JP2816011B2 - Rewritable optical recording medium and recording method thereof - Google Patents
Rewritable optical recording medium and recording method thereofInfo
- Publication number
- JP2816011B2 JP2816011B2 JP2285633A JP28563390A JP2816011B2 JP 2816011 B2 JP2816011 B2 JP 2816011B2 JP 2285633 A JP2285633 A JP 2285633A JP 28563390 A JP28563390 A JP 28563390A JP 2816011 B2 JP2816011 B2 JP 2816011B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- light
- recording
- medium
- rewritable optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Recording Or Reproduction (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は書換え可能な光記録媒体に関するものであ
る。Description: TECHNICAL FIELD The present invention relates to a rewritable optical recording medium.
従来の技術 従来の書換え可能な光記録媒体としては、記録膜の結
晶状態及び非晶質状態における光学特性の違いを利用し
た、いわゆる相変化型と、記録膜のカー回転角の違いを
利用した光磁気型などが知られている。2. Description of the Related Art As a conventional rewritable optical recording medium, a so-called phase change type using a difference in optical characteristics between a crystalline state and an amorphous state of a recording film, and a difference in a Kerr rotation angle of a recording film are used. A magneto-optical type and the like are known.
発明が解決しようとする課題 しかしながら、このような従来の技術では、使用する
光の波長、高密度記録性、使用する光のパワー、繰り返
し特性、転送レート、多値記録などの点で、一長一短で
あるという課題がある。Problems to be Solved by the Invention However, such a conventional technique has advantages and disadvantages in terms of the wavelength of light used, high-density recording property, power of light used, repetition characteristics, transfer rate, multilevel recording, and the like. There is a problem that there is.
本発明は、このような従来の書換え可能な光記録媒体
の課題を考慮し、粒子を媒質中に分散し粒子の空間的分
布の変化を利用して記録する書換え可能な光記録媒体を
提供することを目的とするものである。The present invention provides a rewritable optical recording medium in which particles are dispersed in a medium and recording is performed by using a change in the spatial distribution of the particles in consideration of such a problem of the conventional rewritable optical recording medium. The purpose is to do so.
課題を解決するための手段 本発明は、粒子と、その粒子が分散され、光学特性が
異なり、融点が前記粒子より低く、かつ溶融状態の比重
が前記粒子の比重と異なる媒質との混合物を、溝状トラ
ックが設けられたディスク基板の溝内に充填した構成で
あることを特徴とする書換え可能な光記録媒体である。Means for Solving the Problems The present invention provides a mixture of particles and a medium in which the particles are dispersed, the optical properties are different, the melting point is lower than the particles, and the specific gravity of the molten state is different from the specific gravity of the particles, A rewritable optical recording medium characterized by having a configuration in which a groove of a disk substrate provided with groove-shaped tracks is filled.
作用 本発明は、基板が回転中に、光を照射して前記媒質を
溶融する。媒質は融点が粒子より低いので、媒質は溶け
ても粒子は溶融しない。また、比重が異なるので、回転
遠心力によって前記粒子が移動して偏る。その後に、冷
却することによって、粒子の偏った状態で保持されるこ
とになる。光学特性が媒質と粒子とで異なるので、その
記録を再生できる。Function The present invention irradiates light to melt the medium while the substrate is rotating. Because the medium has a lower melting point than the particles, the particles do not melt when the medium melts. Further, since the specific gravities are different, the particles move and are biased by the rotational centrifugal force. Thereafter, by cooling, the particles are kept in an uneven state. Since the optical characteristics are different between the medium and the particles, the recording can be reproduced.
実施例 以下、本発明の実施例について図面を参照して説明す
る。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
第1図(a)は本発明にかかる書換え可能な光記録媒
体の一実施例を示す一部切り欠き斜視図、第1図(b)
は第1図(a)に示したAB線上の平面拡大図、第1図
(c)は第1図(a)に示したAB線上の断面拡大図であ
る。FIG. 1 (a) is a partially cutaway perspective view showing one embodiment of a rewritable optical recording medium according to the present invention, and FIG. 1 (b).
Is an enlarged plan view on the AB line shown in FIG. 1 (a), and FIG. 1 (c) is an enlarged sectional view on the AB line shown in FIG. 1 (a).
