JP2818271B2 - Magnetic field application lifting device - Google Patents

Magnetic field application lifting device

Info

Publication number
JP2818271B2
JP2818271B2 JP18844590A JP18844590A JP2818271B2 JP 2818271 B2 JP2818271 B2 JP 2818271B2 JP 18844590 A JP18844590 A JP 18844590A JP 18844590 A JP18844590 A JP 18844590A JP 2818271 B2 JP2818271 B2 JP 2818271B2
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
crucible
electromagnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18844590A
Other languages
Japanese (ja)
Other versions
JPH0477386A (en
Inventor
富士男 平山
Original Assignee
東芝メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝メカトロニクス株式会社 filed Critical 東芝メカトロニクス株式会社
Priority to JP18844590A priority Critical patent/JP2818271B2/en
Publication of JPH0477386A publication Critical patent/JPH0477386A/en
Application granted granted Critical
Publication of JP2818271B2 publication Critical patent/JP2818271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、複数台並設され、それぞれが引上制御設
定値に従ってるつぼの回転速度、結晶の引上速度および
回転速度を制御すると共に、るつぼ内の融液に対流抑制
用の磁場を印加する電磁石を有し、この電磁石の電流を
磁束密度設定値に従って制御し、かつ、この電磁石を移
動速度設定値に従って操業位置および操業準備位置間で
移動させる磁場印加引上装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention has a plurality of units arranged side by side, each of which has a crucible rotation speed, a crystal pulling speed and a rotation speed according to a pulling control set value. And an electromagnet that applies a magnetic field for suppressing convection to the melt in the crucible, controls the current of the electromagnet according to the magnetic flux density set value, and operates the electromagnet according to the moving speed set value. The present invention relates to a magnetic field application pulling device that moves between operation preparation positions.

(従来の技術) 従来、シリコン単結晶の製造に引上法(Czochralski
method)が多く採用されてきた。
(Prior art) Conventionally, the pull-up method (Czochralski
method) has been widely adopted.

この方法では、るつぼ内の単結晶シリコン融液の熱対
流が起き、このとき石英るつぼから多量の酸素が溶け出
して単結晶に混入する結果、酸素濃度のコントロールが
難しく、酸素濃度が不均一になりやすかった。
In this method, thermal convection of the single crystal silicon melt in the crucible occurs, and at this time a large amount of oxygen melts out of the quartz crucible and mixes into the single crystal, so that it is difficult to control the oxygen concentration, and the oxygen concentration becomes uneven. It was easy to become.

また、単結晶シリコン融液の熱対流により酸素濃度が
局部的に高くなった部位では、転位、積層欠陥、不純物
の析出等が発生し、これらが電気的特性を劣化させると
共に、製品不良を招いていた。
In addition, dislocations, stacking faults, deposition of impurities, and the like occur in portions where the oxygen concentration is locally increased due to thermal convection of the single crystal silicon melt, which deteriorates electrical characteristics and causes product defects. I was

さらにまた、単結晶シリコン融液の熱対流によりシリ
コン融液中の温度が大きく変動し、安定した結晶引上を
困難にしていた。
Furthermore, the temperature in the silicon melt greatly fluctuates due to the thermal convection of the single crystal silicon melt, making it difficult to pull up the crystal stably.

このため、最近、シリコン融液の対流を防止した磁場
印加引上法(Magnetic Field Czochralski method)が
開発された。
For this reason, a magnetic field application pull-up method (Magnetic Field Czochralski method) that prevents convection of the silicon melt has recently been developed.

この方法は、石英るつぼの側面から強力な静磁場印加
しながら単結晶を引上げるもので、この方法によるとる
つぼ中のシリコン融液の対流を磁力により抑制している
ので、酸素濃度が均一で欠陥の少ない結晶を得ることが
できるほか、シリコン融液の過渡変動を小さく抑えるこ
とができる。
This method pulls a single crystal while applying a strong static magnetic field from the side of the quartz crucible. According to this method, the convection of the silicon melt in the crucible is suppressed by magnetic force, so that the oxygen concentration is uniform. A crystal with few defects can be obtained, and transient fluctuation of the silicon melt can be suppressed to be small.

一般に、このような磁場印加引上装置によるシリコン
単結晶の製造においては、生産性、スペース、量産効果
等の観点から多数台の引上装置を並べて設置することが
多く、このとき、隣接する結晶引上装置の電磁石の漏れ
磁束の影響を受ける。
Generally, in the production of a silicon single crystal using such a magnetic field application pulling apparatus, many pulling apparatuses are often arranged side by side from the viewpoint of productivity, space, mass production effect, and the like. It is affected by the leakage flux of the electromagnet of the lifting device.

この場合、漏れ磁束の密度が大きいと自動直径制御の
ための直径検出用のITVが漏れ磁束の影響を受け、さら
に、他の制御装置も同様に漏れ磁束の影響を受けるの
で、自動直径制御および自動引上制御が正常に行われな
くなる。
In this case, if the density of the leakage magnetic flux is large, the ITV for diameter detection for automatic diameter control is affected by the leakage magnetic flux, and further, other control devices are similarly affected by the leakage magnetic flux. Automatic pull-up control cannot be performed normally.

このため、漏れ磁束の影響がないように、磁場印加引
上装置間の寸法を十分に確保したり、結晶引上装置間に
磁場遮蔽板を設けたりしたが、漏れ磁束の影響をなくす
ることは実際上は困難であった。
For this reason, the dimensions between the magnetic field application pulling devices were sufficiently ensured and the magnetic field shielding plate was provided between the crystal pulling devices so as not to be affected by the leakage magnetic flux. Was difficult in practice.

従って、一般的には、操業上の最小磁束密度で、か
つ、相手側よりの漏れ磁束密度が最大となる場合にも問
題なく操業ができるように寸法、間隔をとったり、遮蔽
板を設けたりしておく、これを多数台の磁場印加引上装
置を設置する場合の指針としていた。
Therefore, in general, dimensions and intervals are provided or a shielding plate is provided so that operation can be performed without any problem even when the minimum magnetic flux density in operation and the leakage magnetic flux density from the other party is maximized. This was used as a guideline when installing a large number of magnetic field application pulling devices.

しかし、この指針に基いて設置間隔あるいは遮蔽板の
仕様を決定しても、単結晶の製造はるつぼ内への材料の
装填、溶解、引上の一連のサイクリックな操業となるの
で、石英るつぼの交換あるいは材料の装填時に、電磁石
を移動させる必要があるため、これによう磁場の変動を
考慮する必要がある。
However, even if the installation interval or the specifications of the shielding plate are determined based on these guidelines, the production of a single crystal is a series of cyclic operations of loading, melting, and pulling the material into the crucible. It is necessary to move the electromagnet at the time of replacement or loading of the material, and thus it is necessary to consider the fluctuation of the magnetic field.

第3図はこの種の従来の磁場印加引上装置の概略構成
図である。同図において、並設される2台の磁場印加引
上装置のうち、A側は単結晶引上中であり、石英るつぼ
1A内のシリコン融液2Aはヒータ3Aにより加熱されながら
徐々に引上げられシリコン単結晶4Aが製造される。
FIG. 3 is a schematic configuration diagram of a conventional magnetic field application pulling apparatus of this kind. In the figure, of the two magnetic field application pulling devices arranged in parallel, the A side is in the process of pulling a single crystal, and a quartz crucible is used.
The silicon melt 2A in 1A is gradually pulled up while being heated by the heater 3A to produce a silicon single crystal 4A.

また、石英るつぼ1A内のシリコン融液2Aに対しては、
電磁石5Aによりヒータ3Aの外側から磁場が印加されてい
る。
For the silicon melt 2A in the quartz crucible 1A,
A magnetic field is applied from outside the heater 3A by the electromagnet 5A.

B側の磁場印加引上装置においては、電磁石5Bを石英
るつぼ1Bの交換またはシリコン材料の装填のために下降
させており、石英るつぼ1Bの交換またはシリコン材料の
装填後に、図に破線で示した位置まで駆動装置6Bにより
上昇させ、A側の磁場印加引上装置と同じ状態にしてシ
リコン単結晶4Bを製造する。
In the magnetic field application pulling device on the B side, the electromagnet 5B is lowered for replacement of the quartz crucible 1B or for loading of the silicon material. The silicon single crystal 4B is manufactured by moving it up to the position by the driving device 6B in the same state as the magnetic field application pulling device on the A side.

これら駆動装置6A,6Bはそれぞれ電磁石5A,5Bに付属し
て設置されており、それぞれの操業状態に応じてオペレ
ータが上昇押しボタン7A,7Bまたは下降押しボタン8A,8B
を操作することにより、駆動電源装置9A,9Bを介して駆
動装置6A,6Bを制御し、磁場印加電磁石5A,5Bを上昇、下
降させる。
These driving devices 6A, 6B are attached to the electromagnets 5A, 5B, respectively, and the operator presses the up push buttons 7A, 7B or the down push buttons 8A, 8B according to the respective operating conditions.
, The drive devices 6A and 6B are controlled via the drive power supply devices 9A and 9B, and the magnetic field applying electromagnets 5A and 5B are raised and lowered.

ここで、A側が磁場印加引上中であるときにB側が電
磁石5Bを上昇させたとき、この電磁石5Bの漏れ磁束によ
るA側の石英るつぼ1A内の磁束密度変化および引上制御
の様子を第4図に示す。
Here, when the B side raises the electromagnet 5B while the A side is in the process of applying the magnetic field, when the B side raises the electromagnet 5B, the change of the magnetic flux density in the A side quartz crucible 1A due to the leakage magnetic flux of the electromagnet 5B and the state of the pulling control are described. It is shown in FIG.

すなわち、A側の石英るつぼ1A内の磁束密度は、時刻
t1までほぼA側の電磁石5Aのみによる一定の磁束密度G1
に保持される。この状態でA側は引上速度制御および直
径制御の両方が正常に行われ、単結晶も正常に引上げら
れている。
That is, the magnetic flux density in the quartz crucible 1A on the A side
constant magnetic flux density only by approximately the A-side electromagnet 5A to t 1 G 1
Is held. In this state, on the A side, both the pulling speed control and the diameter control are performed normally, and the single crystal is also pulled up normally.

ところが、時刻t1にて操業準備位置にあったB側の電
磁石5Bを上昇させると、その漏れ磁束G2の影響を受け、
A側の石英るつぼ1A内の磁束密度はG1から急速に増大
し、B側の電磁石5Bが操業位置に到達する時刻t2での磁
束密度はG1+G2となる。
However, increasing the electromagnet 5B of a B-side operation preliminary position at time t 1, the influence of the leakage flux G 2,
The magnetic flux density in the quartz crucible 1A of the A-side is rapidly increased from G 1, the magnetic flux density at time t 2 when the B-side of the electromagnet 5B reaches the operating position is G 1 + G 2.

このように、B側の電磁石5Bの移動によりA側の石英
るつぼ1A内の磁束密度が変化する間、A側の引上制御お
よび直径制御は、それぞれ第4図の曲線a,bに示すよう
に、大きくハンチングして正常な引上が不可能となる。
これは、石英るつぼ内の磁束密度の変化により融液の流
動特性が変化するためと考えられる。
As described above, while the magnetic flux density in the quartz crucible 1A on the A side is changed by the movement of the electromagnet 5B on the B side, the pull-up control and the diameter control on the A side are performed as shown by curves a and b in FIG. In addition, a large hunting becomes impossible and a normal pulling up is impossible.
This is probably because the flow characteristics of the melt change due to the change in the magnetic flux density in the quartz crucible.

仮に、引上が可能であったとしても、融液の流動特性
の変化に伴う部分的な不純物の集積、酸素濃度の増大に
より転移が生じやすくなり、電気的特性の劣化によって
製品価値を低下させる。
Even if pulling is possible, the transition is likely to occur due to the partial accumulation of impurities and the increase in oxygen concentration due to the change in the flow characteristics of the melt, which lowers the product value by deteriorating the electrical characteristics. .

これを防ぐために、従来は結晶引上装置の設置間隔を
十分に広げたり、漏れ磁束を少なくする堅固な遮蔽板を
設置したりしていた。
In order to prevent this, conventionally, the spacing between the crystal pulling devices has been sufficiently widened, and a rigid shielding plate for reducing the leakage magnetic flux has been provided.

(発明が解決しようとする課題) 僅かに数台の磁場印加引上装置を設置するだけであれ
ば、上述したように相互間隔を広げたり、あるいは、堅
固な遮蔽板を設置する方法は確かに有効ではある。しか
しながら、生産性を上げるべく引上装置を多数台並設す
る場合には、これらの方法を採用することができず、高
品質の単結晶の製造が出来ないという問題があった。
(Problems to be Solved by the Invention) If only a few magnetic field application pulling devices are installed, the method of increasing the mutual interval or installing a solid shielding plate as described above is certainly. It is valid. However, when a large number of pulling devices are juxtaposed in order to increase productivity, there is a problem that these methods cannot be adopted and high-quality single crystals cannot be produced.

この発明は上記の問題点を解決するためになされたも
ので、多数台並設しても漏れ磁束の影響を受け難くし、
これによって高品質の単結晶を製造することのできる磁
場印加引上装置を得ることを目的とする。
The present invention has been made in order to solve the above-described problems.
It is an object of the present invention to obtain a magnetic field application pulling apparatus capable of producing a high quality single crystal.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) この発明は、直近の引上装置の電磁石が移動する位置
を自己のるつぼ内の磁場に換算して記憶させてある位置
記憶手段と、前記直近の引上装置の磁束密度設定値と前
記位置記憶手段の記憶データとに基いて、自己のるつぼ
に侵入する漏れ磁束密度を演算する漏れ磁束密度演算手
段と、演算された漏れ磁束密度と前記直近の引上装置の
移動速度設定値とに基いて自己のるつぼの磁束密度の変
化率を演算する磁束密度変化率演算手段と、演算された
磁束密度変化率に基づき、自己のるつぼに侵入する漏れ
磁束に起因する結晶引上状態の変化を抑制するように自
己の引上制御設定値を補正する引上制御補正値演算手段
とを備えたことを特徴とするものである。
(Means for Solving the Problems) The present invention relates to a position storage means for storing a position where an electromagnet of a latest lifting device moves in a magnetic field in its own crucible and storing the position, and the latest lifting device. Leakage magnetic flux density calculating means for calculating the leakage magnetic flux density penetrating into its own crucible based on the magnetic flux density set value of the position storage means and the data stored in the position storage means, and the calculated leakage magnetic flux density and the nearest lifting device A magnetic flux density change rate calculating means for calculating the change rate of the magnetic flux density of the own crucible based on the moving speed set value of the crucible; and a magnetic flux density change rate calculated based on the calculated magnetic flux density change rate. And a pull-up control correction value calculating means for correcting its own pull-up control set value so as to suppress a change in the crystal pull-up state.

(作 用) この発明においては、最も近接する他の引上装置の電
磁石の移動に伴う自己のるつぼ内の磁場の変化を記憶さ
せ、その記憶データと他の結晶引上装置の磁束密度設定
値とに基いて、自己のるつぼに侵入する漏れ磁束密度を
演算し、さらに、この漏れ磁束密度と他の結晶引上装置
の移動速度設定値とに基いて自己のるつぼの磁束密度の
変化率を演算し、この磁束密度変化率に基づき、漏れ磁
束密度の変化に起因する結晶引上状態の変化を抑制する
ように自己の引上制御設定値を補正するので、多数台並
設しても漏れ磁束の影響を受け難くし、これによって高
品質の単結晶を製造することができる。
(Operation) In the present invention, the change of the magnetic field in its own crucible due to the movement of the electromagnet of the other pulling device closest to the storage device is stored, and the stored data and the magnetic flux density set value of the other crystal pulling device are stored. Calculate the leakage magnetic flux density that penetrates into the own crucible, and further calculates the rate of change of the magnetic flux density of the own crucible based on the leakage magnetic flux density and the moving speed set value of another crystal pulling apparatus. Calculate, and based on this magnetic flux density change rate, correct its own pulling control set value so as to suppress the change in the crystal pulling state caused by the change in leakage magnetic flux density. It is less susceptible to magnetic flux, which allows high quality single crystals to be produced.

(実施例) 第1図はこの発明の一実施例の概略構成図である。こ
こでは、説明を簡単にするために、最も近接して相互に
影響を受ける2台の磁場印加引上装置を例示する。
(Embodiment) FIG. 1 is a schematic configuration diagram of an embodiment of the present invention. Here, for the sake of simplicity, two magnetic field applying and pulling-up devices which are closest and mutually affected will be exemplified.

同図において、A側およびB側の2台の磁場印加引上
装置は、それぞれ石英るつぼ1A,1B内のシリコン融液2A,
2Bをヒータ3A,3Bで加熱しながらシリコン単結晶4A,4Bを
製造する。電磁石5A,5Bはヒータ3A,3Bの外側から石英る
つぼ1A,1B内のシリコン融液2A,2Bに静磁場を印加し、そ
の状態でシリコン単結晶4A,4Bの引上を行う。電磁石5A,
5Bは上昇押しボタン7A,7Bおよび下降押しボタン8A,8Bを
付帯する駆動電源装置9A,9Bに接続された駆動装置6A,6B
によって上昇、下降制御される。さらに、電磁石5A,5B
は駆動電源装置9A,9Bにより通電電流が制御され、この
電流に比例した磁束密度の磁場が石英るつぼ1A,1B内の
シリコン融液2A,2Bに印加される。
In the figure, two magnetic field applying and pulling devices on the A side and the B side respectively include silicon melts 2A and 2A in quartz crucibles 1A and 1B, respectively.
While heating 2B with heaters 3A and 3B, silicon single crystals 4A and 4B are manufactured. The electromagnets 5A and 5B apply a static magnetic field to the silicon melts 2A and 2B in the quartz crucibles 1A and 1B from outside the heaters 3A and 3B, and pull up the silicon single crystals 4A and 4B in that state. Electromagnet 5A,
5B is a driving device 6A, 6B connected to a driving power supply device 9A, 9B accompanying the up push button 7A, 7B and the down push button 8A, 8B.
The ascending and descending are controlled. In addition, electromagnets 5A, 5B
The drive current is controlled by the drive power supply devices 9A and 9B, and a magnetic field having a magnetic flux density proportional to the current is applied to the silicon melts 2A and 2B in the quartz crucibles 1A and 1B.

この場合、A側およびB側両方の磁場印加引上装置
は、操業上の最小磁束密度で、かつ、相手側からの漏れ
磁束密度が最大となる場合にも操業可能であるように、
設置間隔が空けられるか、あるいは、遮蔽板が設置され
ているかする。
In this case, both the A-side and B-side magnetic field application pulling devices have the minimum operational magnetic flux density, and can operate even when the leakage magnetic flux density from the other party is the maximum.
Check if the installation interval is left or if a shielding plate is installed.

一方、A側およびB側の2台の磁場印加引上装置は、
操業磁束密度を設定して駆動電源装置9A,9Bに与える磁
束密度設定器13A,13Bと、互いに他方の電磁石5A,5Bが操
業準備位置と操業位置との間を移動する位置を自己の石
英るつぼ1A,1B内の漏れ磁束密度に換算して記憶させた
位置状態記憶部14A,14Bとを備え、さらに、互いに他方
の磁束密度設定器13B、13Aの設定値と、位置状態記憶部
14A,14Bの記憶データとに基いて、自己の石英るつぼ1A,
1B内の漏れ磁束密度を演算する漏れ磁束密度演算部15A,
15Bとを備えている。
On the other hand, the two magnetic field application pulling devices on the A side and the B side are:
The magnetic flux density setting units 13A and 13B that set the operation magnetic flux density and give the drive power supply devices 9A and 9B, and the position where the other electromagnets 5A and 5B move between the operation preparation position and the operation position are set to their own quartz crucibles. 1A, a position state storage unit 14A, 14B which is stored by converting into a leakage magnetic flux density in 1B, and further, the set values of the other magnetic flux density setters 13B, 13A, the position state storage unit
Based on the stored data of 14A and 14B, own quartz crucible 1A,
Leakage magnetic flux density calculator 15A, which calculates the magnetic flux density in 1B,
15B.

また、A側およびB側の2台の磁場印加引上装置は、
自己の磁束密度設定器13A,13Bの設定値と、互いに他方
の電磁石5B,5Aの移動速度を設定する移動速度設定器16
B,16Aの設定値とに基き、自己の石英るつぼ1A,1B内の磁
束密度変化率を演算する磁束密度変化率演算部17A,17B
を備えている。
The two magnetic field application pulling devices on the A side and the B side are:
A moving speed setting device 16 for setting the set values of its own magnetic flux density setting devices 13A and 13B and the moving speed of the other electromagnets 5B and 5A.
Magnetic flux density change rate calculators 17A and 17B that calculate the magnetic flux density change rates in their own quartz crucibles 1A and 1B based on the set values of B and 16A.
It has.

さらにまた、A側およびB側の2台の磁場印加引上装
置は、磁束密度変化率演算部17A,18Bの出力に基いて、
るつぼの回転速度、結晶の引上速度および回転速度等の
引上制御設定値の補正値を演算する引上制御補正値演算
部18A,18Bを備え、この補正値を引上制御部20A,20Bに加
えている。この引上制御部20A,20Bはそれぞれ引上制御
設定部19A,19Bの設定値に基いて引上昇降装置10A,10B、
単結晶回転装置11A,11B、るつぼ回転装置12A,12Bを制御
するもので、引上制御補正値演算部18A,18Bはその設定
値を補正するものである。
Furthermore, the two magnetic field applying and pulling devices on the A side and the B side are based on the outputs of the magnetic flux density change rate calculating units 17A and 18B.
Includes pull-up control correction value calculation units 18A and 18B for calculating correction values of pull-up control set values such as the crucible rotation speed, crystal pull-up speed, and rotation speed, and outputs the correction values to pull-up control units 20A and 20B. In addition to The lifting control units 20A and 20B are based on the set values of the lifting control setting units 19A and 19B, respectively.
The single crystal rotating devices 11A and 11B and the crucible rotating devices 12A and 12B are controlled, and the pull-up control correction value calculation units 18A and 18B correct the set values.

上記のように構成された本実施例の動作を以下に説明
する。
The operation of the present embodiment configured as described above will be described below.

A側の磁場印加引上装置は電磁石5Aを操業位置まで上
昇させて磁場印加引上中であり、B側の磁場印加引上装
置は電磁石5Bを実線で示す位置、すなわち、操業準備位
置まで下降させて操業準備状態にあったとする。
The magnetic field applying and pulling device on the A side raises the electromagnet 5A to the operating position and is applying the magnetic field, and the magnetic field applying and pulling device on the B side lowers the electromagnet 5B to the position shown by the solid line, that is, the operation preparation position. Let's say you were ready for operation.

ここで、B側の磁場印加引上装置の石英るつぼ1Bおよ
びシリコン融液2Bの充填が完了して実操業に入る場合、
オペレータによる上昇押しボタン7Bの操作で電磁石5Bは
破線の位置まで上昇せしめられる。
Here, when the filling of the quartz crucible 1B and the silicon melt 2B of the magnetic field application pulling apparatus on the B side is completed and the actual operation starts,
The electromagnet 5B is raised to the position indicated by the broken line by the operation of the raising push button 7B by the operator.

一方、操業状態にあるA側のシリコン単結晶4Aは引上
昇降装置10Aおよび単結晶回転装置11Aにより回転させな
がら低速で引上げられる。このとき、るつぼ回転装置12
Aにより石英るつぼ1Aはシリコン単結晶4Aと逆方向に低
速回転させられる。
On the other hand, the silicon single crystal 4A on the A side in the operating state is pulled up at a low speed while being rotated by the pulling and lowering device 10A and the single crystal rotating device 11A. At this time, the crucible rotating device 12
By A, the quartz crucible 1A is rotated at a low speed in the opposite direction to the silicon single crystal 4A.

そして、B側の電磁石5A,5Bが破線の位置まで上昇せ
しめられるとき、漏れ磁束密度演算部15Aは磁束密度設
定器13Bの磁束密度設定値と位置状態記憶部14Aの記憶デ
ータとを入力し、B側の磁場印加引上装置の電磁石5Bに
よる石英るつぼ1Aの漏れ磁束密度を演算する。このと
き、B側の電磁石5Bの移動速度が移動速度設定器16Bで
設定されており、磁束密度変化率演算部17Aはこの移動
速度設定値と、磁束密度設定器13Aの設定値と、漏れ磁
束密度演算部15Aの出力に基いて、A側石英るつぼ1Aの
磁束密度の変化率を演算する。引上制御補正値演算部18
Aはこの磁束密度の変化率に応じて、予め引上制御設定
部19Aで設定された単結晶引上速度、単結晶回転速度、
石英るつぼ1Aの回転速度等の、いわゆる、引上制御設定
値の補正値を演算する。引上制御部20Aは引上制御設定
部19Aの設定値と引上制御補正値演算部18Aの補正値とを
加算し、その結果に応じて引上昇降装置10A、単結晶回
転装置11Aおよびるつぼ回転装置12Aを制御する。
Then, when the electromagnets 5A and 5B on the B side are raised to the positions indicated by the broken lines, the leakage magnetic flux density calculator 15A inputs the magnetic flux density set value of the magnetic flux density setter 13B and the storage data of the position state storage unit 14A, The leakage magnetic flux density of the quartz crucible 1A by the electromagnet 5B of the magnetic field applying and pulling apparatus on the B side is calculated. At this time, the moving speed of the electromagnet 5B on the B side is set by the moving speed setting unit 16B, and the magnetic flux density change rate calculation unit 17A calculates the moving speed set value, the set value of the magnetic flux density set unit 13A, and the leakage magnetic flux. The change rate of the magnetic flux density of the A-side quartz crucible 1A is calculated based on the output of the density calculator 15A. Lift control correction value calculator 18
A is a single crystal pulling speed, a single crystal rotation speed, which is set in advance by the pulling control setting unit 19A in accordance with the rate of change of the magnetic flux density.
A so-called correction value of a pull-up control set value such as a rotation speed of the quartz crucible 1A is calculated. The pull-up control unit 20A adds the set value of the pull-up control setting unit 19A and the correction value of the pull-up control correction value calculation unit 18A, and according to the result, raises and lowers the device 10A, the single crystal rotating device 11A, and the crucible. The rotation device 12A is controlled.

第2図はこれらの関係を示した説明図である。 FIG. 2 is an explanatory diagram showing these relationships.

すなわち、電磁石5Bを操業準備位置から操業位置まで
上昇させて操業運転に入る場合、電磁石5Bの通電電流は
一定であるため、電磁石5Bの発生磁束は常に一定であ
る。
That is, when the electromagnet 5B is raised from the operation preparation position to the operation position to enter the operation operation, the current flowing through the electromagnet 5B is constant, and thus the magnetic flux generated by the electromagnet 5B is always constant.

今、時刻t1でオペレータが上昇押しボタン7Bを押し操
作すると、電磁石5Bは移動速度設定器16Bの設定値に従
って上昇し、時刻t2で操業位置に到達する。このとき、
石英るつぼ1A部の磁束密度は時刻t1までG1に保持され、
時刻t1から速やかに増大し時刻t2以降(G1+G2)に保持
される。
Now, at time t 1 the operator pressed the rise pushbutton 7B, the electromagnet 5B increases according to the set value of the moving speed setter 16B, and reaches the operating position at time t 2. At this time,
The magnetic flux density of the quartz crucible 1A unit is held in G 1 to time t 1,
Is held in the rapidly increased time t 2 after the time t 1 (G 1 + G 2 ).

このようにして、石英るつぼ1Aの磁束密度がG1から
(G1+G2)まで変化する時刻t1〜t2の間、引上制御補正
値演算部18Aが単結晶引上速度、単結晶回転速度および
るつぼ回転速度の補正値を演算して引上制御部20Aに加
えるので、単結晶の引上速度はN1からN1′[cm/h]に、
単結晶回転速度はN2からN2[rpm]に、るつぼ回転速度
はN3からN3[rpm]にそれぞれ低減され、A側側磁束密
度の増加によるるつぼ内の融液の流動変化を抑制するよ
うな制御がなされる。
Thus, between times t 1 ~t 2 where the magnetic flux density of the quartz crucible 1A is changed from G 1 to (G 1 + G 2), pulling the control correction value calculation unit 18A is single crystal pulling speed, single crystal Since the rotation speed and the crucible rotation speed correction values are calculated and added to the pull-up controller 20A, the pull-up speed of the single crystal is changed from N 1 to N 1 ′ [cm / h].
Single crystal rotational speed of the N 2 [rpm] from N 2, the crucible rotation speed is reduced respectively from N 3 to N 3 [rpm], suppress the flow changes in the melt in the crucible due to the increase in A-side side flux density Is performed.

なお、時刻t2以降は石英るつぼ1A中の磁束密度は一定
となるが、単結晶の引上速度、単結晶の回転速度および
るつぼの回転速度はほぼ同じ時間をかいけて当初の状態
に復帰せしめられる。
Although the time t 2 after the magnetic flux density in the quartz crucible 1A is constant, pulling rate of the single crystal, the rotational speed of the rotational speed and the crucible of the single crystal is restored almost to the original by Ke wrote the same time state I'm sullen.

かくして、この実施例によれば、電磁石の発生磁束密
度および移動速度を設定すると、るつぼ内の融液の流動
変化を抑制するように引上制御設定値を補正するので、
スペースファクタが高く、融通性に優れ、かつ、製品々
質の良好なシリコン単結晶を製造することができる。
Thus, according to this embodiment, when the generated magnetic flux density and the moving speed of the electromagnet are set, the pull-up control set value is corrected so as to suppress the change in the flow of the melt in the crucible.
It is possible to produce a silicon single crystal having a high space factor, excellent versatility, and good quality of products.

なお、上記実施例では、2台の磁場印加引上装置を例
示したが本発明はこれに限定されるものではなく、3台
以上、多数台が並設される磁場印加引上装置に適用でき
ることは言うまでもない。
In the above embodiment, two magnetic field applying and pulling devices are exemplified. However, the present invention is not limited to this, and three or more magnetic field applying and pulling devices can be applied to the magnetic field applying and pulling device. Needless to say.

なおまた、上記実施例ではシリコン単結晶の引上につ
いて説明したが、他の金属の単結晶引上にも適用でき
る。
In the above embodiment, the description has been given of the pulling of a silicon single crystal. However, the present invention can be applied to pulling of a single crystal of another metal.

また、上記実施例では電磁石を操業位置の下方に退避
させる構成のものについて説明したが、電磁石を水平方
向に移動させる構成のものにも本発明を適用し得ること
は明らかである。
Further, in the above embodiment, the configuration in which the electromagnet is retracted below the operating position has been described, but it is apparent that the present invention can be applied to a configuration in which the electromagnet is moved in the horizontal direction.

〔発明の効果〕〔The invention's effect〕

以上の説明により明らかなようにこの発明によれば、
最も近接する他の引上装置の電磁石の移動に伴う自己の
るつぼ内の磁場の変化に応じて、結晶引上状態の変化を
抑制するように自己の引上制御設定値を補正するので、
多数台並設しても漏れ磁束の影響を受け難くて、これに
よって高品質の単結晶を製造することができる。
As apparent from the above description, according to the present invention,
In accordance with the change in the magnetic field in its own crucible due to the movement of the electromagnet of the other pulling device closest to it, its own pulling control set value is corrected so as to suppress the change in the crystal pulling state,
Even if a large number of units are juxtaposed, they are hardly affected by the leakage magnetic flux, so that a high-quality single crystal can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例の概略構成図、第2図は同
実施例の動作を説明するためのタイムチャート、第3図
(a),(b)は並設される従来の磁場印加引上装置の
概略構成図、第4図は同装置の動作を説明するためのタ
イムチャートである。 1A,1B……石英るつぼ、2A,2B……シリコン融液、3A,3B
……ヒータ、4A,4B……シリコン単結晶、5A,5B……電磁
石、6A,6B……駆動装置、9A,9B……駆動電源装置、10A,
10B……引上昇降装置、11A,11B……単結晶回転装置、12
A,12B……るつぼ回転装置、13A,13B……磁束密度設定
器、14A,14B……位置状態記憶部、15A,15B……漏れ磁束
密度演算部、16A,16B……移動速度設定器、17A,17B……
磁束密度変化率演算部、18A,18B……引上制御補正値演
算部、19A,19B……引上制御設定部、20A,20B……引上制
御部。
FIG. 1 is a schematic configuration diagram of one embodiment of the present invention, FIG. 2 is a time chart for explaining the operation of the embodiment, and FIGS. 3 (a) and (b) are conventional magnetic fields arranged side by side. FIG. 4 is a schematic configuration diagram of an application pulling-up device, and FIG. 4 is a time chart for explaining the operation of the device. 1A, 1B ... quartz crucible, 2A, 2B ... silicon melt, 3A, 3B
... heater, 4A, 4B ... silicon single crystal, 5A, 5B ... electromagnet, 6A, 6B ... drive device, 9A, 9B ... drive power supply device, 10A,
10B …… Elevator, 11A, 11B …… Single crystal rotating device, 12
A, 12B ... crucible rotating device, 13A, 13B ... magnetic flux density setting unit, 14A, 14B ... position state storage unit, 15A, 15B ... leakage magnetic flux density calculating unit, 16A, 16B ... moving speed setting unit, 17A, 17B ……
Magnetic flux density change rate calculation unit, 18A, 18B ... pull-up control correction value calculation unit, 19A, 19B ... pull-up control setting unit, 20A, 20B ... pull-up control unit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数台並設され、それぞれが引上制御設定
値に従ってるつぼの回転速度、結晶の引上速度および回
転速度を制御すると共に、前記るつぼ内の融液に対流抑
制用の磁場を印加する電磁石を有し、この電磁石の電流
を磁束密度制定値に従って制御し、かつ、この電磁石を
移動速度設定値に従って操業位置および操業準備位置間
で移動させる磁場印加引上装置において、直近の引上装
置の電磁石が移動する位置を自己のるつぼ内の磁場に換
算して記憶させてある位置記憶手段と、前記直近の引上
装置の磁束密度設定値と前記位置記憶手段の記憶データ
とに基いて、自己のるつぼに侵入する漏れ磁束密度を演
算する漏れ磁束密度演算手段と、演算された漏れ磁束密
度と前記直近の引上装置の移動速度設定値とに基いて自
己のるつぼの磁束密度の変化率を演算する磁束密度変化
率演算手段と、演算された磁束密度変化率に基づき、自
己のるつぼに侵入する漏れ磁束に起因する結晶引上状態
の変化を抑制するように自己の前記引上制御設定値を補
正する引上制御補正値演算手段とを備えたことを特徴と
する磁場印加引上装置。
1. A crucible according to claim 1, wherein a plurality of crucibles are arranged in parallel, each controlling a crucible rotation speed, a crystal pulling speed and a rotation speed according to a pulling control set value, and applying a convection suppressing magnetic field to the melt in the crucible. In a magnetic field application pulling apparatus that has an electromagnet to be applied, controls the current of the electromagnet in accordance with a set value of magnetic flux density, and moves the electromagnet between an operation position and an operation preparation position according to a moving speed set value, The position of the electromagnet of the upper device to which the electromagnet moves is converted into a magnetic field in its own crucible and stored, and the magnetic flux density set value of the nearest lifting device and the storage data of the position storage device are used. A leakage magnetic flux density calculating means for calculating a leakage magnetic flux density penetrating into the own crucible; and a magnetic flux of the own crucible based on the calculated leakage magnetic flux density and a moving speed set value of the nearest lifting device. Magnetic flux density change rate calculating means for calculating the change rate of the degree, and based on the calculated magnetic flux density change rate, the self-control means for suppressing the change of the crystal pulling state caused by the leakage magnetic flux penetrating into the own crucible. A magnetic field applying and raising apparatus, comprising: a lifting control correction value calculating means for correcting a pulling control set value.
JP18844590A 1990-07-17 1990-07-17 Magnetic field application lifting device Expired - Fee Related JP2818271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18844590A JP2818271B2 (en) 1990-07-17 1990-07-17 Magnetic field application lifting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18844590A JP2818271B2 (en) 1990-07-17 1990-07-17 Magnetic field application lifting device

Publications (2)

Publication Number Publication Date
JPH0477386A JPH0477386A (en) 1992-03-11
JP2818271B2 true JP2818271B2 (en) 1998-10-30

Family

ID=16223815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18844590A Expired - Fee Related JP2818271B2 (en) 1990-07-17 1990-07-17 Magnetic field application lifting device

Country Status (1)

Country Link
JP (1) JP2818271B2 (en)

Also Published As

Publication number Publication date
JPH0477386A (en) 1992-03-11

Similar Documents

Publication Publication Date Title
JP3724571B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP4853802B2 (en) Method for producing silicon single crystal
JPH09286692A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal
CN107881550B (en) Melt method crystal growth method of large-size crystal
EP0294311B1 (en) Automatic control of crystal rod diameter
US6086671A (en) Method for growing a silicon single crystal
JP2678383B2 (en) Device for single crystal
CN1329682A (en) Method and apparatus for accurately pulling crystal
JP2818271B2 (en) Magnetic field application lifting device
EP2071060A1 (en) Single crystal manufacturing apparatus and method
JP2002326888A (en) Device for manufacturing semiconductor single crystal and method for manufacturing silicon single crystal using the same
JP2577446B2 (en) Magnetic field application lifting device
JP2858435B2 (en) Single crystal manufacturing equipment
CN104911697A (en) Constant-component crystal growth control system and method for lifting single-crystal furnace
EP2478135B1 (en) Method for crystallization of silicon
JPH01313385A (en) Method for controlling diameter of semiconductor single crystal
JP3781300B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
JPH0416436B2 (en)
KR20200070760A (en) Growth device for ingot
JPS61146787A (en) Instrument for measuring temperature distribution of heater for single crystal pulling device
CN117418304A (en) Method for improving crucible bulge in monocrystalline silicon production process
JP6759926B2 (en) Crystal growth device
JPH06206797A (en) Single crystal-drawing apparatus
JPH02204386A (en) Magnetic field impressing device for production of single crystal
JPS6360190A (en) Device for pulling up single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees