JP2813487B2 - Silane cross-linked semiconductive resin composition - Google Patents

Silane cross-linked semiconductive resin composition

Info

Publication number
JP2813487B2
JP2813487B2 JP3060448A JP6044891A JP2813487B2 JP 2813487 B2 JP2813487 B2 JP 2813487B2 JP 3060448 A JP3060448 A JP 3060448A JP 6044891 A JP6044891 A JP 6044891A JP 2813487 B2 JP2813487 B2 JP 2813487B2
Authority
JP
Japan
Prior art keywords
silane
semiconductive
ethylene
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3060448A
Other languages
Japanese (ja)
Other versions
JPH04293945A (en
Inventor
秀美 西山
人司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP3060448A priority Critical patent/JP2813487B2/en
Publication of JPH04293945A publication Critical patent/JPH04293945A/en
Application granted granted Critical
Publication of JP2813487B2 publication Critical patent/JP2813487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシラン架橋半導電性樹脂
組成物の改良に関するものであり、特に該樹脂組成物を
導体上に押出し被覆して電力ケーブルをうるにおいて、
表面平滑にして且つ優れた電気特性をもった半導電層を
形成し得るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a silane-crosslinked semiconductive resin composition, and more particularly, to a method for extruding and coating the resin composition on a conductor to obtain a power cable.
It can form a semiconductive layer having a smooth surface and excellent electrical characteristics.

【0002】[0002]

【従来の技術】従来のシラン架橋ポリエチレン組成物に
より低圧電力ケーブルを製造する方法において、その絶
縁層を形成するには低密度ポリエチレン材料をベースと
したポリオレフィン系樹脂に有機シラン化合物及び有機
過酸化物を添加してグラフト反応をせしめシラングラフ
ト化ポリオレフィンとなし、これをシラノール縮合触媒
の存在下にて押出成形により導体上に被覆した後、水分
の存在する雰囲気中に曝して架橋せしめているものであ
る。
2. Description of the Related Art In a conventional method for producing a low-voltage power cable from a silane-crosslinked polyethylene composition, an insulating layer is formed by adding an organic silane compound and an organic peroxide to a polyolefin resin based on a low-density polyethylene material. Is added to form a silane-grafted polyolefin by a graft reaction, which is coated on a conductor by extrusion molding in the presence of a silanol condensation catalyst, and then exposed to an atmosphere in which water is present for crosslinking. is there.

【0003】なお、上記のシラノール縮合触媒はポリオ
レフィンのシラングラフト化後に加える方法とシラング
ラフト化と同時に混入する方法の何れかで行われている
が、作業コスト上の利点から後者の如く同時に混入する
方法が一般に行われている。
The above-mentioned silanol condensation catalyst is used either by a method of adding after polysilane silane grafting or a method of mixing simultaneously with silane grafting. The method is generally performed.

【0004】然しながら近時前記のシラン架橋性ポリエ
チレン組成物による絶縁層とシラン架橋半導電性樹脂組
成物によるシラン架橋半導電層とを2層又は3層構造と
する高圧電力ケーブルの開発が活発に進められているも
のであるが、この際に用いるシラン架橋半導電性樹脂組
成物としてはエチレン−プロピレン共重合体或はエチレ
ン−酢酸ビニル共重合体等に所定量の導電性カーボンブ
ラックを混和した汎用の電力ケーブル用半導電性材料を
使用し、これに有機シラン化合物、有機過酸化物及びシ
ラノール縮合触媒を夫々添加してシラン架橋を行ってえ
ているものであった。
However, recently, there has been active development of high-voltage power cables having a two-layer or three-layer structure of an insulating layer made of the silane-crosslinkable polyethylene composition and a silane-crosslinked semiconductive layer made of the silane-crosslinked semiconductive resin composition. Although it is being advanced, a predetermined amount of conductive carbon black is mixed with an ethylene-propylene copolymer or an ethylene-vinyl acetate copolymer as a silane-crosslinked semiconductive resin composition used at this time. A versatile semiconductive material for power cables was used, and an organic silane compound, an organic peroxide and a silanol condensation catalyst were added thereto, respectively, to perform silane crosslinking.

【0005】然しながら、この従来のシラン架橋半導電
性樹脂組成物を導体上に押出し被覆して半導電層を形成
した場合、該半導電層の表面に突起、ブツ、ウネリ等が
著しく発生し、それによって得られる電力ケーブルの電
気特性に多大な影響を及ぼしているものであった。
However, when this conventional silane-crosslinked semiconductive resin composition is extruded and coated on a conductor to form a semiconductive layer, projections, bumps, undulations, etc. are remarkably generated on the surface of the semiconductive layer, This has had a great effect on the electrical characteristics of the resulting power cable.

【0006】更に前記の如くシラン架橋半導電層とシラ
ン架橋絶縁層とからなる高圧電力ケーブルをうるには、
次の如き方法により行うものであるが、何れもその作業
性及び特性に問題を生ずるものであった。即ち
In order to obtain a high-voltage power cable comprising a silane-crosslinked semiconductive layer and a silane-crosslinked insulating layer as described above,
The following methods are used, but all of these methods have problems in workability and characteristics. That is

【0007】(1)図1に示す如く導体1上にシラン架
橋半導電性樹脂組成物2を押出し被覆し、内部半導電層
を設けこれを巻取機3にて巻取った後、その外側にシラ
ン架橋ポリエチレン組成物4を押出被覆して絶縁層を設
けて、巻取機5にて巻取りこれを再度サプライした後、
更にその外側にシラン架橋半導電性樹脂組成物6を押出
被覆して外部半導電層を設けて電力ケーブルをうる方
法。
(1) As shown in FIG. 1, a silane-crosslinked semiconductive resin composition 2 is extruded and coated on a conductor 1, and an inner semiconductive layer is provided. The silane cross-linked polyethylene composition 4 is extrusion-coated to provide an insulating layer, which is wound up by a winder 5 and supplied again.
Further, a method of obtaining a power cable by extrusion-coating a silane-crosslinked semiconductive resin composition 6 on the outside thereof to provide an external semiconductive layer.

【0008】(2)図2に示す如く1つの押出ラインに
内部半導電層押出機、絶縁層押出機、外部半導電層の押
出機を順次並設し、これらの押出機により導体上にシラ
ン架橋内部半導電層、シラン架橋ポリエチレン絶縁層及
びシラン架橋外部半導電層を押出被覆して電力ケーブル
をうる方法。
(2) As shown in FIG. 2, an extruder for an inner semiconductive layer, an extruder for an insulating layer, and an extruder for an outer semiconductive layer are sequentially arranged side by side on one extrusion line, and silane is formed on a conductor by these extruders. A method for obtaining a power cable by extrusion-coating a crosslinked inner semiconductive layer, a silane crosslinked polyethylene insulating layer, and a silane crosslinked outer semiconductive layer.

【0009】(3)図3に示す如く一つの押出ラインに
内部半導電層押出機、絶緑層押出機及び外部半導電層押
出機を3台設置し、且つ該押出機に成形ダイ(クロスヘ
ッド)を共同に設けて一度に導体上にシラン架橋内部半
導電層、シラン架橋ポリエチレン絶縁層及びシラン架橋
外部半導電層を同時に押出被覆して電力ケーブルをうる
方法。
(3) As shown in FIG. 3, one extruder is provided with three internal semiconductive layer extruders, a green layer extruder, and an external semiconductive layer extruder. Head), and simultaneously extruding and coating a silane-crosslinked inner semiconductive layer, a silane-crosslinked polyethylene insulating layer and a silane-crosslinked outer semiconductive layer on a conductor at a time to obtain a power cable.

【0010】然しながら前記(1)の方法は押出工程が
夫々別個にて行うため生産性が著しく低下すると共にコ
ストが上昇する。(2)の方法はシラン架橋内部半導電
層を設けた後、該半導電層が十分に冷却されずに直ちに
シラン架橋ポリエチレン絶縁層の成形工程に移行するた
め、該半導電層が上記工程を行うためのダイに接触した
場合、容易に該半導電層の表面を損傷せしめ、これが起
因となって電力ケーブルの特性を低下せしめる。又
(3)の方法による場合には、図4に示す如くシラン架
橋ポリエチレン絶縁層7とシラン架橋内部半導電層8或
いはシラン架橋外部半導電層(図示せず)との相互界面
又はシラン架橋の各層の内部にボイド9,9’,9’’
を発生し、これによって電力ケーブルの電気特性を低下
せしめるものであった。
However, in the method (1), since the extrusion step is performed separately, the productivity is significantly reduced and the cost is increased. In the method (2), after providing the silane-crosslinked internal semiconductive layer, the semiconductive layer is not sufficiently cooled and the process immediately proceeds to the step of forming the silane-crosslinked polyethylene insulating layer. If it comes into contact with a die to perform, it will easily damage the surface of the semiconductive layer, which will cause the characteristics of the power cable to deteriorate. In the case of the method (3), as shown in FIG. 4, the mutual interface between the silane-crosslinked polyethylene insulating layer 7 and the silane-crosslinked inner semiconductive layer 8 or the silane-crosslinked outer semiconductive layer (not shown) or the silane-crosslinked Voids 9, 9 ', 9''inside each layer
And thereby degrade the electric characteristics of the power cable.

【0011】[0011]

【発明が解決しようとする課題】本発明はかかる現状に
鑑み、鋭意研究を行った結果、導体上に押出被覆してシ
ラン架橋半導電層を形成すると、優れた平滑性を有し、
しかも前記の如く導体上にシラン架橋半導電層と絶縁層
とをコモン同時押出被覆しても、この両者の界面に何等
ボイドを発生することなく、優れた電気特性を有する電
力ケーブルをうることができるシラン架橋半導電性樹脂
組成物を開発したものである。
SUMMARY OF THE INVENTION In view of the present situation, the present invention has made intensive studies. As a result, when a silane-crosslinked semiconductive layer is formed by extrusion coating on a conductor, it has excellent smoothness.
Moreover, even when the silane-crosslinked semiconductive layer and the insulating layer are commonly co-extrusion coated on the conductor as described above, it is possible to obtain a power cable having excellent electrical characteristics without generating any voids at the interface between the two. A silane-crosslinked semiconductive resin composition has been developed.

【0012】[0012]

【課題を解決するための手段】本発明の半導電性樹脂組
成物は、ポリエチレン60〜95重量%とエチレン−酢
酸ビニル共重合体、エチレン−プロピレン共重合体、エ
チレン−アクリル酸エチル共重合体、エチレン−アクリ
ル酸メチル共重合体、エチレン−アクリル酸共重合体の
群から選ばれた1種又は2種以上のエチレン共重合体5
〜40重量%からなる樹脂分100重量部と導電性カー
ボン15〜80重量部との混和物に、有機シラン化合物
0.5〜10.0重量部と有機過酸化物0.05〜5.
0重量部とを添加しシラングラフト化反応をさせた樹脂
組成物であって、0.01〜3.0重量部のシラノール
縮合触媒が、シラングラフト反応前の前記混和物に、或
いはシラングラフト反応時に、或いはシラングラフト反
応後の樹脂組成物に添加され練和されたものであること
を特徴とするものである。
The semiconductive resin composition of the present invention comprises 60 to 95% by weight of polyethylene and ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-ethyl acrylate copolymer. , One or more ethylene copolymers selected from the group consisting of ethylene-methyl acrylate copolymer and ethylene-acrylic acid copolymer 5
To 100 parts by weight of a resin component consisting of 100 to 40 parts by weight and 15 to 80 parts by weight of conductive carbon, and 0.5 to 10.0 parts by weight of an organic silane compound and 0.05 to 5 parts by weight of an organic peroxide.
0 part by weight and a silane grafting reaction, wherein 0.01 to 3.0 parts by weight of a silanol condensation catalyst is added to the mixture before the silane grafting reaction or the silane grafting reaction. It is characterized in that it is added to the resin composition after the silane grafting reaction at some time or is kneaded.

【0013】本発明のシラン架橋半導電性樹脂組成物に
おいては、樹脂分として、ポリエチレンが60〜95重
量%、エチレン共重合体が5〜40重量%の割合で配合
されたものを用いる。本発明においてポリエチレンと
は、ポリエチレン又はエチレンとブテン−1、ヘキセン
−1、オクテン−1などのα−オレフィンとの共重合に
よってえられる密度0.88〜0.97g/ccの公知
の低密度又は高密度ポリエチレンを示すものであるが、
特にエチレンとα−オレフィンとを中低圧法にて製造し
てえられる密度0.88〜0.93の直鏡状低密度ポリ
エチレン(L−LDPEと称す)が好ましい。その理由
はシラン架橋半導電性樹脂暦をうるにおいて外観平滑に
すると共に機械的特性(伸び)に優れるためである。
In the silane-crosslinked semiconductive resin composition of the present invention, a resin blended with 60 to 95% by weight of polyethylene and 5 to 40% by weight of an ethylene copolymer is used. In the present invention, polyethylene means polyethylene or a known low density having a density of 0.88 to 0.97 g / cc obtained by copolymerization of polyethylene or ethylene with an α-olefin such as butene-1, hexene-1, or octene-1. Indicates high density polyethylene,
In particular, a direct-mirror low-density polyethylene (referred to as L-LDPE) having a density of 0.88 to 0.93 obtained by producing ethylene and an α-olefin by a medium to low pressure method is preferable. The reason for this is that in obtaining a silane crosslinked semiconductive resin calendar, the appearance is made smooth and the mechanical properties (elongation) are excellent.

【0014】又、上記のポリエチレンに対し混和するエ
チレン共重合体としては、エチレン−酢酸ビニル共重合
体(以下EVAと称す)、エチレン−プロビレン共重合
体(以下EPRと称す)、エチレン−アクリル酸エチル
共重合休(以下、EEAと称す)、エチレン−アクリル
藤メチル共重合休(以下EMAと称す)、エチレン−ア
クリル酸共重合体(以下EAAと称す)の群から選ばれ
たエチレン共重合体の1種又は2種以上であり、樹脂分
中の配合量を5〜40重量%に限定した理由は、エチレ
ン共重合体が5重量%未満の場合には、得られるシラン
架橋半導電層において、その機械的特性特に伸び特性が
低下するためであり、又40重量%を超えた場合には上
記シラン架橋半導電層の表面に突起、ウネリを生じ易く
なり、又コモン同時押出被覆を行うと半導電層と絶縁層
との界面に気泡が発生し得られる電力ケーブルの電気特
性が低下するためである。
The ethylene copolymer to be mixed with the above-mentioned polyethylene includes ethylene-vinyl acetate copolymer (hereinafter referred to as EVA), ethylene-propylene copolymer (hereinafter referred to as EPR), ethylene-acrylic acid. Ethylene copolymer selected from the group consisting of an ethyl copolymer copolymer (hereinafter referred to as EEA), an ethylene-acrylic methyl copolymer copolymer (hereinafter referred to as EMA), and an ethylene-acrylic acid copolymer (hereinafter referred to as EAA). The reason for limiting the blending amount in the resin component to 5 to 40% by weight is that when the ethylene copolymer is less than 5% by weight, the obtained silane-crosslinked semiconductive layer This is because the mechanical properties, especially the elongation properties, are reduced. If the content exceeds 40% by weight, protrusions and undulations are liable to be formed on the surface of the silane cross-linked semiconductive layer, and the same as in the common. Extrusion interface electrical characteristics of the power cable bubbles is obtained occurred when performing coating semiconductive layer and the insulating layer is lowered.

【0015】又、本発明のシラン架橋半導電性樹脂組成
物に配合する導電性カーボンブラックとしては市販のア
セチレン、ケッチエン、バルカン等のカーボンブラック
の何れでもよく、その添加量を樹脂分100重量部に対
し15〜80重量部に限定した理由は15重量部未満の
配合では、前記のシラン架橋半導電層を設けるにおい
て、十分に導電性をうることが出来ず又80重量部を超
えて多量に配合すると得られる該シラン架橋導電層の機
械的特性、特に伸び特性が低下するためである。
The conductive carbon black to be added to the silane-crosslinked semiconductive resin composition of the present invention may be any of commercially available carbon blacks such as acetylene, ketchene, and balkan. On the other hand, the reason for limiting to 15 to 80 parts by weight is that if the amount is less than 15 parts by weight, sufficient conductivity cannot be obtained in providing the silane cross-linked semiconductive layer, and the amount exceeds 80 parts by weight. This is because the mechanical properties, particularly the elongation properties, of the silane-crosslinked conductive layer obtained when blended are reduced.

【0016】又、本発明における有機シラン化合物とし
ては不飽和結合を有する有様シラン化合物例えばビニル
トリメトキシシラン、ビニルトリエトキシシラン等であ
り、ポリオレフィン系樹脂をシラン架橋する際に使用さ
れるものである。その配合量として樹脂分100重量部
に対し0.5〜10.0重量部に限定したが、その理由
は0.5重量部未満の配合では前記のシラン架橋半導電
層における架橋度が低く、又10.0重量部を超えて多
量に配合しても架橋度の向上が顕著に表われず、徒に高
価なシラン化合物を浪費するためであると共に前記の如
く絶縁層とコモン同時押出被覆時においては半導電層と
該絶縁層との界面に未反応シラン化合物のガス化による
ボイドが発生し易くなり、得られる電力ケーブルの電気
特性を低下するためである。
The organic silane compound in the present invention is a silane compound having an unsaturated bond, such as vinyltrimethoxysilane, vinyltriethoxysilane, etc., which is used when silane-crosslinking a polyolefin resin. is there. The amount was limited to 0.5 to 10.0 parts by weight based on 100 parts by weight of the resin component. The reason for this is that if the amount is less than 0.5 part by weight, the degree of crosslinking in the silane crosslinked semiconductive layer is low, Further, even if it is added in a large amount exceeding 10.0 parts by weight, the improvement in the degree of crosslinking does not appear remarkably, and this is because wasteful expensive silane compounds are wasted. In this case, voids due to gasification of the unreacted silane compound are likely to be generated at the interface between the semiconductive layer and the insulating layer, and the electrical characteristics of the obtained power cable are degraded.

【0017】又、本発明における有機過酸化物としては
シラングラフト反応条件下においてポリオレフィン系樹
脂に対し遊離ラジカル部位を造ることが出来るものであ
ればよく、例えば過酸化ベンゾイル、過酸化ジクロロベ
ンゾイル、ジクミルパーオキサイド等である。
The organic peroxide in the present invention may be any organic peroxide capable of forming a free radical site in a polyolefin resin under silane graft reaction conditions. Examples of the organic peroxide include benzoyl peroxide, dichlorobenzoyl peroxide, and dichlorobenzoyl peroxide. Mil peroxide, etc.

【0018】又、シラノール縮合触媒としては、有機錫
化合物例えばジブチル錫ジラウレート、ジブチル錫ジア
セテート等が好ましくその他ナフテン酸コバルトの如き
カルボン酸塩或はエチルアミンの如き有機塩基などシラ
ノール縮合触媒としての機能を有する化合物を使用す
る。
As the silanol condensation catalyst, organotin compounds such as dibutyltin dilaurate and dibutyltin diacetate are preferred, and carboxylate salts such as cobalt naphthenate or organic bases such as ethylamine have a function as silanol condensation catalyst. The compound having is used.

【0019】なお、有機過酸化物及びシラノール縮合触
媒の配合量は夫々少量でよく、適宜配合すればよいが、
通常、樹脂分100重量部に対し有機過酸化物0.05
〜5.0重量部、シラノール縮合触媒0.01〜3.0
重量部が好ましい。而して本発明シラン架橋半導電性樹
脂細成物をうるには次の如く2つの方法によるものであ
る。
The amounts of the organic peroxide and the silanol condensation catalyst may be small, respectively.
Usually, 0.05 parts of organic peroxide per 100 parts by weight of resin.
To 5.0 parts by weight, silanol condensation catalyst 0.01 to 3.0 parts by weight
Parts by weight are preferred. The silane-crosslinked semiconductive resin composition of the present invention can be obtained by the following two methods.

【0020】(A) (i)ポリエチレン樹脂及びエチレン共重合体及び導電
性カーボンブラックをバンバリーにて練和した後、押出
機にてペレット化して半導電性ポリエチレン系樹脂混和
物を作成する。 (ii)上記の半導電性樹脂混和物に有機シラン化合物、
有機過酸化物をタンブラー、ヘンシュルミキサーにて均
一に添加混合して押出機に投入する。 (iii)押出機にてシラングラフト化反応時間をスクリュ
ー回転数で、反応温度を押出機設定温度で夫々指定して
シラングラフト半導電性ペレットを作成する。
(A) (i) A polyethylene resin, an ethylene copolymer and conductive carbon black are kneaded in a Banbury, and then pelletized by an extruder to prepare a semiconductive polyethylene resin admixture. (Ii) an organic silane compound in the semiconductive resin mixture,
The organic peroxide is uniformly added and mixed with a tumbler and a Henschel mixer, and then charged into an extruder. (Iii) A silane graft semiconductive pellet is prepared by designating the silane grafting reaction time with the screw rotation speed and the reaction temperature with the extruder set temperature in the extruder.

【0021】(iv)上記の半導電性ペレットとシラノー
ル縮合触媒を添加してなる触媒マスターバッチとをタン
ブラー、ヘンシェルミキサー等にて混合して本発明樹脂
組成物をうる。 なおこの方法を二段階成形法という。
(Iv) The above semiconductive pellets and a catalyst masterbatch to which a silanol condensation catalyst has been added are mixed with a tumbler, Henschel mixer or the like to obtain the resin composition of the present invention. This method is called a two-stage molding method.

【0022】(B) (i)ポリエチレン樹脂、エチレン共重合体、導電性カ
ーボンブラック及びシラノール縮合触媒をバンバリーに
て混練した後、押出機にてペレット化して半導電性ポリ
エチレン系樹脂混和物を作成する。 (ii)上記の半導電性樹脂混和物に有機シラン化合物、
有機過酸化物をタンブラー、ヘンシェルミキサーにて均
一に添加混合して押出機に投入する。 (iii )押出機にてシラングラフト反応時間をスクリュ
ー回転数で.反応温度を押出機設定温度で夫々指定して
本発明樹脂組成物をうる。 なお、この方法を一段階成形法という。
(B) (i) After kneading a polyethylene resin, an ethylene copolymer, a conductive carbon black and a silanol condensation catalyst in a Banbury, pelletize with an extruder to prepare a semiconductive polyethylene resin admixture. I do. (Ii) an organic silane compound in the semiconductive resin mixture,
The organic peroxide is uniformly added and mixed by a tumbler and a Henschel mixer, and then charged into an extruder. (Iii) The silane graft reaction time was determined by the number of screw rotations in the extruder. The resin composition of the present invention is obtained by specifying the reaction temperature at the set temperature of the extruder. This method is called a one-step molding method.

【0023】又、この際ポリエチレン樹脂とエチレン系
共重合体、導電性カーボンブラックと、必要に応じシラ
ノール縮合触媒との混合と、有機シラン化合物、有機過
酸化物の添加及びシラングラフト化反応をより経済的に
遂行せしめるには混練度の高い例えぱ二軸押出機を用
い、図5に示す如くコンパウンディングの工程(A)と
シラングラフト反応の工程(B)並びに導体上に押出し
被覆する工程(C)とを一挙に行うことも可能である。
なお図中において10は樹脂投入口、11はカーボン、
シラノール縮合触媒投入口、12はベント孔、13は有
機シラン化合物、有機過酸化物注入槽、14は押出ダイ
スである。
At this time, the mixing of the polyethylene resin, the ethylene copolymer, the conductive carbon black and, if necessary, the silanol condensation catalyst, the addition of an organic silane compound and an organic peroxide, and the silane grafting reaction are carried out. In order to achieve economical performance, a compounding step (A), a silane grafting step (B), and a step of extrusion coating on a conductor (FIG. 5) using a high kneading degree extruder such as a twin-screw extruder. And C) can be performed all at once.
In the figure, 10 is a resin inlet, 11 is carbon,
A silanol condensation catalyst inlet, 12 is a vent hole, 13 is an organic silane compound, an organic peroxide injection tank, and 14 is an extrusion die.

【0024】[0024]

【作用】本発明のシラン架橋半導電性樹脂組成物は下記
の如く2つの大きな特性を有するものであるが、その理
由についてこれを明確に説明することは出来えないが、
次の如く推考される。 (1)導体上に押出し被覆して半導電層を形成した場
合、該半導電層にブツ、突起及びうねりを生じない。 (2)シラン架橋絶縁層とのコモン同時押出被覆して導
電層を形成した場合、該導電層と絶縁層との界面にボイ
ドを発生しない。
The silane-crosslinked semiconductive resin composition of the present invention has two major properties as described below. The reason cannot be clearly explained,
It is assumed as follows. (1) When a semiconductive layer is formed by extrusion coating on a conductor, there are no bumps, protrusions, and undulations in the semiconductive layer. (2) When the conductive layer is formed by common coextrusion coating with the silane cross-linked insulating layer, no void is generated at the interface between the conductive layer and the insulating layer.

【0025】即ち、本発明シラン架橋半導電性樹脂組成
物をシラングラフト化する押出機の容器内には、未反応
のシラン化合物及び縮合反応時に生成するメタノールの
如きガス成分が高温、高圧下にて樹脂中に溶解し存在し
ているが、この樹脂組成物が押出ダイから吐出され導体
上に押出被覆される状態に至ると樹脂圧力の開放及び樹
脂温度の低下に伴い前記のガス成分は押出被覆層の表面
から順次揮散していくのである。
That is, a gas component such as an unreacted silane compound and methanol generated during the condensation reaction is placed under high temperature and high pressure in a container of an extruder for silane grafting the silane crosslinked semiconductive resin composition of the present invention. However, when the resin composition is discharged from the extrusion die and reaches a state where the resin composition is extruded and coated on the conductor, the gas component is extruded with the release of the resin pressure and the decrease in the resin temperature. It evaporates sequentially from the surface of the coating layer.

【0026】而して従来の如く汎用の電力ケーブル用半
導電性材料にシラン架橋剤を配合したシラン架橋半導電
性樹脂組成物と、密度0.90〜0.94の低密度ポリ
エチレン樹脂に上記と同量のシラン架橋剤を配合したポ
リエチレン樹脂組成物とを用いて導体上に上記シラン架
橋半導電性樹脂組成物による半導電層とシラン架橋ポリ
エチレン樹脂組成物による絶縁層とをコモン同時押出に
より被覆して形威した場合、該半導電層と絶縁層とのガ
ス透過性及び結晶化速度の僅かな差異によりシラングラ
フト化半導電層及び絶縁層からすべてのガス成分が揮散
する前に該絶縁層の表面及び半導電層に固化が生じ、揮
散し易いガス成分は逸出することなく半導電層と絶縁層
との界面に残存しボイドを形成するのである。又この現
象は半導電層と絶縁層との界面状態即ち半導電層表面に
突起、ブツ、うねりなどがあり平滑でない場合には、上
記のボイド発生の芽となるものであった。
As described above, a silane-crosslinked semiconductive resin composition in which a silane crosslinking agent is blended with a conventional general-purpose semiconductive material for power cables, and a low-density polyethylene resin having a density of 0.90 to 0.94 are prepared as described above. And a common co-extrusion of a semiconductive layer of the above silane crosslinked semiconductive resin composition and an insulating layer of the silane crosslinked polyethylene resin composition on a conductor using a polyethylene resin composition containing the same amount of a silane crosslinker as above. When coated and formed, the slight difference in gas permeability and crystallization rate between the semiconductive layer and the insulating layer causes the insulating property before all the gas components evaporate from the silane-grafted semiconductive layer and the insulating layer. Solidification occurs on the surface of the layer and on the semiconductive layer, and gas components that easily volatilize do not escape and remain at the interface between the semiconductive layer and the insulating layer to form voids. In addition, this phenomenon is a cause of the above-mentioned void generation when the interface state between the semiconductive layer and the insulating layer, that is, the surface of the semiconductive layer is not smooth due to projections, bumps, undulations, and the like.

【0027】これに対し本発明シラン架橋半導電性樹脂
組成物にて半導電層を形成せしめた場合にはそのガス透
過性を速めると共に結晶化速度を極力絶縁層と一致せし
め且つ該絶縁層に近い表面状態をうるようにしたもので
ある。即ち本発明樹脂組成物のベース樹脂として、絶縁
層と同系統のポリオレフィン系樹脂であるポリエチレン
樹脂を選定し、これに半導電層として必要な性能を満足
せしめるために少量のエチレン系共重合体を混和するこ
とによって、シラン架橋半導電性樹脂組成物による半導
電層の表面の平滑化を達成することが出来うると共に絶
縁層とコモン同時押出被覆を行うも、この両層の界面に
ボイドを発生することのないシラン架橋半導電性組成物
を見出すことが出来たものである。
On the other hand, when a semiconductive layer is formed from the silane-crosslinked semiconductive resin composition of the present invention, the gas permeability is increased, the crystallization rate is made as close as possible to the insulating layer, and the insulating layer is formed. This is to obtain a close surface condition. That is, as the base resin of the resin composition of the present invention, a polyethylene resin which is a polyolefin resin of the same type as the insulating layer is selected, and a small amount of an ethylene copolymer is used to satisfy the required performance as the semiconductive layer. By mixing, the surface of the semiconductive layer can be smoothed by the silane cross-linked semiconductive resin composition, and a common coextrusion coating with the insulating layer is performed, but voids are generated at the interface between the two layers. It was possible to find a silane-crosslinked semiconductive composition that does not need to be used.

【0028】[0028]

【実施例】[実施例(1)〜(7)] 直径5.7mmの撚線導体上に表1に示す如き本発明シラ
ン架橋半導電性樹脂組成物を押出機(D=45φ L/
D=28)を用いて表2に示す押出条件にて被覆厚さ
1.0mmに押出被覆にて半導電層を設けた。而して得た
ケーブル線心を80℃の温水中に24時間浸漬して架橋
処理した。而して形成した半導電層について外観、架橋
度及び引張特性を測定した。得られた結果を第1表に併
記した。
EXAMPLES [Examples (1) to (7)] The silane-crosslinked semiconductive resin composition of the present invention as shown in Table 1 was extruded on a stranded conductor having a diameter of 5.7 mm by an extruder (D = 45 φL /
D = 28), and a semiconductive layer was provided by extrusion coating to a coating thickness of 1.0 mm under the extrusion conditions shown in Table 2. The obtained cable core was immersed in warm water of 80 ° C. for 24 hours to perform a crosslinking treatment. The appearance, degree of crosslinking and tensile properties of the semiconductive layer thus formed were measured. The results obtained are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[比較例(1)〜(6)] 直径5.7mmの撚線導体上に表3に示す如きシラン架橋
半導電性組成物(比較例1〜3は従来例に相当)を実施
例(1)と同様にして押出被覆して従来のシラン架橋半
導電性組成物による比較例ケーブル線心をえた。斯くし
てえた比較例ケーブル線心について実施例(1)と同様
に諸特性を測定した。その結果は表3に併記した通りで
ある。
[Comparative Examples (1) to (6)] A silane-crosslinked semiconductive composition as shown in Table 3 (Comparative Examples 1 to 3 correspond to conventional examples) was applied on a stranded conductor having a diameter of 5.7 mm. Extrusion coating was performed in the same manner as in Example (1) to obtain a comparative example cable core made of a conventional silane-crosslinked semiconductive composition. The characteristics of the thus obtained comparative example cable core were measured in the same manner as in Example (1). The results are as shown in Table 3.

【0032】[0032]

【表3】 [Table 3]

【0033】なお表1及び表3におけるポリオレフィン
系樹脂の略号は次の如き樹脂である。 (1)L−LDPEは直鏡状低密度ポリエチレン (2)EAAはエチレンアクリル酸共重合体 (3)LDPEは低密度ポリエチレン (4)EPRはエチレンプロピレン共重合体 (5)HDPEは高密度ポリエチレン (6)EVAはエチレン−酢酸ビニル共重合体 (7)EEAはエチレン−アクリル酸エチル共重合体 (8)EMAはエチレン−アクリル酸メチル共重合体 又数値は何れも重量部で示す。又表中のゲル分率は12
0℃のキシレンにて24時間の抽出した結果である。又
表中のイルガノックス1010は老化防止剤である。
The abbreviations for the polyolefin resins in Tables 1 and 3 are the following resins. (1) L-LDPE is a direct mirror low density polyethylene (2) EAA is an ethylene acrylic acid copolymer (3) LDPE is a low density polyethylene (4) EPR is an ethylene propylene copolymer (5) HDPE is a high density polyethylene (6) EVA is an ethylene-vinyl acetate copolymer. (7) EEA is an ethylene-ethyl acrylate copolymer. (8) EMA is an ethylene-methyl acrylate copolymer. The gel fraction in the table is 12
It is the result of extracting with xylene at 0 degreeC for 24 hours. Irganox 1010 in the table is an anti-aging agent.

【0034】[実施例(8)〜(14)] 直径5.7mmの撚線導体上に2層押出成形法により表6
に示す実施例(1)〜(7)で用いたと同様のシラン架
橋半導電性樹脂組成物を実施例(1)と同様の押出機に
て押出被覆して半導電層を設けると共にコモン同時押出
としてその外側に表4に示すシラン架橋ポリエチレン組
成物を押出機(D:60φ、L/D=30)にて表5に
示す押出条件にて被覆厚さ3.5mm厚に押出被覆して絶
縁層を設けて電力ケーブル線心を製造した。而して製造
したケーブル線心について半導電層と絶縁層間の界面状
態(ボイド発生状況)を観察した。その結果を表6に併
記した。
Examples (8) to (14) Table 6 was obtained by a two-layer extrusion molding method on a stranded conductor having a diameter of 5.7 mm.
The same silane-crosslinked semiconductive resin composition as used in Examples (1) to (7) shown in (1) was extrusion-coated with the same extruder as in Example (1) to provide a semiconductive layer and common co-extrusion. The silane cross-linked polyethylene composition shown in Table 4 was extruded on the outside thereof with an extruder (D: 60φ, L / D = 30) to a coating thickness of 3.5 mm under the extrusion conditions shown in Table 5 to insulate. The layers were provided to produce a power cable core. The interface state (void generation state) between the semiconductive layer and the insulating layer was observed for the manufactured cable core. The results are shown in Table 6.

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】[比較例(8)〜(13)] 直径5.7mmの撚線導体上に表7に示す比較例(1)〜
(6)で用いたと同一のシラン架橋半導電性樹脂組成物
を使用した以外はすべて実施例(8)と同様にして導体
上に半導電層と絶縁層を設けて比較例電力ケーブル線心
をえた。而して製造した比較例電力ケーブル線心につい
て、半電導層と絶縁層との界面状況についてボイド発生
の有無を測定した。その結果は図4及び表7に示す如く
多数のボイドの発生が認められた。
[Comparative Examples (8) to (13)] Comparative Examples (1) to (13) shown in Table 7 on a stranded conductor having a diameter of 5.7 mm.
Except that the same silane-crosslinked semiconductive resin composition as used in (6) was used, a semiconductive layer and an insulating layer were provided on a conductor in the same manner as in Example (8), and a comparative example power cable core was prepared. I got it. With respect to the thus manufactured comparative example power cable core, the presence or absence of voids was measured for the interface state between the semiconductive layer and the insulating layer. As a result, many voids were observed as shown in FIG. 4 and Table 7.

【0039】[0039]

【表7】 [Table 7]

【0040】上記実施例(1)〜(14)によるケーブ
ル線心及び比較例(1)〜(13)によるケーブル線心
についての特性より判定した総合評価結果は表8に示
す。
Table 8 shows the overall evaluation results determined from the characteristics of the cable cores according to Examples (1) to (14) and the cable cores according to Comparative Examples (1) to (13).

【0041】[0041]

【表8】 [Table 8]

【0042】[0042]

【発明の効果】本発明のシラン架橋半導電性樹脂組成物
は、これを導体上に押出被覆して半導電層を又は該半導
電層と絶縁層とをコモン同時押出被覆する電力ケーブル
の製造に適用すれば表面平滑にして且つ該半電導層と絶
縁層との界面にボイドを発生せしめることなく、電気特
性に優れた高圧電力ケーブルをうることができる等工業
上有用なものである。
Industrial Applicability The silane-crosslinked semiconductive resin composition of the present invention is used to produce a power cable in which the semiconductive layer is extruded on a conductor and the semiconductive layer or the semiconductive layer and the insulating layer are co-extrusion coated. When applied to a high-voltage power cable, it is possible to obtain a high-voltage power cable having excellent electrical characteristics without causing a surface to be smooth and generating a void at the interface between the semiconductive layer and the insulating layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シラン架橋電力ケーブルの工程ラインの1例を
示す概略説明図。
FIG. 1 is a schematic explanatory view showing an example of a process line of a silane cross-linked power cable.

【図2】シラン架橋電力ケーブルの工程ラインの他の例
を示す概略説明図。
FIG. 2 is a schematic explanatory view showing another example of the process line of the silane cross-linked power cable.

【図3】シラン架橋電力ケーブルの工程ラインの他の例
を示す機略説明図。
FIG. 3 is a schematic explanatory view showing another example of the process line of the silane cross-linked power cable.

【図4】シラン架橋半導電性樹脂組成物を用いて製造し
た電力ケーブル線心の1例を示す側断面図。
FIG. 4 is a side sectional view showing an example of a power cable core manufactured using a silane-crosslinked semiconductive resin composition.

【図5】シラン架橋樹脂組成物の連続製造工程を示す機
略説明図。
FIG. 5 is a schematic explanatory view showing a continuous production process of a silane crosslinked resin composition.

【符号の説明】[Explanation of symbols]

1:導体、2:シラン架橋内部半導電層用樹脂組成物の
押出機、4:絶縁層押出機、6:外部半導電層押出機、
3,5:巻取機、7:絶縁層、8:内部半導電層、9,
9’,9’’:ボイド。
1: extruder for conductor, 2: extruder for silane-crosslinked resin composition for internal semiconductive layer, 4: extruder for insulating layer, 6: extruder for external semiconductive layer,
3, 5: winding machine, 7: insulating layer, 8: internal semiconductive layer, 9,
9 ', 9'': void.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 1/24 H01B 1/24 Z (58)調査した分野(Int.Cl.6,DB名) C08L 23/00 - 23/36 H01B 1/24Continuation of the front page (51) Int.Cl. 6 identification code FI H01B1 / 24 H01B1 / 24Z (58) Investigated field (Int.Cl. 6 , DB name) C08L 23/00-23/36 H01B 1 /twenty four

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリエチレン60〜95重量%とエチレ
ン−酢酸ビニル共重合体、エチレン−プロピレン共重合
体、エチレン−アクリル酸エチル共重合体、エチレン−
アクリル酸メチル共重合体、エチレン−アクリル酸共重
合体の群から選ばれた1種又は2種以上のエチレン共重
合体5〜40重量%からなる樹脂分100重量部と導電
性カーボン15〜80重量部との混和物に、有機シラン
化合物0.5〜10.0重量部と有機過酸化物0.05
〜5.0重量部とを添加しシラングラフト化反応をさせ
た樹脂組成物であって、0.01〜3.0重量部のシラ
ノール縮合触媒が、シラングラフト反応前の前記混和物
に、或いはシラングラフト反応時に、或いはシラングラ
フト反応後の樹脂組成物に添加され練和されたものであ
ることを特徴とするシラン架橋半導電性樹脂組成物。
An ethylene-vinyl acetate copolymer, an ethylene-propylene copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-vinyl acetate copolymer.
100 parts by weight of a resin component comprising 5 to 40% by weight of one or more ethylene copolymers selected from the group consisting of methyl acrylate copolymer and ethylene-acrylic acid copolymer, and conductive carbon 15 to 80 To 0.5 parts by weight of an organic silane compound and 0.05 parts by weight of an organic peroxide.
To 5.0 parts by weight and a silane grafting reaction, wherein 0.01 to 3.0 parts by weight of a silanol condensation catalyst is added to the mixture before the silane grafting reaction, or A silane-crosslinked semiconductive resin composition which is added to and kneaded with the resin composition during the silane graft reaction or after the silane graft reaction.
JP3060448A 1991-03-25 1991-03-25 Silane cross-linked semiconductive resin composition Expired - Fee Related JP2813487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3060448A JP2813487B2 (en) 1991-03-25 1991-03-25 Silane cross-linked semiconductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3060448A JP2813487B2 (en) 1991-03-25 1991-03-25 Silane cross-linked semiconductive resin composition

Publications (2)

Publication Number Publication Date
JPH04293945A JPH04293945A (en) 1992-10-19
JP2813487B2 true JP2813487B2 (en) 1998-10-22

Family

ID=13142566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3060448A Expired - Fee Related JP2813487B2 (en) 1991-03-25 1991-03-25 Silane cross-linked semiconductive resin composition

Country Status (1)

Country Link
JP (1) JP2813487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190082833A (en) * 2016-11-23 2019-07-10 롬 앤드 하스 캄파니 Polyphase conductive polymer composite composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858081A3 (en) * 1997-02-07 1999-02-03 Mitsubishi Chemical Corporation Semiconductive resin composition and process for producing the same
US6337367B1 (en) 2000-07-11 2002-01-08 Pirelli Cables And Systems, Llc Non-shielded, track resistant, silane crosslinkable insulation, methods of making same and cables jacketed therewith
EP1176161A1 (en) * 2000-07-24 2002-01-30 Nexans A process for producing a crosslinked polyethylene insulated cable and an insulated cable so produced
CN102875883B (en) * 2006-02-06 2015-06-03 陶氏环球技术有限责任公司 Semiconductive compositions
JP2015059172A (en) * 2013-09-18 2015-03-30 株式会社フジクラ Semiconductive resin composition and power cable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462249A (en) * 1977-10-28 1979-05-19 Sumitomo Bakelite Co Ltd Electrically conductive resin composition
JPS6289757A (en) * 1985-10-15 1987-04-24 Fujikura Ltd Semiconductive mixture
JPH02173152A (en) * 1988-12-27 1990-07-04 Showa Electric Wire & Cable Co Ltd Conductive resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190082833A (en) * 2016-11-23 2019-07-10 롬 앤드 하스 캄파니 Polyphase conductive polymer composite composition
KR102444559B1 (en) * 2016-11-23 2022-09-20 롬 앤드 하스 캄파니 Multiphase Conductive Polymer Composite Composition

Also Published As

Publication number Publication date
JPH04293945A (en) 1992-10-19

Similar Documents

Publication Publication Date Title
JPS59226413A (en) Optical composite cable
JP4399076B2 (en) Peelable semiconductive resin composition for external semiconductive layer of water-crosslinked polyethylene insulated power cable
KR100979334B1 (en) Low voltage power cable with insulation layer comprising polyolefin having polar groups, hydrolysable silane groups and which includes silanol condensation
JP4399077B2 (en) Adhesive semiconductive resin composition for semiconductive layer inside water-crosslinked polyethylene insulated power cable
EP1342247B1 (en) Power cable
JP2813487B2 (en) Silane cross-linked semiconductive resin composition
JP2004018652A (en) Semi-conductive watertight composition
JP2014096252A (en) Wire and cable using silane crosslinked polyethylene and method of producing the same
JP2001167635A (en) Peelable, semi-conductive, water-crosslinkable resin composition for, outer semi-conductive layer of chemically crosslinked polyethylene insulating power cable
JP2000319464A (en) Semi-conductive resin composition and crosslinked polyethylene-insulated electric power cable
KR100288182B1 (en) Black polyethylene composition for coating electric wire
JPH11172057A (en) Semiconducting resin composition having good water-crosslinkability and power cable made by using it
JP4399078B2 (en) Peelable semiconductive water crosslinkable resin composition for external semiconductive layer of water cross-linked polyethylene insulated power cable
JPS6093710A (en) Method of producing polyolefin rubber insulated wire
JP4708393B2 (en) Semiconductive watertight composition
JPH10321056A (en) Cross-linked polyethylene insulated wire outdoor use
JP4448589B2 (en) Adhesive semiconductive water crosslinkable resin composition for internal semiconductive layer of water cross-linked polyethylene insulated power cable
JP2666543B2 (en) Electric wires and cables
JPS608006B2 (en) Manufacturing method for polyethylene molded products
JPS59232125A (en) Production of silane-crosslinked polyolefin molding
JPH11297122A (en) Semiconductive resin composition and wire/cable
JPH10106363A (en) Power cable
JP4866622B2 (en) Insulated wire manufacturing method
JPH04306504A (en) Insulation material and manufacture of insulator
JP2000285735A (en) Wire and cable

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees