JPH05328608A - Equipment for controlling voltage and reactive power - Google Patents

Equipment for controlling voltage and reactive power

Info

Publication number
JPH05328608A
JPH05328608A JP4130970A JP13097092A JPH05328608A JP H05328608 A JPH05328608 A JP H05328608A JP 4130970 A JP4130970 A JP 4130970A JP 13097092 A JP13097092 A JP 13097092A JP H05328608 A JPH05328608 A JP H05328608A
Authority
JP
Japan
Prior art keywords
voltage
reactive power
power
reactive
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4130970A
Other languages
Japanese (ja)
Inventor
Tamotsu Minagawa
保 皆川
Yoshinori Ichikawa
嘉則 市川
Takahiro Toyozumi
隆寛 豊住
Koichi Washimi
浩一 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tohoku Electric Power Co Inc
Original Assignee
Toshiba Corp
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tohoku Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP4130970A priority Critical patent/JPH05328608A/en
Publication of JPH05328608A publication Critical patent/JPH05328608A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To decrease the switching number of the taps of a transformer, by eliminating unnecessary operations for switching taps even when the voltage and the reactive power of an electric power system change by the changes of its loads. CONSTITUTION:An equipment for controlling voltage and reactive power controls the voltage and the reactive power of an electric power system by switching the taps of a tap switching transformer. In this equipment, a part 11 for predicting voltages and reactive powers and a part 12 for controlling voltages and reactive powers are provided. The part 11 predicts the voltage and the reactive power of the electric power system by a sequential type least square method from the past time-series data relative to the effective power, the voltage and the reactive power of the electric power system and from the operating data of adjacent generating stations. The part 12 takes in the predictive values of the voltage and the reactive power, which are predicted by the part 11, and judges whether these predictive values stay in predetermined ranges or not. Only when judging them not to stay in the predetermined ranges, the part 12 gives to the tap switching transformer a command for switching taps, and controls the voltage and the reactive power of the electric power system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力系統の無効電力を自
動的に制御する電圧無効電力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage reactive power controller for automatically controlling reactive power in a power system.

【0002】[0002]

【従来の技術】従来の自動電圧無効電力制御装置(以下
AVQCと略称する)としては、変圧器に設けられたタ
ップ切換器(LTC)に駆動指令を与え、当該変圧器の
タップを調整することにより変圧器二次側の出力電圧や
無効電圧を所望の範囲に制御するようにしたものがあ
る。
2. Description of the Related Art As a conventional automatic voltage reactive power controller (abbreviated as AVQC hereinafter), a drive command is given to a tap changer (LTC) provided in a transformer to adjust the tap of the transformer. In some cases, the output voltage and reactive voltage on the secondary side of the transformer are controlled by a desired range.

【0003】図4はかかるAVQCが適用された系統構
成例を示すものである。図4において、発電機1はLT
Cを有する変圧器2を介して電力系統に接続されてい
る。AVQCは計器用変圧器(PT)3と変流器(C
T)4より変圧器二次側の電圧、変流器二次側の電流を
入力し、トランスジューサ5により無効電圧Qと電圧V
に変換し、それらをプロセス信号として電圧無効電力制
御装置6へ入力する。この電圧無効電力制御装置6は、
予め設定された範囲からV,Qがある時間以上逸脱した
ときは、当該変圧器のLTCへタップ上げ、または下げ
の指令を出力し、変圧器の二次側電圧無効電力がある範
囲に入るように制御演算を行っている。
FIG. 4 shows an example of a system configuration to which such AVQC is applied. In FIG. 4, the generator 1 is LT
It is connected to the power system via a transformer 2 having C. AVQC is a transformer for instrument (PT) 3 and current transformer (C
T) The voltage on the secondary side of the transformer and the current on the secondary side of the current transformer are input from T, and the reactive voltage Q and the voltage V are input by the transducer 5.
To the voltage reactive power controller 6 as a process signal. This voltage reactive power control device 6 is
When V and Q deviate from the preset range for a certain time or longer, a command to tap up or down to the LTC of the transformer is output so that the secondary voltage reactive power of the transformer falls within a certain range. Control calculation is performed.

【0004】図5は図4に示す電圧無効電力制御装置の
内部構成例を詳細に示すブロック回路図である。プロセ
ス信号である電圧信号(V)と無効電力信号(Q)は、
不感帯設定器7に入力される。この不感帯設定器7は、
例えば図6に示すような設定であり、斜線部内に当該入
力信号V,Qが存在すれば不感帯出力は零である。も
し、VかQの一方または両方が変化して斜線部外へ出た
場合は、斜線部から外れた大きさに比例して不感帯設定
器7より不感帯出力が出される。積分器8は、不感帯出
力が零であるか、LTCによりタップ駆動されたときに
連続的なLTCの駆動を防止するために設けられたタイ
マ(図示せず)からのインターロック、つまりリセット
信号により積分器8がロックされている。前回、LTC
のタップを駆動してからタイマ設定値以上の時間が経過
するとタイマはカウントアップし、不感帯出力信号の有
無によりリセット信号がオン/オフする。V,Q入力信
号が不感帯設定範囲(図6の斜線部)を越えたときにリ
セット信号が解除され、積分器は不感帯の信号の大きさ
により反時限特性を持って、正又は負方向信号を出力す
る。正方向信号が増方向検出コンパレータ9の設定値以
上に到達すると、同コンパレータ出力がオンし、変圧器
タップ上げ指令を出力する。逆に積分器出力信号が負で
あれば、減方向検出コンパレータ10の設定値と積分器
出力信号が比較され、積分器出力信号がコンパレータ設
定値以下となると変圧器タップ下げ指令を出力する。も
し、積分器8の出力がコンパレータの動作レベルに到達
する前に不感帯出力が零となれば、リセット信号により
積分器出力が零となり、制御演算としては初期状態に復
帰する。
FIG. 5 is a block circuit diagram showing in detail an internal configuration example of the voltage reactive power control device shown in FIG. The voltage signal (V) and the reactive power signal (Q), which are process signals, are
It is input to the dead zone setting device 7. This dead zone setting device 7
For example, the setting is as shown in FIG. 6, and if the input signals V and Q exist in the shaded area, the dead zone output is zero. If one or both of V and Q changes and goes out of the shaded area, the dead zone setting unit 7 outputs a dead zone output in proportion to the magnitude of deviation from the shaded area. The integrator 8 has an interlock, that is, a reset signal from a timer (not shown) provided to prevent continuous LTC driving when the dead band output is zero or when tap driven by LTC. The integrator 8 is locked. Last time, LTC
When a time equal to or greater than the timer set value has passed since the tap was driven, the timer counts up and the reset signal is turned on / off depending on the presence or absence of the dead zone output signal. The reset signal is released when the V and Q input signals exceed the dead zone setting range (the shaded area in FIG. 6), and the integrator has the anti-time characteristic depending on the magnitude of the dead zone signal, and outputs the positive or negative direction signal. Output. When the positive direction signal reaches or exceeds the set value of the increasing direction detection comparator 9, the comparator output is turned on and the transformer tap-up command is output. On the contrary, if the integrator output signal is negative, the set value of the down direction detection comparator 10 is compared with the integrator output signal, and when the integrator output signal becomes equal to or less than the comparator set value, the transformer tap down command is output. If the dead band output becomes zero before the output of the integrator 8 reaches the operation level of the comparator, the reset signal causes the integrator output to become zero, and the control calculation returns to the initial state.

【0005】[0005]

【発明が解決しようとする課題】ところで、このような
AVQCにより駆動される変圧器のLTCに対しては、
機械的な最大可能動作回数が定められており、不要な動
作回数を極力抑えることは保守並びに経済性の面から重
要である。
By the way, for the LTC of the transformer driven by such an AVQC,
The maximum number of mechanical operations that can be performed is set, and it is important to minimize unnecessary operations from the viewpoint of maintenance and economy.

【0006】図7はAVQCにより駆動されたある変圧
器の実際のLTC動作記録を示すものである。以下図7
に示すLTC実動作オシロについて説明する。系統電圧
が負荷の変動により上昇すると、AVQCはLTCにタ
ップ下げ指令を出すが、系統電圧が設定範囲よりも高い
ため、ある時間後に再度LTCにタップ下げ指令が出さ
れている。ところが、今度は系統電圧が設定範囲よりも
下がり過ぎのため、タップ上げ指令が出されている。こ
の実測オシロに示す如く、系統負荷の変動に応じて系統
電圧Vや無効電力Qが変化する。しかし、図7に示した
2回目の下げ指令は、直ぐにタップを上げて元の位置に
戻す必要が生じていることからも分かるように不要動作
である。特に1日の内でも、朝、昼前後、夕方など複数
回大きな負荷変動が発生するため、年間に換算するとか
かる不要動作回数はLTCの寿命に大きな影響を与える
ことになる。このように従来のAVQCにおいては、系
統負荷の変動により系統電圧や無効電力が変動した場合
に、不要動作が発生するという問題があった。
FIG. 7 shows an actual LTC operation record of a transformer driven by an AVQC. Figure 7 below
The LTC actual operation oscilloscope shown in FIG. When the system voltage rises due to a load change, the AVQC issues a tap down command to the LTC. However, since the system voltage is higher than the set range, the tap down command is issued to the LTC again after a certain time. However, this time, the system voltage is too lower than the set range, so a tap-up command is issued. As shown in the measured oscilloscope, the system voltage V and the reactive power Q change according to the change of the system load. However, the second lowering command shown in FIG. 7 is an unnecessary operation as is apparent from the fact that it is necessary to immediately raise the tap to return to the original position. In particular, even within one day, large load fluctuations occur in the morning, around daytime, in the evening, and the like, so that the number of unnecessary operations performed in a year greatly affects the life of the LTC. As described above, the conventional AVQC has a problem that unnecessary operation occurs when the system voltage or the reactive power changes due to the change of the system load.

【0007】本発明の目的は、系統負荷の変動により系
統電圧や無効電力が変動しても不要なタップ切換動作を
なくしてタップ切換回数を減らすことができる電圧無効
電力制御装置を提供するにある。
An object of the present invention is to provide a voltage reactive power control device capable of reducing the number of tap switching operations by eliminating unnecessary tap switching operation even if the system voltage or reactive power fluctuates due to fluctuations in the system load. ..

【0008】[0008]

【課題を解決するための手段】本発明は上記の目的を達
成するため、電力系統の電圧と無効電力を変圧器に有す
るタップ切換器により変圧器タップを切換えて制御する
電圧無効電力制御装置において、上記電力系統の過去の
有効電力、電圧および無効電力の時系列データと近傍発
電所の運転信号とから逐次形最小2乗法により上記電力
系統の電圧と無効電力とを予測する電圧無効電力予測手
段と、この電圧無効電力予測手段で予測された電圧値お
よび無効電力予測値が取込まれ、これらの予測値が設定
範囲内に収まるか否かを判定し、収まらないと判定され
たときのみ前記タップ切換器にタップ切換指令を与えて
前記電力系統の電圧無効電力を制御する電圧無効電力制
御手段とをとを備える。
In order to achieve the above object, the present invention provides a voltage reactive power controller for switching and controlling a transformer tap by a tap changer having a voltage of a power system and reactive power in a transformer. , Voltage reactive power predicting means for predicting the voltage and reactive power of the power system by the recursive least squares method from the past active power, voltage and reactive power time series data of the power system and the operation signal of the nearby power plant And, the voltage value and reactive power predicted value predicted by the voltage reactive power predicting means are taken in, and it is determined whether or not these predicted values are within the set range, and only when it is determined that they do not fit And a voltage reactive power control means for giving a tap switching command to the tap switching device to control the voltage reactive power of the power system.

【0009】[0009]

【作用】このような構成の電圧無効電力制御装置にあっ
ては、電圧無効電力予測手段により電力系統の過去の有
効電力、電圧および無効電力の時系列データと近傍発電
所の運転信号とから近未来の電力系統の電圧と無効電力
が予測されると、電圧無効電力制御手段によりその予測
値が設定値内に収まるか否かが判定され、収まらないと
きのみタップ切換変圧器のタップが切換られる。したが
って、現在の電圧あるいは無効電力が設定値範囲外であ
っても近未来の予測値が収まる場合にはタップ切換変圧
器のタップ切換えは行われないので、タップ切換回数を
減らすことが可能となる。また、電圧無効電力予測手段
により電力系統の電圧と無効電力を予測する場合、近傍
発電所の運転信号を加味しているので、その予測精度を
高めることができる。
In the voltage reactive power control device having such a configuration, the voltage reactive power predicting means makes it possible to approximate the time series data of the past active power, voltage and reactive power of the power system and the operation signal of the nearby power plant. When the voltage and reactive power of the future power system are predicted, the voltage reactive power control means determines whether or not the predicted value falls within the set value, and only when it does not fit, the tap of the tap switching transformer is switched. .. Therefore, even if the current voltage or reactive power is out of the set value range, if the predicted value in the near future falls within the set value range, tap switching of the tap switching transformer is not performed, and thus the number of tap switching can be reduced. .. Further, when the voltage and reactive power of the power system is predicted by the voltage reactive power predicting means, the operation signal of the nearby power plant is added, so that the prediction accuracy can be improved.

【0010】[0010]

【実施例】以下本発明の一実施例を図面を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本発明による自動電圧無効電力制御
装置の構成例を示すブロック図である。図1に示すよう
に本実施例装置は、電力系統の時々刻々変化する電圧、
電流の検出信号から得られる有効電力あるいはそれに相
当する信号の時系列データ、電圧の時系列データ、無効
電力の時系列データおよび近傍の発電所の運転信号を入
力し、電圧の予測値と無効電力の予測値を出力する電圧
無効電力予測部11と、電圧測定値およひ無効電力測定
値と、電圧予測値および無効電予測値を入力し、タップ
指令を出力する電圧無効電力制御部12とから構成され
ている。
FIG. 1 is a block diagram showing a configuration example of an automatic voltage reactive power control device according to the present invention. As shown in FIG. 1, the device of this embodiment has a voltage that changes from moment to moment in the power system,
Input the active power or equivalent signal time series data obtained from the current detection signal, the voltage time series data, the reactive power time series data and the operation signal of the nearby power plant, and input the predicted voltage value and reactive power. And a voltage reactive power control unit 12 that inputs a voltage measurement value and a reactive power measurement value, a voltage prediction value and a reactive power prediction value, and outputs a tap command. It consists of

【0012】ここで、前記近傍の発電所の運転信号と
は、図2に示すボイラ燃料投入量13やタービン初段前
(後)蒸気圧力14、又は加減弁開度15の変化率等が
有効である。すなわち、図2に示す発電所基本系統図に
おいて、発電機1の出力を増加させる場合、ボイラ16
への燃料投入量13を増す必要があり、燃料投入後のあ
る特定時間後に発電機1の出力が燃料投入量にほぼ比例
して増加する。同様に発電機1の出力を増加させる場合
には、タービン初段前(後)蒸気圧力14を高め、また
加減弁開度15を増し、蒸気流量を増す必要がある。一
方、タービン初段前(後)蒸気圧力14や下限弁開度1
5と発電機出力の関係はタービン17の設計により決定
するものであるが、その応答速度は非常に速いため、近
未来の発電機出力を予測するには、タービン初段前
(後)蒸気圧力14や加減弁開度15の変化率が有効で
ある。なお、図中18は復水器である。
Here, the operation signals of the power plants in the vicinity are effective such as the boiler fuel injection amount 13, the steam pressure 14 before (after) the turbine first stage, or the rate of change of the control valve opening degree 15 shown in FIG. is there. That is, in the power station basic system diagram shown in FIG. 2, when increasing the output of the generator 1, the boiler 16
It is necessary to increase the fuel injection amount 13 into the fuel cell, and the output of the generator 1 increases almost in proportion to the fuel injection amount after a specific time after the fuel injection. Similarly, when increasing the output of the generator 1, it is necessary to increase the steam pressure 14 before (rear) the turbine first stage, increase the regulator valve opening 15, and increase the steam flow rate. On the other hand, the steam pressure 14 before and after the first stage of the turbine and the lower limit valve opening 1
5 and the generator output are determined by the design of the turbine 17, but the response speed is very fast. Therefore, in order to predict the generator output in the near future, the steam pressure before the turbine first stage (after) 14 The rate of change of the adjustment valve opening 15 is effective. In the figure, 18 is a condenser.

【0013】上記電圧無効電力予測部11は、図3に示
すように電圧モデル同定部19と、無効電力モデル同定
部20と有効電力予測部21と電圧予測部22および無
効電力予測部23から構成される。電圧モデル同定部1
9は有効電力と電圧の時系列データとから、有効電力を
入力とし電圧を出力とする(1)式のARMA(auto-r
egressive movingaverage model)モデルのパラメータ
{ai ,bj}を最小2乗推定(例えば、線形システムの
同定:計測と制御VO128-No4,PP291/299)により算出し、
そのパラメータおよび有効電力と電圧の時系列データを
電圧予測部22に出力する。 ただし、V(k) は電圧のサンプルデータ,P(k) は有効
電力のサンプルデータ、nはARモデル次数、mはMA
モデル次数である。
The voltage reactive power predictor 11 is shown in FIG.
Voltage model identification unit 19 and reactive power model identification
Unit 20, active power predicting unit 21, voltage predicting unit 22, and
It is composed of the effective power prediction unit 23. Voltage model identification unit 1
9 shows active power from time series data of active power and voltage.
The ARMA (auto-r
egressive moving average model) model parameters
{Ai, bj} is a least-squares estimate (eg, for linear systems
Identification: Measurement and control VO128-No4, PP291 / 299)
Its parameters and time series data of active power and voltage
It outputs to the voltage prediction unit 22. However, V (k) is voltage sample data and P (k) is valid
Sample data of power, n is AR model order, m is MA
The model order.

【0014】同様に無効電力モデル同定部20は、有効
電力と無効電力の時系列データとから、有効電力を入力
とし無効電力を出力する(2)式のARMAモデルのパ
ラメータ{ci ,dj ) を最小2乗推定により算出し、そ
のパラメータおよび有効電力と無効電力の時系列データ
を無効電力予測部23に出力する。 ただし、Q(k) は無効電力のサンプルデータ,P(k) は
有効電力のサンプルデータ、nはARモデル次数、mは
MAモデル次数である。
Similarly, the reactive power model identification unit 20 is effective
Input active power from time series data of power and reactive power
The output of the reactive power is expressed as
Parameter {ci, dj) Is calculated by least-squares estimation, and
Parameters and time series data of active power and reactive power
Is output to the reactive power prediction unit 23. Where Q (k) is the reactive power sample data and P (k) is
Sample data of active power, n is AR model order, m is
It is the MA model order.

【0015】また、有効電力予測部21は、有効電力の
時系列データと近傍の発電所の運転信号とから、有効電
力を時間tの関数(例えば(3)式)で近似し、将来の
有効電力を予測すると共に、その予測値を電圧予測部2
2および無効電力予測部23に出力する。 P(t) = P0 + P1 *t+ P2 *t2 ……(3) ただし、P0 ,P1 ,P2 はパラメータであり、例えば
最小2乗法で決定される。
Further, the active power predicting unit 21 approximates the active power with a function of time t (for example, equation (3)) from the time series data of the active power and the operation signal of the nearby power plant, and the future active power is calculated. While predicting the electric power, the voltage predicting unit 2 calculates the predicted value.
2 and the reactive power prediction unit 23. P (t) = P 0 + P 1 * t + P 2 * t 2 (3) However, P 0 , P 1 and P 2 are parameters and are determined by, for example, the least square method.

【0016】電圧予測部22は、電圧モデル同定部19
の出力である電圧モデルのパラメータおよび有効電力と
電圧の時系列データと有効電力予測部21の出力である
有効電力予測値を入力し、電圧の予測値を算出する。
The voltage predicting unit 22 includes a voltage model identifying unit 19
The input of the parameter of the voltage model which is the output of the power source, the time series data of the active power and the voltage, and the active power prediction value which is the output of the active power prediction unit 21 is calculated.

【0017】さらに、無効電力予測部23は、無効電力
モデル同定部20の出力である無効電力モデルのパラメ
ータおよび有効電力と無効電力の時系列データと有効電
力予測部21の出力である有効電力予測値を入力し、無
効電力の予測値を算出する。
Further, the reactive power predicting unit 23 has parameters of the reactive power model output from the reactive power model identifying unit 20, time series data of active power and reactive power, and active power prediction output from the active power predicting unit 21. Input the value and calculate the predicted value of reactive power.

【0018】一方、電圧無効電力制御部12は、上述し
た電圧無効電力予測部11より出力される電圧および無
効電力の測定値と、電力系統の電圧および無効電力を入
力し、従来と同様のタップ切換指令出力手段に、将来の
予測値が設定値内に収まるか否かを判定し、予測値が設
定値内に収まらない場合のみタップ切換指令を出力する
機能を付加している。
On the other hand, the voltage reactive power control unit 12 inputs the measured values of the voltage and the reactive power output from the voltage reactive power predicting unit 11 and the voltage and the reactive power of the power system, and taps the same as the conventional tap. The switching command output means is provided with a function of determining whether or not the future predicted value falls within the set value and outputting the tap switching command only when the predicted value does not fall within the set value.

【0019】このような構成の電圧無効電力制御装置と
すれば、電圧無効電力予測部11により電力系統の過去
の有効電力、電圧および無効電力の時系列データと近傍
発電所の運転信号とから逐次形最小2乗法により近未来
の電力系統の電圧と無効電力とが予測され、その予測値
が電圧無効電力制御部12の判定機能により設定値内に
収まるか否かが判定され、収まらないときのみ変圧器の
タップ切換器にタップ切換指令が出力されるようにした
ので、現在の電圧あるいは無効電力が設定値範囲外であ
っても近未来の予測値が設定値内に収まる場合にはタッ
プ切換器による変圧器のタップ切換えは行われない。従
って、従来のように各時点毎の電力系統の電圧、無効電
力の値が設定値をある時間以上逸脱すると、タップ切換
指令を出力するようにしたものと比べて、タップ切換回
数を大幅に減らすことが可能となり、しかも電圧無効電
力予測部11で電力系統の電圧と無効電力を予測する場
合、近傍発電所のタービン初段前(後)の蒸気圧力、加
減弁開度、ボイラ燃料投入量等の運転信号を取込んで有
効電力を予測しているので、電圧、無効電力予測の精度
を高めることができる。
According to the voltage reactive power control device having such a configuration, the voltage reactive power predicting section 11 sequentially uses the past active power of the power system, the time series data of the voltage and the reactive power, and the operation signal of the neighboring power plant. Voltage and reactive power in the near future power system are predicted by the method of least squares, and whether or not the predicted value falls within the set value is determined by the determination function of the voltage reactive power control unit 12, and only when it does not fall within the set value. Since the tap change command is output to the tap changer of the transformer, if the predicted value in the near future falls within the set value even if the current voltage or reactive power is outside the set value range, tap change is performed. The transformer taps are not switched by the transformer. Therefore, when the voltage of the power system at each time point and the value of the reactive power deviate from the set values for a certain time as in the conventional case, the number of tap switching is significantly reduced as compared with the case where the tap switching command is output. In addition, when the voltage / reactive power predicting unit 11 predicts the voltage and reactive power of the power system, the steam pressure, the regulator valve opening degree, the boiler fuel input amount, etc. before (after) the first stage of the turbine of the nearby power plant are calculated. Since the active power is predicted by taking in the operation signal, the accuracy of voltage and reactive power prediction can be improved.

【0020】[0020]

【発明の効果】以上述べたように本発明によれば、系統
負荷の変動により系統電圧や無効電力が変動しても不要
なタップ切換動作をなくしてタップ切換回数を減らすこ
とができる電圧無効電力制御装置を提供できる。
As described above, according to the present invention, even if the system voltage or the reactive power fluctuates due to the fluctuation of the system load, unnecessary tap switching operation can be eliminated and the number of tap switching can be reduced. A control device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電圧無効電力制御装置の一実施例
を示すブロック図。
FIG. 1 is a block diagram showing an embodiment of a voltage reactive power control device according to the present invention.

【図2】近傍発電所の基本系統図。[Fig. 2] Basic system diagram of a nearby power plant.

【図3】図1における電圧無効電力予測部の構成例を示
すブロック図。
3 is a block diagram showing a configuration example of a voltage reactive power prediction unit in FIG.

【図4】電圧無効電力制御システムを示す構成図。FIG. 4 is a configuration diagram showing a voltage reactive power control system.

【図5】従来のAVQCを示すブロック図。FIG. 5 is a block diagram showing a conventional AVQC.

【図6】図5の不感帯設定器の設定範囲を示す図。FIG. 6 is a diagram showing a setting range of the dead zone setting device of FIG.

【図7】従来のLTCの実動作を示すオシログラフ。FIG. 7 is an oscillograph showing the actual operation of a conventional LTC.

【符号の説明】[Explanation of symbols]

11……電圧無効電力予測部、12……電圧無効電力制
御部、19……電圧モデル同定部、20……無効電力モ
デル同定部、21……有効電力予測部、22……電圧予
測部、23……無効電力予測部。
11 ... Voltage reactive power prediction unit, 12 ... Voltage reactive power control unit, 19 ... Voltage model identification unit, 20 ... Reactive power model identification unit, 21 ... Active power prediction unit, 22 ... Voltage prediction unit, 23 ... Reactive power prediction unit.

フロントページの続き (72)発明者 豊住 隆寛 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 鷲見 浩一 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内Front Page Continuation (72) Inventor Takahiro Toyosumi 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Headquarters Co., Ltd. (72) Inventor Koichi Washimi 1-1-1, Shibaura, Minato-ku, Tokyo Toshiba Headquarters Co., Ltd. In the office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の電圧と無効電力を変圧器に有
するタップ切換器により変圧器タップを切換えて制御す
る電圧無効電力制御装置において、上記電力系統の過去
の有効電力、電圧および無効電力の時系列データと近傍
発電所の運転信号とから逐次形最小2乗法により上記電
力系統の電圧と無効電力とを予測する電圧無効電力予測
手段と、この電圧無効電力予測手段で予測された電圧値
および無効電力予測値が取込まれ、これらの予測値が設
定範囲内に収まるか否かを判定し、収まらないと判定さ
れたときのみ前記タップ切換器にタップ切換指令を与え
て前記電力系統の電圧無効電力を制御する電圧無効電力
制御手段とを備えたことを特徴とする電圧無効電力制御
装置。
1. A voltage reactive power control device for switching and controlling a transformer tap by a tap changer having a power system voltage and reactive power in a transformer, wherein the active power, voltage and reactive power of the past of the power system are controlled. Voltage reactive power prediction means for predicting the voltage and reactive power of the power system by the recursive least squares method from the time series data and the operation signal of the nearby power plant, and the voltage value predicted by the voltage reactive power prediction means and The reactive power prediction values are taken in, and it is determined whether or not these prediction values are within the set range. Only when it is determined that the prediction values do not fall within the set range, the tap switching command is given to the tap switching device and the voltage of the power system is determined. A voltage reactive power control device comprising: a voltage reactive power control means for controlling reactive power.
JP4130970A 1992-05-22 1992-05-22 Equipment for controlling voltage and reactive power Pending JPH05328608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4130970A JPH05328608A (en) 1992-05-22 1992-05-22 Equipment for controlling voltage and reactive power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130970A JPH05328608A (en) 1992-05-22 1992-05-22 Equipment for controlling voltage and reactive power

Publications (1)

Publication Number Publication Date
JPH05328608A true JPH05328608A (en) 1993-12-10

Family

ID=15046868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130970A Pending JPH05328608A (en) 1992-05-22 1992-05-22 Equipment for controlling voltage and reactive power

Country Status (1)

Country Link
JP (1) JPH05328608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2506384A1 (en) * 2011-03-31 2012-10-03 General Electric Company System and method for operating a tap changer
JP2013070513A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Phase advance capacitor control device, and power factor adjuster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594541A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Voltage control system
JPH0255531A (en) * 1988-08-19 1990-02-23 Tokyo Electric Power Co Inc:The Power system monitoring control apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594541A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Voltage control system
JPH0255531A (en) * 1988-08-19 1990-02-23 Tokyo Electric Power Co Inc:The Power system monitoring control apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2506384A1 (en) * 2011-03-31 2012-10-03 General Electric Company System and method for operating a tap changer
JP2012217332A (en) * 2011-03-31 2012-11-08 General Electric Co <Ge> System and method for operating tap changer
US8531173B2 (en) 2011-03-31 2013-09-10 General Electric Company System and method for operating a tap changer
JP2013070513A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Phase advance capacitor control device, and power factor adjuster

Similar Documents

Publication Publication Date Title
US10116136B2 (en) Primary frequency control through simulated droop control with electric loads
US4204127A (en) Load regulation as part of an adaptive priority determination power demand control system
US20040222769A1 (en) Stress management of battery recharge and method of state charge estimation
US4463432A (en) Power controller using dual deadbands for reducing oscillatory load manipulations
US4141069A (en) Time dependent power demand control method
CN112952848B (en) Energy storage multi-scene application switching control method based on comprehensive identification index
KR20010022346A (en) Adaptive cascade control algorithm
US4110825A (en) Control method for optimizing the power demand of an industrial plant
US11353908B2 (en) Centralized voltage control apparatus and centralized voltage control system
WO2021172223A1 (en) Power grid stabilization system using communication line
EP0039234A2 (en) Computerized control system for an electrochemical plant
JPH05328608A (en) Equipment for controlling voltage and reactive power
JP2002022239A (en) Load prediction device
EP0906251A1 (en) A method of regulating the flue gas temperature and voltage supply in an electrostatic precipitator for a cement production plant
CN115031287B (en) Prediction method, device, control equipment and storage medium for double-valve switching of heating power station
JPH11299110A (en) Counter power flow preventive device for private generation equipment
JPH11231949A (en) Voltage adjusting device
US4517797A (en) Fuel control method for gas turbine
JP2515076B2 (en) Method and apparatus for controlling voltage reactive power
JP2696267B2 (en) Boiler parallel operation controller
JP7244282B2 (en) Boiler operating condition determination device and method, and boiler operation control device
JP3316771B2 (en) Power system voltage control method and device
JP3223303B2 (en) System voltage control method and device
JPH0836433A (en) System control method
JPH0643947A (en) Voltage reactive power controller