起電力のグラ
フ、第2図は同試料の温度と電気伝導率を示すグラフで
ある。 図中、●−●:Ge含有率0、 ×−×:Ge含有率5モル%、 ○−○:Ge含有率15モル%、 □−□:Ge含有率20モル%、
FIG. 1 is a graph of the thermoelectromotive force of samples containing various mixing ratios of Ge, and FIG. 2 is a graph showing the temperature and electric conductivity of the sample. In the figure, ●-●: Ge content 0, ×-×: Ge content 5 mol%, ○-○: Ge content 15 mol%, □-□: Ge content 20 mol%,

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−9713(JP,A) 特開 昭54−144429(JP,A) 特開 平1−243563(JP,A) 特開 昭54−52464(JP,A) 特開 昭53−4467(JP,A) 特開 昭48−40695(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 35/22 C01B 35/08 C01B 35/14──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-9713 (JP, A) JP-A-54-144429 (JP, A) JP-A-1-243563 (JP, A) JP-A-54-144 52464 (JP, A) JP-A-53-4467 (JP, A) JP-A-48-40695 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 35/22 C01B 35 / 08 C01B 35/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リン化ホウ素粉末に、金属粉末5モル%〜
50モル%を添加し、1300℃〜1600℃の温度および500kg
f/cm2〜2000kg f/cm2の圧力で焼結することを特徴とす
るリン化ホウ素系半導体素子の製造方法
1. The method according to claim 1, wherein the boron phosphide powder has a metal powder content of 5 mol% or less.
Add 50 mol%, temperature of 1300 ℃ ~ 1600 ℃ and 500kg
A method for manufacturing a boron phosphide-based semiconductor device, comprising sintering at a pressure of f / cm 2 to 2000 kg f / cm 2.
【請求項2】該金属粉末がII A族、III A族、I B族、II
I B族、IV B族、V B族、VI B族、および希土類金属から
選択された少なくとも1種の金属よりなることを特徴と
する特許請求の範囲第1項記載のリン化ホウ素系半導体
素子の製造方法
2. The method according to claim 2, wherein the metal powder is a group IIA, IIIA, IB, II
2. The production of a boron phosphide-based semiconductor device according to claim 1, comprising at least one metal selected from the group consisting of IB, IVB, VB, VIB, and rare earth metals. Method
JP2198630A 1990-07-25 1990-07-25 Method for manufacturing boron phosphide-based semiconductor device Expired - Lifetime JP2818851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2198630A JP2818851B2 (en) 1990-07-25 1990-07-25 Method for manufacturing boron phosphide-based semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2198630A JP2818851B2 (en) 1990-07-25 1990-07-25 Method for manufacturing boron phosphide-based semiconductor device

Publications (2)

Publication Number Publication Date
JPH0483382A JPH0483382A (en) 1992-03-17
JP2818851B2 true JP2818851B2 (en) 1998-10-30

Family

ID=16394399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2198630A Expired - Lifetime JP2818851B2 (en) 1990-07-25 1990-07-25 Method for manufacturing boron phosphide-based semiconductor device

Country Status (1)

Country Link
JP (1) JP2818851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813312A (en) * 2020-12-25 2021-05-18 西安交通大学 Boron phosphide-filled aluminum-based heat management material and preparation method thereof

Also Published As

Publication number Publication date
JPH0483382A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
JP2002064227A (en) Thermoelectric conversion material and its manufacturing method
JP7344531B2 (en) Thermoelectric conversion material and its manufacturing method
CN108383526B (en) Cu1.8S-based polycrystalline bulk thermoelectric material and preparation method thereof
JP2019064899A (en) Semiconductor sintered body, electrical and electronic member, and method for producing semiconductor sintered body
US4525429A (en) Porous semiconductor dopant carriers
JP2000261047A (en) Semiconductor material for thermoelectric conversion and manufacture of the same
CN114506823A (en) N-type PbSe-based thermoelectric material and preparation method and application thereof
CN111033772B (en) Thermoelectric material and thermoelectric module
JP2818851B2 (en) Method for manufacturing boron phosphide-based semiconductor device
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
TWI768045B (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and method for producing magnesium-based thermoelectric conversion material
US4798764A (en) Arsenate dopant sources and method of making the sources
JP3541549B2 (en) Thermoelectric material for high temperature and method for producing the same
EP0156054B1 (en) Porous silicon nitride semiconductor dopant carriers
JPH0724258B2 (en) Solid diffusion source, doped silicon wafer and method of making same
JP4273692B2 (en) Method for producing thermoelectric conversion material
JP3476343B2 (en) Thermoelectric conversion material
EP0115950A2 (en) New powder pressed N-type thermoelectric materials and method of making same
KR101825302B1 (en) Electronic component joining alloy with excellent joining characteristic under high temperature and electronic component joining paste with the same
JP2000261048A (en) Semiconductor material for thermoelectric conversion and manufacture of the same
JPH1012933A (en) Manufacture of material powder for fesi2 thermoelectric conversion element
JP4373296B2 (en) Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material
US3343373A (en) Two-phase thermo-electric body comprising a boron-carbon matrix
KR20180075294A (en) Manganese-silicon thermoelectric materials with improved thermoelectric properties and preparation method thereof
JPH09289339A (en) Thermoelectric transducer material and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term