JP2815872B2 - Power system monitoring and control system - Google Patents

Power system monitoring and control system

Info

Publication number
JP2815872B2
JP2815872B2 JP63205946A JP20594688A JP2815872B2 JP 2815872 B2 JP2815872 B2 JP 2815872B2 JP 63205946 A JP63205946 A JP 63205946A JP 20594688 A JP20594688 A JP 20594688A JP 2815872 B2 JP2815872 B2 JP 2815872B2
Authority
JP
Japan
Prior art keywords
voltage
stability
future
power
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63205946A
Other languages
Japanese (ja)
Other versions
JPH0255531A (en
Inventor
守 鈴木
正彦 雨宮
寿男 加藤
忠 市川
正弘 佐藤
和佳子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP63205946A priority Critical patent/JP2815872B2/en
Publication of JPH0255531A publication Critical patent/JPH0255531A/en
Application granted granted Critical
Publication of JP2815872B2 publication Critical patent/JP2815872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は良質な電気を高信頼度に安定して供給するこ
とを支援する電力系統監視制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a power system monitoring and control system that supports stable and reliable supply of high-quality electricity.

(従来の技術) 従来の電力系統監視制御システムにて系統電圧を監視
する場合、現在の系統電圧の状態を表示し、これが電圧
目標値の上限値と下限値との範囲内にあるか否かを監視
し、範囲外にあるときは警報するようにしている。
(Prior Art) When monitoring a system voltage with a conventional power system monitoring and control system, a current state of the system voltage is displayed, and whether or not this is within a range between an upper limit value and a lower limit value of a voltage target value. Is monitored, and an alarm is issued when it is out of the range.

(発明が解決しようとする課題) 上記した通り、従来システムでは現在に対して数分か
ら数時間先の将来時点の系統電圧の安定度に関しては全
く考慮されていない。このことは、将来時点の系統状態
を定量的に予測する方法がなかったためと、系統電圧の
安定度を求める一般的方法がなかったためである。従っ
て、将来時点において系統電圧を安定に維持できるか否
かの判断はオペレータに委ねざるを得ないが、実際には
正しい判断を下すことは極めて困難であり、状況によっ
ては系統電圧を安定に維持するために必要な処置の機会
を逸する虞れがあった。
(Problems to be Solved by the Invention) As described above, in the conventional system, no consideration is given to the stability of the system voltage at a future point several minutes to several hours ahead of the present. This is because there was no method for quantitatively predicting the state of the system at a future time, and there was no general method for obtaining the stability of the system voltage. Therefore, it is inevitable for the operator to determine whether or not the system voltage can be maintained stably at a future point in time. However, it is extremely difficult to make a correct determination in practice. There is a risk of missing the opportunity for the treatment necessary to perform the treatment.

本発明は上記事情に鑑みてなされたものであり、将来
時点の系統状態を自動的に予測して系統電圧の安定度を
判定し、将来時点の系統電圧が不安定と判定される場合
には安定とするに必要な被制御機器と制御量とを求め、
それらの結果に従って被制御機器を先行制御することに
より、電力系統のより一層安定な運転ができるように支
援する電力系統監視制御システムを提供することを目的
としている。
The present invention has been made in view of the above circumstances, automatically predicts the state of the system at a future time, determines the stability of the system voltage, if the system voltage at the future time is determined to be unstable, Find the controlled equipment and control amount necessary for stabilization,
An object of the present invention is to provide a power system monitoring and control system that assists a more stable operation of a power system by preliminarily controlling a controlled device according to those results.

[発明の構成] (課題を解決するための手段) 上記目的を達成するための構成を、第1図にて説明す
ると本発明は電力系統からの系統情報を情報伝送装置を
介して電子計算機へ入力し、これらの各情報をもとに処
理して電圧安定度についての諸データを表示装置に出力
する電力系統監視制御システムにおいて、情報伝送装置
(S10)を介して伝送されてきた系統情報から被監視電
力系統の状態を求める系統状態決定手段(S20)と、前
記系統状態決定手段の結果を保存すると共に、これを用
いて数分から数時間先の将来時点の総需要,負荷の消費
する有効電力,無効電力,電圧調整機器の制御状態を求
める将来系統状態予測手段(S30)と、前記将来系統状
態予測手段にて求めた将来電力系統状態に対して、需要
電力Pと母線電圧VのP−V曲線により高め解と低め解
の中間点を結ぶ線を基準にして将来の系統状態に対し電
圧の安定限界を求める安定度限界計算手段(S40)と、
前記将来系統状態予測手段によって定められた将来時点
の安定度限界を境にして安定領域では安定度限界からど
れだけ離れているかによって将来時点の系統の電圧安定
度のレベルを判定する安定度監視手段(S50)と、将来
時点の系統の電圧が不安定と判定したときは安定にする
ために、又は不安定に近いレベルと判定したときは安定
度をたかめるために必要な被制御機器と制御量とを求め
る制御量計算手段(S60)と、前記制御量に応じた制御
信号を電力系統の被制御機器へ伝送する制御量伝送手段
(S70)と、オペレータに対して上記データを出力する
手段(S80)とから構成した。
[Structure of the Invention] (Means for Solving the Problems) A structure for achieving the above object will be described with reference to FIG. 1. In the present invention, system information from a power system is transmitted to an electronic computer via an information transmission device. In the power system monitoring and control system that inputs and processes based on each of these information and outputs various data on the voltage stability to the display device, the system information is transmitted from the system information transmitted via the information transmission device (S10). A system state determining means (S20) for determining the state of the monitored power system, and storing the results of the system state determining means, and using the system state determining means for consuming the total demand and load at a future time several minutes to several hours later. The future system state prediction means (S30) for obtaining the control states of the power, reactive power, and voltage regulating devices, and the demand power P and the bus voltage V for the future power system state obtained by the future system state prediction means. -V curve The stability limit calculating means for calculating a stability limit voltage (S40) to the future system condition based on the line connecting the midpoint of the more enhanced solution and lower solution,
Stability monitoring means for determining the level of the voltage stability of the system at a future time point based on how far from the stability limit in the stability region the stability limit at the future time point determined by the future system state prediction means (S50) and the controlled equipment and control amount required to stabilize the voltage of the system at a future time when it is determined to be unstable, or to increase the stability when the voltage is determined to be close to unstable (S60), control amount transmitting means (S70) for transmitting a control signal corresponding to the control amount to the controlled device in the power system, and means for outputting the data to the operator ( S80).

(作 用) 電力系統情報伝達手段により電力系統の各所で計測さ
れる電力系統の状態を示す各種計測値が収集され、系統
状態決定手段に渡される。系統状態決定手段は、電力系
統情報伝達手段より入力される電力系統の状態の誤差を
含む計測値を用いて電力系統の状態を決定し、将来系統
状態予測手段は系統状態決定手段の結果を基に将来時点
の系統状態を決定する。
(Operation) Various measurement values indicating the state of the power system measured at various points in the power system by the power system information transmitting means are collected and passed to the system state determining means. The system state determination means determines the state of the power system using a measurement value including an error in the state of the power system input from the power system information transmission means, and the future system state prediction means based on the result of the system state determination means. The system status at a future time is determined.

安定度限界計算手段は将来系統状態予測手段の結果を
初期値として用いて電圧安定度限界を求め、安定度監視
手段は将来系統状態予測手段と安定度限界計算手段の結
果とを用いて、将来時点の電力系統の電圧安定度を判定
する。そしてもし将来時点の系統電圧が不安定と判定し
たときは安定にするために、又は不安定に近いレベルと
判定したときは、制御量計算手段は安定度監視手段の結
果と将来系統状態予測手段の結果とを用い、将来時点の
系統電圧を安定とするに必要な被制御機器と制御量とを
求め、制御量伝達手段は前記求めた制御量を対応する被
制御機器へ伝達してこれらを制御し、出力手段は上記各
手段の種々の結果をマンマシン・インターフェイス装置
(以後MMI装置と称す)に出力する。
The stability limit calculation means obtains the voltage stability limit using the result of the future system state prediction means as an initial value, and the stability monitoring means uses the result of the future system state prediction means and the result of the stability limit calculation means to calculate the voltage stability limit in the future. The voltage stability of the power system at the time is determined. If it is determined that the system voltage at the future time is unstable, to make it stable, or if it is determined that the level is near unstable, the control amount calculation means uses the result of the stability monitoring means and the future system state prediction means. Using the results of (1) and (2), a controlled device and a control amount necessary for stabilizing the system voltage at a future time are obtained, and the control amount transmitting unit transmits the obtained control amount to the corresponding controlled device to transmit them. The output means outputs various results of the above means to a man-machine interface device (hereinafter referred to as an MMI device).

(実施例) 以下、図面を参照して実施例を説明する。説明の都合
上で第2図から説明するが、第2図は本発明による電力
系統監視制御システムの構成例図である。
(Example) Hereinafter, an example is described with reference to drawings. FIG. 2 will be described for convenience of explanation. FIG. 2 is a configuration example of a power system monitoring and control system according to the present invention.

第2図において、1は電力系統であり、この電力系統
の状態を計測しその計測値を伝送する情報伝送装置2−
1と、伝送路3を介して前記情報を受信する情報伝送装
置2−2と、これらの情報を受けて電圧安定度に関する
処理をする電子計算機4と、電子計算機4の処理結果を
表示するマンマシン・インターフェース装置(MMI)5
からなっている。
In FIG. 2, reference numeral 1 denotes a power system, which is an information transmission device 2 that measures the state of the power system and transmits the measured value.
1, an information transmission device 2-2 that receives the information via the transmission line 3, an electronic computer 4 that receives the information and performs a process related to the voltage stability, and a man that displays a processing result of the electronic computer 4. Machine interface device (MMI) 5
Consists of

なお、電力系統からの計測情報としては、例えば発電
機の電圧と出力,負荷の有効電力と無効電力,有効電力
潮流,無効電力潮流,母線電圧,しゃ断器と断路器の開
閉状態,変圧器のタップ位置等がある。従って、電子計
算機4は電力系統からの前記各現在計測情報を入力し、
これらの現在情報をもとに数分先あるいは数時間先の将
来電力系統状態の予測データを後述する電圧安定度に関
して処理を行ない、その結果としての種々の電圧安定度
に関するデータをMMI装置に表示する。
The measurement information from the power system includes, for example, the voltage and output of the generator, the active power and reactive power of the load, the active power flow, the reactive power flow, the bus voltage, the open / closed state of circuit breakers and disconnectors, and the There are tap positions and the like. Therefore, the computer 4 inputs the respective current measurement information from the power system,
Based on this current information, the prediction data of the future power system state several minutes or several hours ahead is processed for voltage stability described later, and the resulting data on various voltage stability is displayed on the MMI device. I do.

第1図は電子計算機の電圧安定度に関する処理内容を
示すフローチャートである。第1図において、系統情報
伝達処理S10は電力系統各所で計測された発電機出力と
電圧,負荷の消費する有効電力,無効電力,送電線と変
圧器を流れる有効電力潮流と無効電力潮流,母線電圧,
しゃ断器と断路器の開閉状態,変圧器タップ位置などを
伝送してくる。系統状態決定処理S20は系統情報伝達処
理S10にて入力された誤差を含む計測値及び計測時刻に
ばらつきがあるため、これらの計測値相互に矛盾を含ん
だ計測値を用いて重み付き最少二乗推定法により、最も
確からしい電力系統の状態値を求める。
FIG. 1 is a flow chart showing the processing contents concerning the voltage stability of the electronic computer. In FIG. 1, the system information transmission processing S10 includes the generator output and voltage measured at various points in the power system, the active power consumed by the load, the reactive power, the active power flow flowing through the transmission line and the transformer, the reactive power flow, and the bus. Voltage,
It transmits the open / closed state of circuit breakers and disconnectors, and tap positions of transformers. Since the system status determination process S20 has a variation in the measurement value including the error and the measurement time input in the system information transmission process S10, the weighted least squares estimation is performed using the measurement values including the contradiction between these measurement values. The most probable state value of the power system is obtained by the method.

将来系統状態予測処理S30は系統状態決定処理S20の結
果を系統状態の計測データとして保存する一方、自らこ
れを用いて数分から数時間先の将来時点の総需要,負荷
の消費する有効電力,無効電力,発電機出力,電圧調整
機器の制御状態などを求める。安定度限界計算処理S40
は前記した将来系統状態予測処理S30にて求めた将来電
力系統状態に対して需要電力Pと母線電圧VのP−V曲
線により電圧安定限界を求める。なお、この場合に作成
するP−V曲線は将来時点の形態状態を加味して作成し
たものであり、現状において使用しているP−V曲線で
はない。
The future system status prediction process S30 stores the result of the system status determination process S20 as measurement data of the system status, and uses it by itself to obtain total demand at a future time several minutes to several hours later, active power consumed by the load, and reactive power. The power, generator output, and control status of the voltage regulator are determined. Stability limit calculation processing S40
Calculates a voltage stability limit for the future power system state obtained in the above-described future system state prediction processing S30 by using a PV curve of the demand power P and the bus voltage V. It should be noted that the PV curve created in this case is created in consideration of the morphological state at a future point in time, and is not the PV curve currently used.

安定度監視処理S50は将来時点の電圧安定限界を境に
して安定領域では安定度限界からどれだけ離れているか
によって将来時点の系統の電圧安定度のレベルを判定
し、制御量計算処理S60は、将来時点の系統の電圧が不
安定と判定したときは安定にするために、又は不安定に
近いレベルと判定したときは安定度を高めるために必要
な被制御機器と制御量とを求める。制御量伝達処理S70
は制御量計算処理S60の結果を電力系統内の被制御機器
へ送り、出力処理S80は前記各処理S20,S30,S40,S50,S60
の種々の結果をMMI装置5に出力する。以下に各処理に
手順の詳細を説明する。
The stability monitoring process S50 determines the level of the voltage stability of the system at the future time based on how far away from the stability limit in the stability region at the boundary of the voltage stability limit at the future time, and the control amount calculation process S60 When it is determined that the voltage of the system at a future time is unstable, the controlled device and the control amount necessary to stabilize the voltage or to increase the stability when the voltage is determined to be nearly unstable are determined. Control amount transmission processing S70
Sends the result of the control amount calculation processing S60 to the controlled device in the power system, and the output processing S80 is the processing S20, S30, S40, S50, S60
Are output to the MMI device 5. The details of the procedure for each process will be described below.

情報伝送装置2−1,2−2を介して受信する電力系統
の計測データには、トランスジューサの変換誤差や、故
障あるいは計測時刻の不揃い等に起因する誤差が含まれ
ているのが通常である。そこで系統状態決定処理S20で
は、これらの誤差を含んだ測定値より、最も確からしい
系統状態値即ち、ノード電圧,電圧の位相角を重み付き
最少2乗推定方法、即ち、状態推定計算により決定す
る。一般に誤差を含む測定値は次のように表わせる。
The measurement data of the power system received via the information transmission devices 2-1 and 2-2 usually includes a conversion error of the transducer, and an error due to a failure or an irregular measurement time. . Therefore, in the system state determination processing S20, the most probable system state values, that is, the node voltage and the phase angle of the voltage, are determined by the weighted least squares estimation method, that is, the state estimation calculation, from the measured values including these errors. . Generally, a measurement value including an error can be expressed as follows.

z=h(x)+ε ……(1) 但し、 z:測定値のベクトル。 z = h (x) + ε (1) where z is a vector of measured values.

x:状態変数の真値、即ち、ノード電圧とその位相角のベ
クトル。
x: True value of the state variable, that is, a vector of the node voltage and its phase angle.

h(x):xより測定値の真値を求める関数のベクトル。h (x): Vector of functions for finding the true value of the measured value from x.

ε:測定誤差のベクトル。ε: vector of measurement error.

このとき、測定値とその推定値の残差の2乗和、 J=(z−h(x))tw(z−h(x))……(2) 但し、 w:各測定値の誤差の重みのマトリックス。In this case, the sum of squares of the residuals between measured and the estimated value, J = (z-h ( x)) t w (z-h (x)) ...... (2) where, w: the respective measurement value Error weight matrix.

z−h(x):測定値の残差のベクトル。 zh (x): vector of residuals of measured values.

t:ベクトルの転置を示す。 t: Indicates transposition of a vector.

を最少にする状態変数xの推定値xを求める。つぎに求
められたxより電力潮流の推定値を求める。以上の手順
により計測値に含まれている誤差の影響が除かれたより
確かな電力系統の状態が得られる。
Is obtained as the estimated value x of the state variable x that minimizes Next, an estimated value of the power flow is obtained from the obtained x. By the above procedure, a more reliable state of the power system in which the influence of the error included in the measurement value is removed can be obtained.

将来系統状態予測処理S30は系統状態決定処理S20によ
って決定した現在系統状態をもとに、数分から数時間後
の将来時点の負荷電力,発電機電圧,電圧調整機器の制
御状態を次の手順で求める。
Based on the current system state determined by the system state determination processing S20, the future system state prediction processing S30 determines the control state of the load power, the generator voltage, and the voltage adjustment device at a future point several minutes to several hours later by the following procedure. Ask.

(1)将来時点の負荷電力,発電機電圧の予測現在時刻
tに対し、Δt後の負荷電力は、 QL(i,t+Δt) =QL(i,t)+〔PLF(i,t+Δt) ・PL(i,t+Δt)−PLF(i,t)PL(i,t)〕 ……(4) ここで、 PL(i,t):負荷iの時刻tにおける有効電力。
(1) The load power after Δt with respect to the predicted current time t of the load power and the generator voltage at the future time is: Q L (i, t + Δt ) = Q L (i, t) + [P LF (i, t + Δt ) · P L (i, t + Δt) -P LF (i, t) P L (i, t) ] ...... (4) Here, P L (i, t): active power at time t of load i.

QL(i,t):負荷iの時刻tにおける無効電力。Q L (i, t): reactive power at time t of load i.

PLF(i,t):負荷iの時刻tにおける負荷力率統計
値。
P LF (i, t): Load power factor statistical value at time t of load i.

SL(t):時刻tにおける総需要。S L (t): Total demand at time t.

このとき、負荷力率統計値と総需要は季節別、曜日
別、時間別などに分類して蓄積した過去のデータから統
計的に求めた値を使用すると共に、系統状態決定処理S2
0の結果を累積し、統計データの更新を行なう。次に発
電機電圧は、自動電圧調整器(AVR)の運用基準値パタ
ーンから将来時点の運用値を選び出し、これらの拘束条
件のもとに潮流計算を実施し、結果を得れば、これは電
圧調整機器の応動を無視した場合の将来時点の系統状態
とみることができる。
At this time, the load power factor statistical value and the total demand use values statistically obtained from past data accumulated and classified according to season, day of week, time, and the like.
The result of 0 is accumulated and the statistical data is updated. Next, the generator voltage is selected from the operation value at the future time from the operation reference value pattern of the automatic voltage regulator (AVR), and the power flow is calculated under these constraints. It can be regarded as a future state of the system when the response of the voltage regulator is ignored.

(2)電圧調整機器の制御状況予測 コンデンサ,リアクトル,変圧器タップ,発電機励磁
装置などの電圧調整機器の将来時点における制御状況を
決定する。各電圧調整機器は、上記手順(1)で実施し
た潮流計算から得られる系統電圧を、運用基準値に保つ
ように応動するので、将来時点における各電圧調整機器
の制御量は、電圧調整機器を単位量だけ調整したときの
系統電圧の変化量、即ち、電圧感度係数Aijを導入する
ことにより、式(5)を解いて求める。
(2) Prediction of control status of voltage regulators Determine the control status of voltage regulators such as capacitors, reactors, transformer taps, and generator exciters at a future time. Each of the voltage regulators responds so as to maintain the system voltage obtained from the power flow calculation performed in the above procedure (1) at the operation reference value. By introducing the amount of change in the system voltage when the amount is adjusted by the unit amount, that is, the voltage sensitivity coefficient Aij , the value is obtained by solving the equation (5).

Vsi=Voi+AijΔxj ……(5) 但し、 Aij:電圧調整機器jに対する母線iの電圧感度係数。V si = V oi + A ij Δx j (5) where A ij is a voltage sensitivity coefficient of the bus i with respect to the voltage adjustment device j.

Δxj:電圧調整機器jの現在時点から将来時点までの制
御量変化。
Δx j : Control amount change of the voltage adjusting device j from the current time point to the future time point.

Vsi:母線iの運用基準電圧。V si : Operation reference voltage of bus i.

Voi:電圧調整機器の応動を無視した場合の母線iの電
圧。
V oi : The voltage of the bus i when the response of the voltage regulator is ignored.

次に電圧感度係数は次の方法で求める。調整前も調整
後もノードに流出入する有効電力の和Fと無効電力の和
Gが常に零であることにより、 調整前: F(V,Cq,θ)=0 ……(6) G(V,Cq,θ)=0 ……(7) ここで、F,Gはベクトルである。
Next, the voltage sensitivity coefficient is obtained by the following method. Before and after the adjustment, the sum F of the active power flowing into and out of the node and the sum G of the reactive power are always zero, so that before the adjustment: F (V, Cq , θ) = 0 (6) G (V, C q , θ) = 0 (7) Here, F and G are vectors.

調整後: F(V+ΔV,Cq+ΔCq,θ+Δθ)=0 ……(8) G(V+ΔV,Cq+ΔCq,θ+Δθ)=0 ……(9) となる。ここで、Δは調整前後の各量の変化を示し、 V:ノード電圧。Adjusted: the F (V + ΔV, C q + ΔC q, θ + Δθ) = 0 ...... (8) G (V + ΔV, C q + ΔC q, θ + Δθ) = 0 ...... (9). Here, Δ indicates a change in each amount before and after adjustment, and V: node voltage.

θ:ノード電圧の位相角。 θ: phase angle of the node voltage.

Cq:コンデンサ(SC)やリアクトル(ShR)等の無効電
力関連調整変数である。
C q : a reactive power-related adjustment variable such as a capacitor (SC) and a reactor (ShR).

次に(8),(9)式をテーラ展開すると、 F(V+ΔV,Cq+ΔCq,θ+Δθ) =F(V,Cq,θ)+Fv・ΔV+Fcq・ΔCq+Fθ・Δ θ ……(10) G(V+ΔV,Cq+ΔCq,θ+Δθ) =G(V,Cq,θ)+Gv・ΔV+Gcq・ΔCq+Gθ・Δ θ ……(11) となる。ここで、 Fv,Fcq,Fθ,Gv,Gcq,Gθ:テーラ展開係数のマトリッ
クスである。
Then (8), Expanding retailer to (9), F (V + ΔV, C q + ΔC q, θ + Δθ) = F (V, C q, θ) + F v · ΔV + F cq · ΔC q + F θ · Δ θ ... ... the (10) G (V + ΔV , C q + ΔC q, θ + Δθ) = G (V, C q, θ) + G v · ΔV + G cq · ΔC q + G θ · Δ θ ...... (11). Here, F v, F cq, F θ, G v, G cq, G θ: Taylor is a matrix of the expansion coefficients.

従って、 Fv・ΔV+Fcq・ΔCq+Fθ・Δθ=0 ……(12) Gv・ΔV+Gcq・ΔCq+Gθ・Δθ=0 ……(13) であり、SC又はShRの投入又は解放の場合は、Fcq=0で
あるから(12),(13)式よりΔθを消去して、 ΔV/ΔCq=−(Gv−Fθ -1・Fv-1・Gcq ……(14) となる。ここで、Vとθは上記手順(1)の潮流計算結
果を用いる。式(14)より、式(5)の電圧感度係数A
ijはマトリックスΔV/ΔCqの要素として求まる。
Thus, an F v · ΔV + F cq · ΔC q + F θ · Δθ = 0 ...... (12) G v · ΔV + G cq · ΔC q + G θ · Δθ = 0 ...... (13), on or release of the SC or ShR In the case of, since F cq = 0, Δθ is eliminated from the expressions (12) and (13), and ΔV / ΔC q = − (G v −F θ −1 · F v ) −1 · G cq . … (14) Here, V and θ use the result of the power flow calculation in the above procedure (1). From equation (14), the voltage sensitivity coefficient A of equation (5)
ij is obtained as an element of the matrix ΔV / ΔC q .

(3)将来時点の系統状態の決定 上記手順(1)で求めた系統状態に対し、上記手順
(2)で求めた電圧調整機器の制御量を設定して潮流計
算を行ない、この結果を将来時点の系統状態とする。な
お、潮流計算が収束しないときは、安定度監視処理S50
にその旨を通知する。
(3) Determination of the system state at a future time For the system state obtained in the above procedure (1), the control amount of the voltage regulator obtained in the above procedure (2) is set and power flow calculation is performed. The system status at the time is assumed. If the power flow calculation does not converge, the stability monitoring process S50
To that effect.

次に安定度限界計算処理S40が何を電圧安定度を表わ
す指標とするかについてと、どのような方法でその指標
を求めるかについて説明する。
Next, what the stability limit calculation process S40 sets as an index indicating the voltage stability and how to obtain the index will be described.

電力潮流方程式は非線形連立二次方程式であり、一般
的にその解は複数存在することが知られている。ここで
電力総需要と、系統内のある母線の電圧の関係は第3図
のように表わされ、ある総需要断面のもとでは、潮流方
程式は第3図のとのように2つの電圧解をもつ。本
実施例ではを高め解、を低め解とよぶ。高め解は電
圧安定解、低め解は電圧不安定解で、両者の中間点が、
電圧安定限界であると定義する。
The power flow equation is a nonlinear simultaneous quadratic equation, and it is generally known that a plurality of solutions exist. Here, the relation between the total power demand and the voltage of a certain bus in the system is expressed as shown in FIG. 3, and under a certain total demand cross section, the power flow equation is expressed by two voltages as shown in FIG. Has a solution. In this embodiment, a higher solution is referred to as a higher solution and a lower solution is referred to as a lower solution. The higher solution is a stable voltage solution and the lower solution is a unstable voltage solution.
Defined as the voltage stability limit.

先ず、将来系統状態決定処理S30が求めた第3図の
の点の将来系統状態より、需要を或る量だけ増加させた
時の状態を求める。なお、この場合の説明は総需要と系
統電圧の関係を示す第3図を用いて、将来系統状態を求
める方法を説明する。即ち、増加された需要に対して経
済負荷配分計算を行ない発電機の出力を決定し、負荷の
総需要に対する分布係数と負荷の力率とにより負荷の有
効電力と無効電力とを決定し、その条件で潮流計算を行
なった結果の高め解がである。このように順次、需要
を増加させて潮流計算の解が得られなくなるまで計算す
る。その結果が,,,である。
First, a state when the demand is increased by a certain amount is obtained from the future system state at the point in FIG. 3 obtained by the future system state determination processing S30. In this case, a method of obtaining a future system state will be described with reference to FIG. 3 showing the relationship between the total demand and the system voltage. That is, an economic load distribution calculation is performed for the increased demand, the output of the generator is determined, and the active power and the reactive power of the load are determined based on the distribution coefficient and the power factor of the load with respect to the total demand of the load. It is a higher solution of the result of performing the tidal current calculation under the condition. As described above, the calculation is sequentially performed until the solution of the power flow calculation cannot be obtained by increasing the demand. The result is,

次に、,,,に対応する低め解、,,
,を求める。一般に二次以上の方程式の解をニュー
トン・ラフソン法のような逐次修正法によって求める場
合、複数の解のうちどの解が得られるかは解の初期値、
即ち、最初の近似値によって定まるため、の低め解は
ノード電圧とその位相角の初期値を小さくすることによ
って求められる。の解をの解を求めるための初期値
とし、の解のの解を求めるための初期値とし、の
解をの解を求めるための初期値として、順次,,
,の点を求める。との中間点ととの中間点
ととの中間点ととの中間点を安定限界と定義す
る。
Next, a lower solution corresponding to ,,,
Ask for Generally, when solving a second-order or higher-order equation by a successive correction method such as the Newton-Raphson method, the initial value of the solution is determined as to which solution is obtained out of a plurality of solutions.
That is, since it is determined by the first approximation, a lower solution can be obtained by reducing the initial values of the node voltage and its phase angle. The solution of is taken as an initial value for finding the solution of, the solution of is taken as the initial value for finding the solution of, and the solution of is taken as the initial value for finding the solution of
Find the points of,. An intermediate point between the intermediate point of the intermediate point and the intermediate point of the intermediate point is defined as a stability limit.

ここで、将来系統状態に関して電圧安定性を判定する
必要性について説明する。先ず電力系統の運用の点から
の理由を説明する。電圧が不安定になってから対策を講
じた場合、電力系統の特性により電圧調整機器の制御は
電圧安定性の回復には効果が無く、一部の負荷を遮断し
て、即ち、停電させて残りの系統部分を安定化するとい
う望ましくない対策だけが効果がある。従って将来系統
の電圧安定性を予測し電圧が不安定状態に使づくことが
予測される時は電圧が不安定になる前にあらかじめ予防
的に制御すれば、電圧調整機器の制御により安定化する
ことができ、上記望ましくない対策を避けることができ
る。
Here, the necessity of determining the voltage stability with respect to the future system state will be described. First, the reason from the point of operation of the power system will be described. If measures are taken after the voltage becomes unstable, control of the voltage regulator will not be effective in restoring the voltage stability due to the characteristics of the power system. Only the undesired measures of stabilizing the rest of the system are effective. Therefore, when the voltage stability of the system is predicted in the future and it is predicted that the voltage will be used in an unstable state, if the control is performed preventively before the voltage becomes unstable, it will be stabilized by controlling the voltage regulator. And the above-mentioned undesirable countermeasures can be avoided.

次に現在状態のP−V曲線を用いたのでは将来時点の
電圧安定性を予測できない理由を電圧安定性解析の技術
の点から説明する。P−V曲線を作図するための潮流計
算を繰り返す場合、調相用コンデンサーやリアクトルの
投入量,変圧器のタップ位置,同期調相機電圧及び発電
機電圧、即ち、無効電力と電圧の調整に関する機器状態
を固定して潮流計算を行なうのが一般的である。
Next, the reason why the voltage stability at the future time cannot be predicted by using the PV curve in the current state will be described in terms of the technology of the voltage stability analysis. When the power flow calculation for plotting the PV curve is repeated, the equipment related to the adjustment of the reactive power and the voltage, that is, the input amount of the phase adjusting capacitor and the reactor, the tap position of the transformer, the synchronous phase adjuster voltage and the generator voltage. In general, the power flow is calculated while fixing the state.

即ち、条件を変化させるのは、総需要を増加させるこ
とに伴なう負荷の有効電力と無効電力及び発電機出力だ
けである。これは負荷の有効電力と無効電力及び発電機
出力が同じであっても、調相用コンデンサーやリアクト
ルの投入量,変圧器のタップ位置,同期調相機電圧及び
発電機電圧が異なると母線電圧が相違し、異なったP−
V曲線となることから、一定の条件で電圧安定性を評価
するために調相用コンデンサーやリアクトルの投入量,
変圧器のタップ位置,同期調相機電圧及び発電機電圧を
固定してP−V曲線の計算を行なうのが典型的な方法で
ある。
That is, only the active power and reactive power of the load and the generator output accompanying the increase in the total demand change the condition. This means that even if the active power and reactive power of the load and the generator output are the same, the bus voltage will be different if the input of the phase-adjustment capacitor and reactor, the tap position of the transformer, the synchronous phase adjuster voltage and the generator voltage are different. Different, different P-
Since it becomes a V curve, the amount of input of phase-adjusting capacitors and reactors to evaluate voltage stability under certain conditions,
It is a typical method to calculate the PV curve by fixing the tap position of the transformer, the synchronous phase adjuster voltage and the generator voltage.

現在系統状態に対しては、系統状態決定処理S10によ
り定められた調相用コンデンサーやリアクトルの投入
量,変圧器のタップ位置,同期調相機電圧及び発電機電
圧を用いてP−V曲線を作成するのが普通である。将来
予測系統状態に対しては、将来系統状態予測手段S20に
より定められた調相用コンデンサーやリアクトルの投入
量,変圧器のタップ位置,同期調相機電圧及び発電機電
圧を用いて前記現在系統状態のものとは異なるP−V曲
線を作成する。現在系統状態と将来予測系統状態では、
総需要の値が異なれば、例えば需要が増加すると系統電
圧が低下するので個別制御機器例えば個別VQCの動作に
より調相用コンデンサーやリアクトルの投入量,変圧器
のタップ位置,同期調相機電圧及び発電機電圧が調整さ
れるのが普通である。
For the current system state, a PV curve is created using the input amounts of phase adjustment capacitors and reactors, transformer tap positions, synchronous phase adjuster voltage, and generator voltage determined by the system state determination process S10. It is usual to do. For the predicted future system state, the current system state is calculated using the input amount of the phase-adjusting capacitor and reactor, the tap position of the transformer, the synchronous phase adjuster voltage and the generator voltage determined by the future system state predicting means S20. Create a PV curve different from that of. In the current system status and the predicted future system status,
If the value of the total demand is different, for example, when the demand increases, the system voltage will decrease. Therefore, the operation of individual control equipment, such as individual VQC, the input of the phase-adjustment capacitor and reactor, the tap position of the transformer, the voltage of the synchronous phaser, and the power generation The machine voltage is usually adjusted.

本発明では電圧調整機器の応動を予測し、将来系統状
態に対する調相用コンデンサーやリアクトルの投入量,
変圧器のタップ位置,同期調相機電圧及び発電機電圧を
決定している。このように現在状態と将来予測系統状態
とでは、総需要の大きさが異なれば調相用コンデンサー
やリアクトルの投入量,変圧器のタップ位置,同期調相
機電圧及び発電機電圧が異なるので、第5図に示すよう
に異なったP−V曲線となる。
According to the present invention, the response of the voltage regulator is predicted, and the input amount of the phase-adjusting capacitor and the reactor with respect to the future system state,
The transformer tap position, synchronous phase adjuster voltage and generator voltage are determined. As described above, if the magnitude of the total demand differs between the current state and the predicted future system state, the input amounts of the phase-adjusting capacitors and reactors, the tap positions of the transformers, the synchronous phaser voltage, and the generator voltage are different. As shown in FIG. 5, different PV curves are obtained.

即ち、現在系統P−V曲線は,,の曲線、将来
予測系統P−V曲線は,,の曲線となる。現在系
統P−V曲線上の現在状態は系統状態決定手段S10によ
り定められた点であり、将来予測系統P−V曲線上の
将来時点での予測現在状態は将来系統予測手段S20によ
って定められた点である。以上が将来時点に対する系
統状態予測と電圧安定性の判定が必要な理由である。
That is, the current system PV curve is a curve of, and the future predicted system PV curve is a curve of. The current state on the current system PV curve is a point determined by the system state determination means S10, and the predicted current state at a future point on the future predicted system PV curve is determined by the future system prediction means S20. Is a point. The above is the reason why it is necessary to predict the system state and determine the voltage stability at a future time.

安定度監視処理S50は将来時点の電圧安定度を判定す
る。将来系統状態予測処理S30の手順(3)で実施した
潮流計算が収束しなかった場合には、そのような需要の
もとでは電圧解が存在しない、即ち、電力系統運用が不
可能であることを意味するため、電圧不安定と判定す
る。
The stability monitoring process S50 determines the voltage stability at a future time. If the power flow calculation performed in step (3) of the future system state prediction processing S30 does not converge, there is no voltage solution under such demand, that is, the power system cannot be operated. Therefore, it is determined that the voltage is unstable.

一方、電圧不安定でない場合には、安定度限界計算処
理S40が求めた第4図に示されているような安定度限界
電圧VSLに対して、将来時点の電力系統の電圧安定度が
どうなっているかを下記の項目につき評価する。
On the other hand, if the voltage is not unstable, the voltage stability of the power system at a future time is different from the stability limit voltage VSL as shown in FIG. 4 obtained by the stability limit calculation process S40. Is evaluated for the following items.

(1)電圧安定度IVS=Vt−VSL(Pt) ……(15) Vt:将来系統電圧。(1) voltage stability IVS = V t -VSL (P t ) ...... (15) V t: future system voltage.

VSL(P):安定度限界電圧。 VSL (P): stability limit voltage.

P:総需要。 P: Gross demand.

Pt:将来の総需要。P t : Future total demand.

(2)安定度レベルの判定 将来の電力系統の系統電圧の安定度のレベルを上記電
圧安定度IVSを用いて判定する。即ち、将来の予測系統
の電圧安定度の状態、即ち、IVSの大きさが第4図に示
されている安定状態、安定度注意、安定度警戒の各領域
のどれに含まれているかを判定する。
(2) Determination of stability level The stability level of the system voltage of the future power system is determined using the voltage stability IVS. That is, the state of the voltage stability of the future prediction system, that is, which of the areas of the stable state, the stability attention, and the stability warning shown in FIG. 4 is included in the magnitude of the IVS is determined. I do.

第4図に示す安定状態,安定度注意,安定度警戒の各
領域は、電力系統を運用するにあたって、どのくらい安
定かを運用者が知るためのレベルであり、その年度の運
用計画等から決定する。
The stable state, stability caution, and stability warning areas shown in FIG. 4 are levels at which the operator can know how stable the power system is in operation, and are determined based on the operation plan for the year. .

制御量計算処理S60は、安定度監視処理S50によって将
来時点の系統電圧が不安定と判定された場合には、安定
に維持するに必要な負荷しゃ断量を求める。電力系統の
運用においては、非常時にしゃ断すべき負荷は、ある重
み付けのもとに予め決まっているので、これに従って、
将来系統状態予測処理S30の手順(3)の潮流計算が収
束するまで負荷を徐々にしゃ断すれば必要な負荷しゃ断
量が求まる。
When the stability monitoring process S50 determines that the system voltage at the future time is unstable, the control amount calculation process S60 obtains the load cutoff amount necessary to maintain the stability. In the operation of the power system, the load to be cut off in an emergency is determined in advance based on a certain weight.
If the load is gradually cut off until the power flow calculation in the procedure (3) of the future system state prediction processing S30 converges, a necessary load cutoff amount is obtained.

一方、安定度監視処理S50により、将来時点の系統電
圧が安定領域にあると判定された場合には、制御量計算
処理S60はコンデンサ,リアクトル,変圧器のタップ,
発電機励磁装置等の系統電圧を調整するための機器が電
圧安定度を高める効果の量を求める。第4図から分かる
ように電圧安定度は電力系統の電圧を高めることによっ
て大きくなる。即ち、系統電圧が安定度限界電圧より高
ければ高いほど安定となる。
On the other hand, if it is determined by the stability monitoring process S50 that the system voltage at a future time is in the stable region, the control amount calculation process S60 includes a capacitor, a reactor, a tap of a transformer,
A device for adjusting the system voltage, such as a generator exciter, determines the amount of the effect of increasing the voltage stability. As can be seen from FIG. 4, the voltage stability is increased by increasing the voltage of the power system. That is, the higher the system voltage is above the stability limit voltage, the more stable the system voltage becomes.

従って、電圧調整機器を単位量だけ調整したとき系統
電圧がどれだけ上昇するか、即ち、電圧感度係数が安定
度の改善の効果量である。電圧感度係数は将来系統状態
予測処理S30の手順(2)に示したと同じ方法で求め
る。さらに安定度監視処理S50により系統電圧の安定度
を改善する必要があると判定された場合には、制御量計
算処理S60は安定度を改善するために必要な調整量Rを
求める。
Therefore, how much the system voltage rises when the voltage adjusting device is adjusted by a unit amount, that is, the voltage sensitivity coefficient is an effect amount for improving the stability. The voltage sensitivity coefficient is obtained by the same method as shown in the procedure (2) of the future system state prediction processing S30. Further, when it is determined by the stability monitoring process S50 that it is necessary to improve the stability of the system voltage, the control amount calculation process S60 obtains an adjustment amount R necessary for improving the stability.

安定度改善の必要性の判定は次のように行なう。将来
系統の電圧安定性レベルが、例えば第4図の安定度警戒
レベルにあるとき、あるいは安定度警戒レベル又は安定
度注意レベルにあるなどである。実際にはどのようなレ
ベルにあるとき改善を必要とするかは電力系統の運用者
により決定される。系統電圧を充分安定に維持するに必
要な電圧上昇量VUPを安定度監視処理S50が求めた電圧安
定度IVSより次のように決める。
The determination of the necessity of the stability improvement is performed as follows. For example, when the voltage stability level of the future system is at the stability alert level in FIG. 4, or at the stability alert level or the stability alert level. The actual level at which improvement is required is determined by the grid operator. The amount of voltage increase VUP required to maintain the system voltage sufficiently stable is determined as follows from the voltage stability IVS obtained by the stability monitoring process S50.

VUP=−IVS+α ……(16) α:安全ファクター。 VUP = −IVS + α (16) α: safety factor.

次に、コンデンサ(SC)の投入によって安定化をする
場合、処理S30の手順(2)に示すΔV/ΔCqを用いて、 R=VUP÷(ΔV/ΔCq) ……(17) によって制御量Rを求める。
Next, when stabilizing by turning on the capacitor (SC), control is performed by R = VUP ÷ (ΔV / ΔC q ) (17) using ΔV / ΔC q shown in the procedure (2) of the process S30. Determine the quantity R.

制御量伝達処理S70は制御量計算処理S60の結果を電力
系統に含まれる被制御機器に送って制御する。出力処理
S80は前記各処理S20,S30,S40,S50,S60の種々の結果をCR
T画面に表示する。要するに本実施例によれば将来時点
の系統状態と電圧安定度を自動的に算出し、その結果に
基づいて系統電圧を安定に維持するように被制御機器を
先行的に制御するため、良質の電力をより一層安定に供
給することができる。
The control amount transmission process S70 sends the result of the control amount calculation process S60 to a controlled device included in the power system to control. Output processing
S80 converts the various results of the processes S20, S30, S40, S50, S60 into CRs.
Display on the T screen. In short, according to the present embodiment, the system state and the voltage stability at the future time are automatically calculated, and based on the result, the controlled device is controlled in advance to stably maintain the system voltage. Electric power can be supplied more stably.

[発明の効果] 以上説明した如く、本発明によれば電力系統の電圧に
関して先行的に制御を行なうようにしたので、オペレー
タに対して系統の運用状態を先行的に通知することが可
能であり、その結果一層質の高い電力供給が可能とな
る。
[Effect of the Invention] As described above, according to the present invention, the control of the voltage of the power system is performed in advance, so that the operator can be notified of the operation state of the system in advance. As a result, higher quality power supply becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によってなされる電圧安定度に関しての
処理内容を示すフローチャート、第2図は本発明による
電力系統監視制御システムの構成例図、第3図は需要量
と系統電圧との関係図、第4図は電圧安定度のレベルを
示す図、第5図は現在時点のP−V曲線と将来時点のP
−V曲線の関係を示す図である。 S10……系統情報伝達処理、S20……系統状態決定処理 S30……将来系統状態予測処理、S40……安定度限界計算
処理 S50……安定度監視処理、S60……制御量計算処理 S70……制御量伝達処理、S80……出力処理
FIG. 1 is a flow chart showing the contents of processing relating to voltage stability performed by the present invention, FIG. 2 is a diagram showing an example of the configuration of a power system monitoring and control system according to the present invention, and FIG. 3 is a diagram showing the relationship between demand and system voltage. FIG. 4 is a diagram showing a voltage stability level, and FIG. 5 is a diagram showing a PV curve at a present time and a P-V curve at a future time.
It is a figure which shows the relationship of -V curve. S10 ... System information transmission processing, S20 ... System state determination processing S30 ... Future system state prediction processing, S40 ... Stability limit calculation processing S50 ... Stability monitoring processing, S60 ... Control amount calculation processing S70 ... Control amount transmission processing, S80 …… Output processing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 寿男 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 市川 忠 東京都府中市東芝町1 株式会社東芝府 中工場内 (72)発明者 佐藤 正弘 東京都府中市東芝町1 株式会社東芝府 中工場内 (72)発明者 鈴木 和佳子 東京都港区芝浦1丁目1番1号 株式会 社東芝本社事務所内 (56)参考文献 特開 昭62−210838(JP,A) 特開 昭61−121720(JP,A) 特開 昭55−159270(JP,A) (58)調査した分野(Int.Cl.6,DB名) H02J 3/00──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshio Kato 1-3-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Tadashi Ichikawa 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba-fu Naka Factory (72) Inventor Masahiro Sato 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Nakashi Plant, Toshiba Fuwa Co., Ltd. (72) Wakako Suzuki 1-1-1, Shibaura, Minato-ku, Tokyo Inside the Toshiba head office (56) References JP-A-62-110838 (JP, A) JP-A-61-121720 (JP, A) JP-A-55-159270 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name ) H02J 3/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力系統からの系統情報を情報伝送装置を
介して電子計算機へ入力し、これらの各情報をもとに処
理して電圧安定度についての諸データを表示装置に出力
する電力系統監視制御システムにおいて、情報伝送装置
を介して伝送されてきた系統情報から被監視電力系統の
現在系統状態を定める系統状態決定手段と、前記した現
在系統状態を基にして将来の電力系統の状態を予測する
将来系統状態予測手段と、前記将来の系統状態に対して
需要電力Pと母線電圧VのP−V曲線により電圧の安定
限界を求める安定度限界計算手段と、前記安定度限界計
算手段によって定められた将来時点の電圧安定限界を境
にして安定領域では安定度限界からどれだけ離れている
かによって将来時点の系統の電圧安定度のレベルを判定
する安定度監視手段と、将来時点の系統の電圧が不安定
と判定したときは安定にするために、又は不安定に近い
レベルと判定したときは安定度をたかめるために必要な
被制御機器と制御量とを求める制御量計算手段と、前記
制御量に応じた制御信号を電力系統の被制御機器へ伝送
する制御量伝送手段と、オペレータに対して上記データ
を出力する手段とを備えたことを特徴とする電力系統監
視制御システム。
1. A power system which inputs system information from a power system to an electronic computer via an information transmission device, processes the information based on the information, and outputs various data on voltage stability to a display device. In the monitoring and control system, a system state determination unit that determines a current system state of the monitored power system from system information transmitted via the information transmission device, and a state of a future power system based on the current system state described above. Future system state prediction means for predicting, stability limit calculation means for obtaining a voltage stability limit based on a PV curve of demand power P and bus voltage V for the future system state, and stability limit calculation means A stability monitoring method that determines the voltage stability level of the system at a future time point based on how far away from the stability limit in the stability region at a predetermined voltage stability limit at the future time. When the voltage of the system at a future point in time is determined to be unstable, a controlled device and a control amount required to stabilize the voltage or to increase the stability when the voltage is determined to be close to unstable are determined. A control amount calculating unit, a control amount transmitting unit that transmits a control signal corresponding to the control amount to a controlled device of a power system, and a unit that outputs the data to an operator. Grid monitoring and control system.
JP63205946A 1988-08-19 1988-08-19 Power system monitoring and control system Expired - Lifetime JP2815872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63205946A JP2815872B2 (en) 1988-08-19 1988-08-19 Power system monitoring and control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205946A JP2815872B2 (en) 1988-08-19 1988-08-19 Power system monitoring and control system

Publications (2)

Publication Number Publication Date
JPH0255531A JPH0255531A (en) 1990-02-23
JP2815872B2 true JP2815872B2 (en) 1998-10-27

Family

ID=16515332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205946A Expired - Lifetime JP2815872B2 (en) 1988-08-19 1988-08-19 Power system monitoring and control system

Country Status (1)

Country Link
JP (1) JP2815872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278244A (en) * 2013-05-15 2013-09-04 杭州盈电科技有限公司 Monitoring method and monitoring system for overheat fault of transformer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712092B2 (en) * 1990-09-17 1998-02-10 株式会社東芝 Voltage reactive power monitoring and control device
JP2716887B2 (en) * 1991-07-18 1998-02-18 株式会社東芝 Voltage stability monitoring and control device
JPH0515636U (en) * 1991-08-02 1993-02-26 財団法人鉄道総合技術研究所 Distance relay with load area approach alarm
JPH05328608A (en) * 1992-05-22 1993-12-10 Tohoku Electric Power Co Inc Equipment for controlling voltage and reactive power
JP3792428B2 (en) * 1999-03-09 2006-07-05 三菱電機株式会社 Power system control apparatus and power system control method
US8273467B2 (en) 2006-02-28 2012-09-25 Fujifilm Corporation Organic electroluminescent device
JP6596858B2 (en) * 2015-03-18 2019-10-30 中国電力株式会社 Automatic voltage adjusting device and automatic voltage adjusting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278244A (en) * 2013-05-15 2013-09-04 杭州盈电科技有限公司 Monitoring method and monitoring system for overheat fault of transformer
CN103278244B (en) * 2013-05-15 2016-04-20 杭州盈电科技有限公司 The monitoring method of overheat fault of transformer and monitoring system thereof

Also Published As

Publication number Publication date
JPH0255531A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
EP1134867B1 (en) Method and device for assessing the stability of an electric power transmission network
EP1324454B1 (en) Determining an operational limit of a power transmission line
JP4890920B2 (en) Power quality maintenance support method and power quality maintenance support system for a distribution system in which a plurality of distributed power sources are connected
EP2070173B1 (en) Determination and use of power system sensitivities for power flow control
US9507367B2 (en) Method and system for dynamic stochastic optimal electric power flow control
US5483147A (en) Decentralized excitation control for an electrical power utility system
US6338009B1 (en) Method and apparatus for estimating frequency characteristics of power system, and application thereof
EP1737098A1 (en) Damping electromagnetic oscillations in power system
JP2815872B2 (en) Power system monitoring and control system
CN116845878A (en) Electric load prediction method for micro-grid
Jin et al. Delay-dependent stability of load frequency control with adjustable computation accuracy and complexity
US20240003333A1 (en) Improvements in or relating to voltage control in renewable energy power plants
EP0269377B1 (en) Full range nuclear power plant steam generator level control system
US11955800B2 (en) Method and control systems for voltage control in renewable energy power plant
EP0039234A2 (en) Computerized control system for an electrochemical plant
JP7149237B2 (en) Power system controller
JP2965253B2 (en) Power system monitoring and control system
Otomega et al. Emergency alleviation of thermal overloads using model predictive control
WO2023074058A1 (en) Power system control device and method
CN112039120A (en) Reactive power adjusting method and system for grid-connected wind power plant
JP2937379B2 (en) Power system monitoring and control system
JP2647157B2 (en) Power system monitoring and control system
Jovanovic et al. On-line load relief control
JP2712092B2 (en) Voltage reactive power monitoring and control device
JP2644354B2 (en) Power system monitoring and control system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11