第1図(b)、(c)において、1は、化学的に安定
で融点が高い粒子であり、例えばグンジョウ、カドミウ
ムエロー、ベンガラ、クロムエロー、鉛白、チタン白、
カーボンブラックなどの無機顔料、アゾ系、トリフェニ
ルメタン系、キノリン系、アントラキノン系、フタロシ
アニン系などの有機顔料を材料とする粒子である。2
は、粒子1とは反応せず、常温で固体で、融点が粒子1
よりも十分に低く、溶融状態での比重が粒子1と異なる
媒質であり、例えば低融点ガラス、熱可塑性樹脂、パラ
フィン類、油脂類などである。3は、溝状トラック6が
設けられたディスク基板、4はディスク全体を保護する
保護層、5はディスクに照射された記録光である。ここ
でディスク基板3、保護層4は化学的に安定で、粒子
1、媒質2とは反応せず、融点は媒質2より高い材料か
らなる。In FIGS. 1 (b) and 1 (c), reference numeral 1 denotes particles which are chemically stable and have a high melting point.
The particles are made of an inorganic pigment such as carbon black, or an organic pigment such as an azo-based, triphenylmethane-based, quinoline-based, anthraquinone-based, or phthalocyanine-based pigment. 2
Does not react with the particles 1 and is solid at normal temperature and has a melting point of the particles 1.
And a medium whose specific gravity in the molten state is different from that of the particles 1, such as low-melting glass, thermoplastic resin, paraffins, and fats and oils. Reference numeral 3 denotes a disk substrate provided with groove-shaped tracks 6, 4 denotes a protective layer for protecting the entire disk, and 5 denotes recording light applied to the disk. Here, the disk substrate 3 and the protective layer 4 are chemically stable, do not react with the particles 1 and the medium 2, and are made of a material having a melting point higher than that of the medium 2.
次に、このような構成の書換え可能光記録媒体の記
録、生成並びに消去方法を説明する。Next, a method of recording, generating and erasing the rewritable optical recording medium having such a configuration will be described.
記録時は、強力な記録光5を照射し、この光が粒子
1、媒質2、ディスク基板3、保護層4に吸収され温度
が上昇し、媒質2が溶融する。この時、粒子1の比重が
溶融した媒質2よりも大きいと、ディスクが回転するこ
とにより発生した遠心力によって、粒子1は外周方向す
なわちB方向に偏る。At the time of recording, a strong recording light 5 is irradiated, and this light is absorbed by the particles 1, the medium 2, the disk substrate 3, and the protective layer 4, the temperature rises, and the medium 2 is melted. At this time, if the specific gravity of the particles 1 is larger than that of the melted medium 2, the particles 1 are biased in the outer circumferential direction, that is, in the B direction due to the centrifugal force generated by the rotation of the disk.
書換え可能な光記録媒体は、ディスク形状でディスク
上に溝状トラック6が設けられている。このディスクは
高速に回転しているので、各部に強力な遠心力が作用し
ている。例えば、1800rpmで回転しているティスクの中
心から100mm位置では3553[m/s2]≒363Gの遠心力が作
用している。The rewritable optical recording medium has a disk shape and groove-shaped tracks 6 are provided on the disk. Since this disk is rotating at high speed, a strong centrifugal force is acting on each part. For example, a centrifugal force of 3553 [m / s 2 ] ≒ 363 G is applied at a position 100 mm from the center of the disk rotating at 1800 rpm.
従って、溝状トラック6内に粒子を均質に分散した媒
質2を充填しておき、トラック6内のあるピットに記録
光を照射し媒質を溶融させると、比重の違いから粒子1
がピット内の外周側又は内周側に偏る。この状態で冷却
すると、すなわち記録光を取り除くと記録が完成するこ
とになる。Therefore, when the medium 2 in which particles are uniformly dispersed is filled in the groove-shaped track 6 and a recording light is irradiated to a certain pit in the track 6 to melt the medium, the particle 1 is changed due to a difference in specific gravity.
Are biased toward the outer peripheral side or the inner peripheral side in the pit. When cooling is performed in this state, that is, when the recording light is removed, the recording is completed.
再生時は、記録時に比べて十分弱い、すなわち媒質2
が溶融しない程度の再生光を照射し、この再生光の透過
光又は反射光を検出する。粒子1が偏っていた場合、光
と作用する粒子1の数が少ない。従って、粒子1の光学
特性によって透過光又は反射光強度は、未記録の状態す
なわち粒子1が均質に分散した状態よりも、大きく、も
しくは小さくなる。At the time of reproduction, it is sufficiently weaker than at the time of recording,
Is irradiated to such an extent that the light does not melt, and transmitted light or reflected light of the reproduced light is detected. When the particles 1 are biased, the number of the particles 1 interacting with light is small. Therefore, depending on the optical characteristics of the particles 1, the intensity of the transmitted light or the reflected light becomes larger or smaller than in an unrecorded state, that is, a state in which the particles 1 are uniformly dispersed.
消去はディスクが静止した状態で媒質2が溶融する温
度まで加熱し、例えばオーブンなどの加熱装置で加熱
し、粒子1が拡散して均質に分散するまでこの温度に保
持することによって可能である。Erasing can be performed by heating the medium 2 to a temperature at which the medium 2 is melted in a stationary state, heating the medium 2 with a heating device such as an oven, and maintaining the temperature until the particles 1 are diffused and homogeneously dispersed.
なお、本実施例では粒子1の比重が溶融状態の媒質2
よりも大きいとしたが、小さい場合でもよく、この場合
粒子1は内周側すなわちA方向に偏る。In this embodiment, the specific gravity of the particles 1 is the medium 2 in the molten state.
However, the particle 1 may be biased toward the inner circumference side, that is, the direction A.
以上のように、本実施例によれば、記録光5の強度が
従来の書換え可能な光記録媒体よりも低くくても記録可
能である。なぜなら、媒質2の融点は一般に相変化型及
び光磁気型材料の融点よりも低いからである。従って、
強度が低い短波長域のレーザも記録光として利用でき記
録密度向上に有利である、更に、高速記録にも有利であ
る。又、記録時の温度上昇が小さいため、書換え繰り返
し特性の向上も期待できる。As described above, according to this embodiment, recording can be performed even if the intensity of the recording light 5 is lower than that of a conventional rewritable optical recording medium. This is because the melting point of the medium 2 is generally lower than the melting points of the phase change type and magneto-optical type materials. Therefore,
A laser in a short wavelength region having low intensity can be used as recording light, which is advantageous for improving the recording density, and is also advantageous for high speed recording. Further, since the temperature rise during recording is small, improvement in rewriting repetition characteristics can be expected.
次に、本発明の第2の実施例を説明する。 Next, a second embodiment of the present invention will be described.
第2の実施例は、第1の実施例における粒子1を蛍光
体としたもので、記録及び消去原理は第1の実施例と同
じである。以下に本実施例の再生原理と特徴を述べる。In the second embodiment, the particles 1 in the first embodiment are used as phosphors, and the principle of recording and erasing is the same as that of the first embodiment. The principle of reproduction and the features of the present embodiment will be described below.
再生時は、記録時に比べて十分弱い光を用いる。この
再生光と粒子1が作用すると、再生光よりも波長が長い
蛍光が発生する。この蛍光の強度を検出することによっ
て再生する。このことは、再生光よりも長い波長の光で
記録状態を検出できることを意味する。At the time of reproduction, light that is sufficiently weaker than at the time of recording is used. When the reproduction light and the particles 1 act, fluorescence having a longer wavelength than the reproduction light is generated. Reproduction is performed by detecting the intensity of this fluorescence. This means that the recording state can be detected with light having a wavelength longer than the reproduction light.
そのため、本実施例は、次に述べるような長所を有す
ることになる。Therefore, this embodiment has the following advantages.
一般にシリコンフォトダイオードなどの光センサーの
感度は、紫外光域では極めて小さいので、紫外光を再生
光として、この透過又は反射光強度から記録状態を検出
すると、再生信号のC/Nが悪くなり、転送レートが遅く
なる。又、再生光強度をあまり上げるようにすること
は、記録状態を破壊する恐れがあること、簡便な光源が
ないことなどから望ましくない。従って、再生光よりも
長い波長の光で記録状態を検出すると、光センサーの感
度の大きい領域が利用できるので、良質な再生信号を得
ることができる。Generally, the sensitivity of an optical sensor such as a silicon photodiode is extremely low in the ultraviolet light range. Transfer rate becomes slow. Further, it is not desirable to increase the reproduction light intensity too much because there is a risk of destroying the recording state and there is no simple light source. Therefore, if the recording state is detected with light having a wavelength longer than the reproduction light, an area where the sensitivity of the optical sensor is high can be used, and a high-quality reproduction signal can be obtained.
以上のように、本発明は紫外光による高密度記録に有
利である。As described above, the present invention is advantageous for high-density recording using ultraviolet light.
次に、本発明の第3の実施例に付いて説明する。 Next, a third embodiment of the present invention will be described.
本発明の第3の実施例は第1の実施例における粒子1
がレーザ光の第2次高調波を発生するもので、記録及び
消去原理は第1の実施例と同じである。The third embodiment of the present invention relates to the particle 1 according to the first embodiment.
Generates the second harmonic of the laser beam, and the principle of recording and erasing is the same as in the first embodiment.
以下に本実施例の再生原理と特徴を述べる。 The principle of reproduction and the features of the present embodiment will be described below.
再生時に、再生光としてレーザ光を用いると、この再
生光と粒子1が作用し再生光の半分の波長のレーザ光で
ある第2次高調波を発生する。この第2次高調波を検出
することによって再生を行う。When a laser beam is used as the reproducing beam at the time of reproducing, the reproducing beam and the particles 1 act to generate a second harmonic which is a laser beam having a wavelength half that of the reproducing beam. Reproduction is performed by detecting the second harmonic.
そのため、本実施例は、次に述べる様な長所を有する
ことになる。Therefore, this embodiment has the following advantages.
第2次高調波の強度は粒子に入射するレーザ光の強度
密度の2乗に比例する。又レーザ光をスポット状に集光
すると、強度密度は、中心付近できわめて大きくなり、
いわゆるガウス分布になる。The intensity of the second harmonic is proportional to the square of the intensity density of the laser light incident on the particle. When the laser beam is focused in a spot shape, the intensity density becomes extremely large near the center,
It becomes a so-called Gaussian distribution.
従って、粒子1が偏っている場合でも、第1、2の実
施例では再生光スポット内に一部残留した粒子1と作用
した光が再生信号に影響を与えたが、本実施例ではこの
影響がきわめて小さくなる。すなわち残留した粒子1は
光スポットの外周付近にのみ存在するので、これらから
発生する第2次高調波はきわめて小さいので、記録状態
と未記録状態の信号強度差が大きくなり、再生信号のC/
Nが良くなる。Therefore, even in the case where the particles 1 are biased, in the first and second embodiments, the light which interacted with the particles 1 partially remaining in the reproduction light spot affected the reproduction signal. Becomes extremely small. That is, since the remaining particles 1 exist only near the outer periphery of the light spot, the second harmonic generated from these particles is extremely small, so that the signal intensity difference between the recorded state and the unrecorded state increases, and the C /
N gets better.
以上のように本実施例よれば、良好な再生信号が得ら
れる。As described above, according to the present embodiment, a good reproduced signal can be obtained.
本発明の第4の実施例を第2図及び第3図を用いて次
に説明する。なお、消去方法は第1の実施例と全く同じ
である。Next, a fourth embodiment of the present invention will be described with reference to FIGS. The erasing method is exactly the same as in the first embodiment.
本実施例では第1の実施例における粒子1がN種類あ
り、これらN種類の粒子のそれぞれの吸収波長と比重又
は熱膨張率が違う。以下、簡単のため、N=2とし、粒
子(1)、粒子(2)として説明する。In this embodiment, there are N types of particles 1 in the first embodiment, and these N types of particles have different absorption wavelengths and specific gravities or coefficients of thermal expansion. Hereinafter, for simplicity, it is assumed that N = 2 and the particles (1) and (2) are described.
粒子(1)の比重が粒子(2)の比重より大きい、も
しくは比重は同じだが、粒子(2)の熱膨張率が粒子
(1)の熱膨張率よりも大きいとする。従って、記録光
が照射され温度が上昇し、媒質2が溶融した時、遠心力
が作用することによる移動速度は、媒質2と比重差が大
きい粒子(1)の方が大きくなる。It is assumed that the specific gravity of the particle (1) is larger than or the same as the specific gravity of the particle (2), but the coefficient of thermal expansion of the particle (2) is larger than the coefficient of thermal expansion of the particle (1). Therefore, when the recording light is irradiated and the temperature rises and the medium 2 is melted, the moving speed due to the centrifugal force acting on the particles (1) having a large difference in specific gravity from the medium 2 becomes larger.
第2図は、粒子(1)、(2)の吸光度−波長特性を
示した図で、横軸λは波長、縦軸αは吸光度である。粒
子(1)、(2)はそれぞれ波長λ1、λ2の光に対し
て最高の吸光度を示す。FIG. 2 is a diagram showing the absorbance-wavelength characteristics of the particles (1) and (2), where the horizontal axis λ is the wavelength and the vertical axis α is the absorbance. Particles (1) and (2) show the highest absorbance for light of wavelengths λ1 and λ2, respectively.
第3図は、第1図の(b)に相当するもので、1は粒
子(1)、2は粒子(2)、3は強度が弱い記録光、4
は強度が強い記録光である。FIG. 3 corresponds to FIG. 1 (b), wherein 1 is a particle (1), 2 is a particle (2), 3 is a recording light having a low intensity,
Is a recording light having a high intensity.
強度の弱い記録光3に照射されたピットにおいては、
図に示すように、粒子(1)のみが外周側すなわちB方
向に偏り、強度の弱い記録光4に照射されたピットにお
いては、粒子(1)、(2)ともに外周側に偏る。この
理由を次に示す。In the pit irradiated with the weak recording light 3,
As shown in the figure, only the particles (1) are deviated to the outer peripheral side, that is, in the direction B, and in the pit irradiated with the recording light 4 having low intensity, both the particles (1) and (2) are deviated to the outer peripheral side. The reason is as follows.
一般に、溶融状態の媒質2おいては、その粘度は、温
度が高くなれば、低くなる。従って、弱い記録光3に照
射されたピットは温度が低く粘度が高いので、移動速度
が大きい粒子(1)のみが、媒質2が固化するまでに外
周側まで偏れる。他方、強い強度光5に照射されたピッ
トは温度が高く粘度が低いので、粒子(2)の移動速度
も大きくなり、媒質2が固化するまでに、粒子(2)も
外周側まで偏れる。In general, the viscosity of the medium 2 in the molten state decreases as the temperature increases. Therefore, since the pits irradiated with the weak recording light 3 have a low temperature and a high viscosity, only the particles (1) having a high moving speed are deviated to the outer peripheral side until the medium 2 is solidified. On the other hand, the pits irradiated with the high intensity light 5 have a high temperature and a low viscosity, so that the movement speed of the particles (2) increases, and the particles (2) are also deviated to the outer peripheral side before the medium 2 is solidified.
このようにして、記録光を使い分けて記録したものを
再生する時は、λ1、λ2の光を含む光を再生光とし
て、その透過又は反射光のスペクトルを観測するか、λ
1、λ2の2種類の光を再生光として、それぞれの透過
又は反射光強度を観測することによって記録状態を検出
することができる。When reproducing the recorded data by using the recording light in this manner, the light including the light of λ1 and λ2 is used as the reproduction light, and the spectrum of the transmitted or reflected light is observed or
The recording state can be detected by observing the transmitted or reflected light intensity of each of the two types of light 1 and λ2 as reproduction light.
以上のように本実施例によれば、記録光強度を多数設
定することによって、多値記録が可能となり高密度記録
媒体となり得る。As described above, according to the present embodiment, by setting a large number of recording light intensities, multi-value recording becomes possible and a high-density recording medium can be obtained.
なお、本実施例と同様の原理に基づいて、第2、3の
実施例に用いた蛍光体、及び第2次高調波を発生する粒
子を利用しても、多値記録が可能となる。It is to be noted that, based on the same principle as that of the present embodiment, multi-level recording is possible even by using the phosphor used in the second and third embodiments and the particles generating the second harmonic.
発明の効果 以上説明した様に、本発明によれば、短波長光による
高密度記録、低パワー記録光による記録、高繰り返し特
性、高転送レート記録、又は多値記録などが可能にな
り、その実用的効果は大きい。Effects of the Invention As described above, according to the present invention, high-density recording with short-wavelength light, recording with low-power recording light, high repetition characteristics, high transfer rate recording, or multi-level recording can be performed. The practical effect is great.
第1図は本発明における書換え可能な光記録媒体の第1
の実施例の全体斜視図、平面図、及び断面図、第2図は
第4の実施例の吸光度−波長特性図、第3図は第4の実
施例の部分平面図である。 1……粒子、2……媒質、3……ディスク基板、4……
保護層、5……記録光。FIG. 1 shows the first rewritable optical recording medium according to the present invention.
FIG. 2 is an overall absorbance-wavelength characteristic diagram of the fourth embodiment, and FIG. 3 is a partial plan view of the fourth embodiment. 1 ... particles, 2 ... medium, 3 ... disk substrate, 4 ...
Protective layer, 5 ... Recording light.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 脇田 克也 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.6,DB名) G11B 7/24 522────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Katsuya Wakita 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) G11B 7/24 522
Claims (5)
異なり、融点が前記粒子より低く、かつ溶融状態の比重
が前記粒子の比重と異なる媒質との混合物を、溝状トラ
ックが設けられたディスク基板の溝内に充填した構成で
あることを特徴とする書換え可能な光記録媒体。A groove-shaped track is provided with a mixture of particles and a medium in which the particles are dispersed and have different optical properties, a melting point lower than that of the particles, and a specific gravity in a molten state different from that of the particles. A rewritable optical recording medium characterized by having a structure filled in a groove of a disk substrate.
溶融し、遠心力によって前記粒子が移動して偏った後
に、冷却することによって記録することを特徴とする請
求項1記載の書換え可能光記録媒体の記録方法。2. The recording method according to claim 1, wherein the medium is irradiated with light while the substrate is rotating, the medium is melted, and the particles are moved and biased by centrifugal force and then cooled to record. Recording method of a rewritable optical recording medium.
ることを特徴とする請求項1記載の書換え可能な光記録
媒体。3. The rewritable optical recording medium according to claim 1, wherein the particles are made of a material that generates fluorescence.
波を発生する材料から構成されることを特徴とする請求
項1記載の書換え可能な光記録媒体。4. The rewritable optical recording medium according to claim 1, wherein the particles are made of a material that generates a second harmonic of the irradiated laser light.
重又は熱膨張率が異なるN種類の前記粒子を有すること
を特徴とする請求項1記載の書換え可能な光記録媒体。5. The rewritable optical recording medium according to claim 1, comprising N kinds of said particles having different absorption wavelengths and different specific gravities or thermal expansion coefficients.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2285633A JP2816011B2 (en) | 1990-10-22 | 1990-10-22 | Rewritable optical recording medium and recording method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2285633A JP2816011B2 (en) | 1990-10-22 | 1990-10-22 | Rewritable optical recording medium and recording method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04159631A JPH04159631A (en) | 1992-06-02 |
JP2816011B2 true JP2816011B2 (en) | 1998-10-27 |
Family
ID=17694061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2285633A Expired - Fee Related JP2816011B2 (en) | 1990-10-22 | 1990-10-22 | Rewritable optical recording medium and recording method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2816011B2 (en) |
-
1990
- 1990-10-22 JP JP2285633A patent/JP2816011B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04159631A (en) | 1992-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0626679B1 (en) | Optical information read/write device | |
JPH0210492B2 (en) | ||
JPH07320298A (en) | Phase changing type optical disk | |
EP1146508B1 (en) | Information recording medium | |
JPH0246538A (en) | Optical memory element | |
JP2004220747A (en) | Optical information recording medium, recording method and reproducing method using the same, optical information recording device, and optical information reproducing device | |
JPH04176039A (en) | Magneto-optical recording medium | |
JP2816011B2 (en) | Rewritable optical recording medium and recording method thereof | |
JPH01155522A (en) | Method for recording information signal in optical disk | |
JPH06162564A (en) | Optical recording medium | |
JP2650559B2 (en) | Optical recording medium | |
KR100234244B1 (en) | Erasable optical media | |
JP2827748B2 (en) | Optical disc, method of reproducing the same, and reproducing apparatus | |
JP2001067731A (en) | Optical information recording medium | |
JP2719407B2 (en) | Optical recording / reproducing method | |
JP3165354B2 (en) | Optical information recording medium | |
JPH03192345A (en) | Optical recording medium and recording method | |
KR100186525B1 (en) | Structure for phase change type optical disk | |
JP2001202657A (en) | Optical disk | |
JP4142787B2 (en) | Phase change optical recording medium | |
JP4046798B2 (en) | Phase change information recording medium | |
JPS6023995B2 (en) | Optical information recording and erasing method | |
JP2967700B2 (en) | Optical recording medium | |
JP3094740B2 (en) | Optical information recording medium and recording / reproducing method thereof | |
JP2655093B2 (en) | Optical head and optical disk device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |