JP2812755B2 - Manufacturing method of cylindrical coated body - Google Patents
Manufacturing method of cylindrical coated bodyInfo
- Publication number
- JP2812755B2 JP2812755B2 JP33292389A JP33292389A JP2812755B2 JP 2812755 B2 JP2812755 B2 JP 2812755B2 JP 33292389 A JP33292389 A JP 33292389A JP 33292389 A JP33292389 A JP 33292389A JP 2812755 B2 JP2812755 B2 JP 2812755B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- discharge
- cylindrical
- coating liquid
- nozzle body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被塗布対象物である円筒状基体表面への
円筒状塗布体の製造方法に関し、さらに詳しくは、例え
ば、電子写真感光体膜などの製造の場合でどのように、
円筒状基体からなる感光体ドラムの基体表面に対して、
有機光導電体材料による円筒状塗布体を連続膜状に形成
するための製造方法に係るものである。Description: TECHNICAL FIELD The present invention relates to a method for producing a cylindrical coated body on the surface of a cylindrical substrate as an object to be coated, and more particularly, for example, to an electrophotographic photosensitive member film How in the case of manufacturing, such as
With respect to the substrate surface of the photosensitive drum composed of a cylindrical substrate,
The present invention relates to a manufacturing method for forming a cylindrical coated body made of an organic photoconductor material into a continuous film.
従来から、この種の被塗布対象物である円筒状基体の
表面に対して、円筒状塗布体を連続膜状に形成するため
の方法としては、一般的に、a)浸漬塗布方法,b)リン
グ塗布方法,c)スプレー塗布方法,d)スパイラル塗布方
法などの各手段が知られている。2. Description of the Related Art Conventionally, as a method for forming a cylindrical coated body into a continuous film on the surface of a cylindrical substrate which is an object to be coated of this kind, generally, a) dip coating method, b) Various means such as a ring coating method, c) a spray coating method, and d) a spiral coating method are known.
しかして、これらの従来から使用されている各塗布方
法には、通常の場合、次のような不利がある。すなわ
ち、 a)浸漬塗布方法; 円筒状基体を塗布液槽内に浸漬させた後、これを引上
げた状態で、塗膜の表面に塗布液のタレを生ずること、 液槽内の塗布液に濃度ムラを生じ易く、このために塗
膜の膜厚が一定になり難いこと、 塗布液の所要量が多いこと、 b)リング塗布方法; 塗布面に塗布筋を生じ易いこと、 c)スプレー塗布方法; 塗布液の塗着効率が低く、塗布液に無駄を生ずるこ
と、 塗膜の表面状態が悪いこと、 d)スパイラル塗布方法; 塗膜面にスパイラル状の膜厚ムラを生じ易いこと、 などである。However, these conventionally used coating methods usually have the following disadvantages. A) dip coating method: dipping a cylindrical substrate into a coating liquid tank, and then pulling the cylindrical substrate to cause dripping of the coating liquid on the surface of the coating film, and concentration of the coating liquid in the liquid tank. It is easy to cause unevenness, so that the film thickness of the coating film is difficult to be constant, the required amount of the coating liquid is large, b) ring coating method; coating streaks are easily formed on the coated surface, c) spray coating method Low coating efficiency of coating liquid, waste of coating liquid, poor surface condition of coating film, d) spiral coating method; spiral coating film thickness unevenness is likely to occur on coating film surface. is there.
しかしながら、一方で、前記スパイラル塗布方法にお
いては、このように塗膜面にスパイラル状の膜厚ムラを
生じ易いという不利を有する反面、塗布液の所要量が少
なくて済み、塗布装置自体についても比較的簡単である
などの利点があつて、非常に好ましい手段でもある。However, on the other hand, the spiral coating method has the disadvantage that the spiral film thickness unevenness is apt to occur on the coating film surface, but the required amount of the coating liquid is small, and the coating apparatus itself is also compared. It is an extremely preferable means because of its advantages such as simplicity.
こゝで、前記スパイラル塗布方法は、被塗布対象物と
しての円筒状基体を回転させた状態で、吐出ノズルを一
方向へ進行させて相対的にスパイラル状に移動させ、吐
出ノズルから吐出される塗布液を基体表面へ塗着させる
ようにしており、この塗布装置における吐出ノズルに
は、例えば、特開昭52−119651号公報に開示されている
ように、いわゆる、スリットノズルなどを適用するのが
通例である。Here, in the spiral coating method, the discharge nozzle is advanced in one direction to move relatively in a spiral shape while rotating the cylindrical substrate as the object to be coated, and the discharge is performed from the discharge nozzle. The coating liquid is applied to the surface of the substrate, and a discharge nozzle in this coating apparatus is, for example, a so-called slit nozzle or the like as disclosed in JP-A-52-119651. Is customary.
また、この場合、電子写真感光体膜の形成などのよう
に、感光体ドラムの表面に有機光導電体材料による塗布
液を、可及的に均一化された高精度な膜厚で連続膜状に
塗布形成しなければならないときには、スリットノズル
から吐出される塗布液の塗布幅方向における吐出流量の
均一性がとかく問題となるもので、この吐出流量が不均
一であると、前記したような塗膜面にスパイラル状の膜
厚ムラを生ずる原因になる。In this case, as in the case of forming an electrophotographic photoreceptor film, a coating liquid of an organic photoconductive material is applied to the surface of the photoreceptor drum in a continuous film form with a uniform and highly accurate film thickness as much as possible. When it is necessary to form the coating liquid in a uniform manner, the uniformity of the discharge flow rate in the coating width direction of the coating liquid discharged from the slit nozzle is a problem. This causes spiral film thickness unevenness on the film surface.
そして、前記塗膜面が不均一になる理由の一つは、感
光体ドラムの表面に塗布される塗膜の膜厚が、塗布液の
表面張力によつて端部側で厚くなるためであり、他の一
つは、塗布時に感光体ドラムを回転させる装置各部の精
度と、ドラム自体の真円度などに起因したドラム表面に
対するノズル吐出開口端の間隔の変動のためである。One reason for the non-uniformity of the coating film surface is that the thickness of the coating film applied to the surface of the photoreceptor drum is increased on the end side due to the surface tension of the coating liquid. The other is due to the accuracy of each unit for rotating the photosensitive drum at the time of coating and the fluctuation of the interval between the nozzle discharge opening end and the drum surface due to the roundness of the drum itself.
しかして、この塗膜面の不均一性は、塗布膜の塗着形
成後に、ブレードなどを用い、塗膜面を掻き均して平坦
化させることにより比較的簡単に解消し得るのである
が、このような手段では、到底良好な塗膜面を形成でき
ず、却つてブレードなどによりドラム表面が傷付く惧れ
があるという重大な欠陥を有している。Thus, the non-uniformity of the coating film surface can be relatively easily eliminated by flattening and flattening the coating film surface using a blade or the like after application of the coating film, Such a method has a serious defect that a satisfactory coating surface cannot be formed at all, and the drum surface may be damaged by a blade or the like.
この発明は、従来のこのような問題点を解消するため
になされたもので、その目的とするところは、吐出ノズ
ルによるスパイラル塗布方法を適用して、円筒状基体表
面に塗布体を形成する場合、塗布膜を連続膜状に形成し
て、均一化された高精度の膜厚を得られるようにした,
この種の円筒状塗布体の製造方法を提供することであ
る。The present invention has been made to solve such a conventional problem, and an object thereof is to apply a spiral coating method using a discharge nozzle to form a coating body on a cylindrical substrate surface. The coating film was formed in a continuous film shape to obtain a uniform and highly accurate film thickness.
An object of the present invention is to provide a method for producing such a cylindrical coated body.
前記目的を達成するために、この発明に係る円筒状塗
布体の製造方法は、スパイラル塗布方法を適用して、複
数の吐出細孔を配設させた塗布用マルチノズル体を用
い、給送される塗布液を特定の塗布幅範囲内で吐出させ
ることにより、円筒状塗布体を連続膜状に形成し得るよ
うにしたものである。In order to achieve the above object, a method for manufacturing a cylindrical coating body according to the present invention is applied by using a spiral coating method, using a multi-nozzle body for coating provided with a plurality of discharge pores, and fed. By discharging a coating liquid within a specific coating width range, a cylindrical coating body can be formed in a continuous film shape.
すなわち、この発明は、被塗布対象物である円筒状基
体の表面に塗布膜を形成させて円筒状塗布体を製造する
方法であつて、給送される塗布液を特定の塗布幅範囲内
で吐出する複数の吐出細孔を配設した塗布用マルチノズ
ル体を用い、この塗布用マルチノズル体を円筒状基体の
表面に接近させた状態で、前記円筒状基体を特定の軸線
上で回転させると共に、前記塗布用マルチノズル体を回
転軸線と平行に移動させて、円筒状基体の表面に対し、
各吐出細孔が相対的にスパイラル状の移動軌跡をとるよ
うにさせ、前記複数の吐出細孔の相対的な移動により、
各吐出細孔から吐出される塗布液を、円筒状基体の表面
へ連続膜状に展開させるようにしたことを特徴とする円
筒状塗布体の製造方法であり、かつこの円筒状塗布体の
製造方法において、前記塗布用マルチノズル体における
複数の吐出細孔の配設方向を、円筒状基体の回転軸線方
向に傾斜させた配置とし、円筒状基体の表面に対して、
相対的なスパイラル状の軌跡で移動される各吐出細孔か
ら塗布液を吐出させるようにしたものである。That is, the present invention relates to a method for producing a cylindrical coating body by forming a coating film on the surface of a cylindrical substrate which is an object to be coated, wherein the fed coating liquid is controlled within a specific coating width range. Using a multi-nozzle body for coating provided with a plurality of discharge pores for discharging, rotating the cylindrical body on a specific axis while bringing the multi-nozzle body for coating close to the surface of the cylindrical body Along with moving the coating multi-nozzle body parallel to the rotation axis, with respect to the surface of the cylindrical substrate,
Each discharge pore is caused to take a relatively spiral movement locus, by the relative movement of the plurality of discharge pores,
A method for manufacturing a cylindrical coated body, characterized in that a coating liquid discharged from each discharge pore is developed in a continuous film form on the surface of a cylindrical substrate, and a method for manufacturing the cylindrical coated body. In the method, the arrangement direction of the plurality of discharge pores in the multi-nozzle body for application is arranged so as to be inclined in the rotation axis direction of the cylindrical substrate, and with respect to the surface of the cylindrical substrate,
The application liquid is discharged from each of the discharge pores moved in a relative spiral trajectory.
従つて、この発明の円筒状塗布体の製造方法において
は、給送される塗布液を特定の塗布幅範囲内で吐出する
複数の吐出細孔を配設した塗布用マルチノズル体を用い
ることにより、被塗布対象物である円筒状基体を特定の
軸線上で回転させながら、この円筒状基体の表面に接近
して配設させた塗布用マルチノズル体を、回転軸線と平
行に移動させるようにしたので、結果的には、円筒状基
体の表面に対して、塗布用マルチノズル体の各吐出細孔
を相対的にスパイラル状の軌跡により移動させた状態
で、これらの各吐出細孔から吐出される塗布液を、円筒
状基体の表面へ展開させて連続膜状に塗布させ、これに
よつて所期通りの円筒状塗布体を製造し得るのである。Therefore, in the method for manufacturing a cylindrical coating body of the present invention, by using a multi-nozzle body for coating provided with a plurality of discharge pores for discharging a supplied coating liquid within a specific coating width range. While rotating the cylindrical substrate to be coated on a specific axis, the coating multi-nozzle body disposed close to the surface of the cylindrical substrate is moved in parallel with the rotation axis. As a result, each of the discharge pores of the multi-nozzle body for application is moved relative to the surface of the cylindrical substrate along a spiral trajectory. The coating solution to be applied is spread on the surface of the cylindrical substrate and applied in a continuous film form, whereby the intended cylindrical coated body can be manufactured.
以下、この発明に係る円筒状塗布体の製造方法および
同製造方法に適用する塗布用マルチノズル体の実施例に
つき、第1図ないし第5図を参照して詳細に説明する。Hereinafter, an embodiment of a method for manufacturing a cylindrical coating body according to the present invention and a multi-nozzle body for coating applied to the manufacturing method will be described in detail with reference to FIGS. 1 to 5.
第1図はこの発明の一実施例方法に適用する塗布用マ
ルチノズル体の概要構成を示す正面図、第2図(a)な
いし(c)は同上塗布用マルチノズル体の各吐出ノズル
から円筒状基体の表面に吐出される塗布液が、連続膜状
の塗布膜に展開される態様を順次に示すそれぞれに説明
図であり、また、第3図は同上連続膜状の塗布膜形成の
ための態様を補足説明する部分斜視図、第4図はこの発
明の他の実施例方法に適用する塗布用マルチノズル体の
各吐出ノズルの形態を説明する部分斜視図であり、さら
に、第5図はこの実施例方法による円筒状基体の表面へ
の塗布体の形成を行なう装置全体の模式的に表わした斜
視図である。FIG. 1 is a front view showing a schematic configuration of a multi-nozzle body for coating applied to a method of one embodiment of the present invention, and FIGS. 2 (a) to 2 (c) show a cylinder from each discharge nozzle of the multi-nozzle body for coating. FIGS. 3A and 3B are explanatory views sequentially showing a mode in which a coating liquid discharged onto the surface of the substrate is developed into a continuous film-like coating film. FIG. FIG. 4 is a partial perspective view for explaining the mode of each discharge nozzle of the multi-nozzle body for application applied to another embodiment of the method of the present invention, and FIG. FIG. 1 is a perspective view schematically showing an entire apparatus for forming a coating body on the surface of a cylindrical substrate by the method of this embodiment.
この実施例においては、被塗布対象物である円筒状基
体を回転させた状態で、吐出ノズルを回転軸線に平行す
る方向へ移動させることによつて、円筒状基体の被塗布
対象表面に対し、吐出ノズルに相対的なスパイラル状の
軌跡をとらせ、吐出ノズルから吐出される塗布液を同被
塗布対象表面へ展開塗布させるようにしたスパイラル塗
布方法を採用する。そして、この場合、円筒状基体が1
回転する間に、吐出ノズルを塗布幅相当分だけ移動させ
るようにし、これによつて塗布膜の重ね塗りおよび塗り
残しなどを生じないようにする。In this embodiment, by moving the discharge nozzle in a direction parallel to the rotation axis while rotating the cylindrical substrate which is the object to be coated, the surface of the cylindrical substrate to be coated is A spiral coating method is adopted in which the discharge nozzle takes a relative spiral trajectory, and the coating liquid discharged from the discharge nozzle is spread and applied to the surface to be coated. And in this case, the cylindrical substrate is 1
During the rotation, the discharge nozzle is moved by an amount corresponding to the coating width, so that the coating film is not repeatedly applied or uncoated.
しかして、前記吐出ノズルとしては、第1図に示され
ているように、給送される塗布液を特定の塗布幅範囲内
で吐出し得るように、それぞれに吐出細孔12aを開口し
た複数の吐出細管12を所定間隔で配設させた塗布用マル
チノズル体11を用いるもので、前記のスパイラル状軌跡
による塗布用マルチノズル体11の移動に伴ない、これら
の各吐出細管12の吐出細孔12aから吐出される塗布液
は、第2図(a)ないし(c)に示されているように、
円筒状基体、こゝでは、感光体ドラム21の被塗布対象表
面21a上に付着されると共に、順次にレベリングされ
て、所期通りの連続膜状に塗布形成される。As shown in FIG. 1, the discharge nozzle has a plurality of discharge holes 12a, each of which has a discharge pore 12a, so that the supplied coating liquid can be discharged within a specific coating width range. of the discharge tubule 12 but using the coating multi-nozzle member 11 which is disposed at predetermined intervals, in conjunction with the movement of the coating for multi-nozzle member 11 by the spiral trajectory of the discharge of each of these discharge tubule 12 fine The coating liquid discharged from the hole 12a is, as shown in FIGS.
The cylindrical substrate, which is attached to the surface 21a of the photosensitive drum 21 to be coated and is sequentially leveled to form a desired continuous film.
なお、この場合、塗布用マルチノズル体11に配設開口
させる各吐出細孔21aは、必ずしも各吐出細管12を設け
て形成させる必要はなく、例えば、ノズル体自体の内部
給送炉を所定間隔で分岐させて、直接、外部に開口させ
るようにしてもよいことは勿論である。In this case, the discharge pores 21a provided and opened in the application multi-nozzle body 11 do not necessarily need to be formed by providing each discharge thin tube 12, and, for example, the internal feed furnace of the nozzle body itself is disposed at a predetermined interval. Of course, it may be made to branch and to make it open directly to the outside.
またこゝで、前記複数の各吐出細孔12aについては、
個々の吐出細孔の開口断面積および各開口相互間の間隔
のそれぞれを、使用する塗布液の表面張力と粘度,ドラ
ム表面と吐出される塗布液との接触角,および展開塗布
される塗布膜の膜厚などの各塗布条件に対応して的確に
選択することが肝要である。Here, for each of the plurality of discharge pores 12a,
The surface area and viscosity of the coating liquid used, the contact angle between the drum surface and the coating liquid to be discharged, and the coating film to be spread and coated are determined by the opening cross-sectional area of each discharge pore and the distance between the openings. It is important to make a proper selection according to each coating condition such as the film thickness of the film.
つまり、各吐出細孔の開口断面積については、塗布液
の粘度と流量とによつて選択設定するものであつて、こ
の開口断面積が小さ過ぎると、各吐出細孔での圧力損が
大きくなつて所望の流量が得られず、反対に開口断面積
が大き過ぎると、各吐出細孔での流量にバラツキを生ず
ることになつて好ましくない。また、各吐出細孔の開口
部とドラム表面との間隔については、吐出される塗布液
がドラム表面に付着後、次に述べるようにレベリングさ
れ得る程度であればよく、吐出時の流速が大きいときに
は、5mm以上の間隔でも十分に膜厚の均等な連続膜を形
成できるが、流速が小さいときには、0.1mm程度まで接
近させなければならない場合もあるもにで、何れにして
も、これらの各塗布条件を、塗布液の表面張力,粘度,
流量などに対応して、最も効果的に塗布膜を形成できる
ように選択することが、良好な塗布を行なう上での前提
となる。That is, the opening cross-sectional area of each discharge pore is selected and set according to the viscosity and the flow rate of the coating liquid. If this opening cross-section is too small, the pressure loss at each discharge pore becomes large. On the other hand, if the desired flow rate cannot be obtained, and if the cross-sectional area of the opening is too large, it is not preferable because the flow rate at each discharge pore varies. The distance between the opening of each discharge pore and the surface of the drum may be such that the applied coating liquid can be leveled as described below after the applied coating liquid adheres to the surface of the drum. In some cases, a continuous film having a sufficiently uniform thickness can be formed even at intervals of 5 mm or more.However, when the flow rate is low, it may be necessary to approach the thickness to about 0.1 mm. The application conditions are the surface tension, viscosity,
It is a prerequisite for performing good coating that selection should be made so that a coating film can be formed most effectively according to the flow rate and the like.
すなわち、前記第1図のノズル構成に示すように、各
吐出細管12に吐出細孔12aを開口させた塗布用マルチノ
ズル体11を用い、各吐出細孔12aを進行方向に平行に配
置した状態で、スプライン状移動軌跡のもとに、所期の
塗布操作を行なう場合にあつて、感光体ドラム21の被塗
布対象表面21aにおける塗布直後の塗布液Aは、まず最
初に、第2図(a)の断面に見られる通り、各吐出細孔
12aでの一方向の配設間隔に対応する間隔で離間され
て、恰かも、塗布ムラを生じているような幾分か盛り上
がつた所期状態a1にされるが、先に述べた各塗布条件が
適切に設定されていて、ドラム表面21aと吐出される塗
布液Aとの接触角が小さく、かつ塗布液A自体の粘度が
比較的低いときには、同図(b)の断面に示す如く、塗
布液A自体の自然流動によつて、これが直ちに拡がり始
め、その隣接する相互間が順次に結び付いてゆき、これ
らが自動的に一連に繁がつた中間状態a2に移行するため
に、この塗布ムラ状態が次第に解消され、最終的には、
同図(c)の断面に見られるように、塗布液Aの全体が
レベリングされて、所期通りの設定膜厚で連続膜状にな
つた塗布膜Bを塗布形成することができる。That is, as shown in the nozzle configuration of FIG. 1, a multi-nozzle body 11 for application in which discharge pores 12a are opened in each discharge thin tube 12 is used, and each discharge pore 12a is arranged in parallel to the traveling direction. In the case where the intended coating operation is performed based on the spline-like movement trajectory, the coating liquid A immediately after the coating on the coating target surface 21a of the photoconductor drum 21 is firstly obtained as shown in FIG. As seen in the cross section of a), each discharge pore
Are spaced at intervals corresponding to the arrangement distances of the one-way at 12a, may恰, although somewhat Moriaga ivy is the intended state a 1 as occurring uneven coating, previously described When the application conditions are appropriately set, the contact angle between the drum surface 21a and the applied coating liquid A is small, and the viscosity of the coating liquid A itself is relatively low, the cross section shown in FIG. as, naturally by the flow connexion of the coating liquid a itself, which starts spreading immediately Yuki tied thereof to adjacent each other in sequence, in order it is automatically migrated to a series in Shigeruga ivy intermediate state a 2, This uneven coating state is gradually eliminated, and finally,
As can be seen from the cross section of FIG. 3C, the entire coating liquid A is leveled, and a coating film B formed into a continuous film with a desired set film thickness can be formed.
一方、このときの各塗布条件が適切でなくて、ドラム
表面21aと吐出される塗布液Aとの接触角が大きいとき
は、または塗布液A自体の粘度が比較的大きいときに
は、この塗布液Aが拡がらずに筋状を呈すると共に、こ
れに見合つた筋状の未塗布部を生ずることになる。そし
てこの場合に、例えば、各吐出細孔12aの開口相互間の
間隔をより以上に狭くしようとしても、製造上ならびに
寸法的な面での制約が加えられるばかりか、塗布液Aの
粘度を下げるのにも限界があり、あまり粘度を下げ過ぎ
ると、ウエット膜厚が異常に薄くなつて液垂れをきたす
ことになる。On the other hand, when the respective application conditions are not appropriate and the contact angle between the drum surface 21a and the discharged coating liquid A is large, or when the viscosity of the coating liquid A itself is relatively large, the coating liquid A Does not spread, but presents a streak, and a streaky uncoated portion corresponding to this appears. In this case, for example, even if an attempt is made to further narrow the interval between the openings of the discharge pores 12a, not only is there a restriction in terms of manufacturing and dimensional aspects, but also the viscosity of the coating liquid A is reduced. However, if the viscosity is too low, the wet film thickness becomes abnormally thin, causing dripping.
仍つて、このような点を改善する一つの手段として
は、各吐出細孔12aの開口相互間の間隔を狭くするため
に、第3図に示す如く、こゝでは、各吐出細管13での吐
出細孔13aの各吐出開口を一方向に配設させずに、千鳥
状の配列にすることが考えられるが、このような場合に
は、ドラム面に対し相対的な位置を占めて、先に付着さ
れている両側の各塗布膜Bの側部に対し、相対的に後か
ら付着される塗布膜Bのいずれか一方の側部が接触する
と、この接触部分から相互の融合がなされ、かつこれが
両者間に作用する表面張力によつて、一旦接触した側に
のみ引き寄せられてしまい、融合しなかつた他方の側部
との間隔が大きくなつて、所期通りの連続膜状をした塗
布膜Bが得られない場合がある。Therefore, as one means for improving such a point, as shown in FIG. 3, in order to reduce the interval between the openings of the discharge pores 12a, in It is conceivable that the discharge openings of the discharge pores 13a are not arranged in one direction and are arranged in a staggered arrangement. When one of the sides of the coating film B attached relatively later comes into contact with the sides of each of the coating films B on both sides attached to, the mutual fusion is made from this contact portion, and This is attracted only to the side that has once contacted due to the surface tension acting between the two, and the gap with the other side that did not fuse is increased, resulting in the expected continuous film-like coating film. B may not be obtained.
そこで、このような場合に対処するための手段とし
て、第4図実施例に示すように、各吐出細管12での吐出
細孔12aの各吐出開口を一方向に配設せさたまゝで、こ
れをマルチノズル体11の移動方向に所定の角度θだけ傾
斜させ、実質的に各吐出開口相互間の間隔を縮小したの
と同様な配置にすることができる。従つて、この場合に
は、先に付着された膜B部分に、後から付着する膜B部
分が順次に融合されてゆき、結果的には、所期通りの連
続膜状をした均等膜厚の塗布膜Bを形成し得るのであ
る。そして、この場合の傾斜角度θについては、こゝで
も、塗布液Aの表面張力と粘度,ドラム表面21aと吐出
される塗布液Aとの接触角などの諸条件を考慮して調整
するが、多くの場合、15〜75゜程度とするのが、均等膜
厚の塗布膜Bを得る上で好ましい。Therefore, as means for coping with such a case, as shown in FIG. 4, the discharge openings of the discharge pores 12a in the discharge narrow tubes 12 are arranged in one direction. This can be inclined by a predetermined angle θ in the direction of movement of the multi-nozzle body 11 , and can be arranged in substantially the same manner as reducing the interval between the respective discharge openings. Therefore, in this case, the film B portion to be attached later is sequentially fused to the film B portion to be attached earlier, and as a result, the uniform film thickness having the expected continuous film shape is obtained. Can be formed. In this case, the inclination angle θ is adjusted in consideration of various conditions such as the surface tension and viscosity of the coating liquid A and the contact angle between the drum surface 21a and the discharged coating liquid A. In many cases, the thickness is preferably about 15 to 75 ° in order to obtain a coating film B having a uniform thickness.
また、第5図には、各実施例による塗布用マルチノズ
ル体11を適用した塗布装置の一態様を示している。FIG. 5 shows one embodiment of a coating apparatus to which the coating multi-nozzle body 11 according to each embodiment is applied.
すなわち、被塗布対象物としての円筒状基体,つまり
感光体ドラム21は、その中心軸線を水平にして回転駆動
できるように適宜に軸受け枢支させておき、かつ塗布用
マルチノズル体11は、この感光体ドラム21の被塗布対象
表面21aに接近して配設させると共に、回転軸線と平行
に移動させて、感光体ドラム21のドラム表面12aに対
し、各吐出細孔12aを相対的にスパイラル状の軌跡で移
動させ得るようにする。That is, the cylindrical base as the object to be coated, that is, the photosensitive drum 21 is appropriately pivoted and supported by a bearing so that the center axis is horizontal, and the coating multi-nozzle body 11 is The discharge pores 12a are arranged in a spiral shape relative to the drum surface 12a of the photosensitive drum 21 by disposing the photosensitive drum 21 in close proximity to the surface 21a to be coated and moving the photosensitive drum 21 in parallel with the rotation axis. So that it can be moved along the locus.
しかして、前記感光体ドラム21の回転速度と、塗布用
マルチノズル体11の移動速度とは、所定の相対的なスパ
イラル状の軌跡で正確に移動可能にさせるべく、相互に
関係付ける必要があるために、これらの回転ならびに移
動の駆動手段としては、例えば、ステッピングモータ
ー,サーボモーターなどのような制御可能な駆動源31,3
2を用いるのが望ましく、移動手段には、通常、円滑な
移動を行なわせるのに好適なボールネジ機構33が採用さ
れ、塗布液Aの給送ポンプ34としても、正確に流量制御
し得るものであることが好ましい。そして、これらの感
光体ドラム21の回転速度と、塗布用マルチノズル体11の
移動速度と、それに塗布液Aの流量とは、共に一定に設
定して塗布操作する。Thus, the rotational speed of the photosensitive drum 21 and the moving speed of the multi-nozzle body 11 for application need to be related to each other so as to be able to move accurately on a predetermined relative spiral trajectory. Therefore, the driving means for these rotation and movement include, for example, controllable driving sources 31 and 3 such as a stepping motor and a servomotor.
It is preferable to use 2. The moving means usually employs a ball screw mechanism 33 suitable for performing smooth movement, and the feed pump 34 for the coating liquid A can accurately control the flow rate. Preferably, there is. The rotation speed of the photosensitive drum 21 , the moving speed of the multi-nozzle body 11 for coating, and the flow rate of the coating liquid A are all set to be constant to perform the coating operation.
また一方、塗布液Aの液性範囲は、比較的広いが、形
成される塗布膜Bのウエット状における膜厚によつて異
なる。つまり、膜厚が薄い場合には比較的低粘度,厚い
場合には比較的高粘度の液性が要求される。さらに、塗
布液Aの溶媒蒸発速度または硬化速度については、これ
が早過ぎる場合、付着膜がレベリング以前に粘度上昇し
て、レベリング不良となるから、比較的遅い方が好まし
い。On the other hand, the liquid property range of the coating liquid A is relatively wide, but differs depending on the wet film thickness of the formed coating film B. That is, when the film thickness is small, relatively low viscosity is required, and when the film thickness is large, relatively high viscosity is required. Further, with respect to the solvent evaporation rate or the curing rate of the coating liquid A, if it is too fast, the viscosity of the adhered film increases before leveling, resulting in poor leveling.
次に、この発明を実際に実施した場合の具体例と、こ
れに対応される比較例とのそれぞれを挙げる。Next, specific examples when the present invention is actually implemented and comparative examples corresponding thereto will be described.
具体例I. 被塗布対象物である円筒状基体としては、外径80mm,
肉厚1m,長さ340mmのアルミニウム製による感光体ドラム
用基体を用い、塗布液の吐出手段としては、内径0.15mm
の細管からなる5本の吐出ノズルを0.85mmの間隔で一列
に配設させた塗布用マルチノズル体を用い、感光体ドラ
ムの表面と各ノズルの吐出開口端との間隔を0.1mmと
し、かつドラムの回転軸線に対して各ノズルの配設方向
を平行に配置させた。Specific Example I. As the cylindrical substrate to be coated, the outer diameter is 80 mm,
Using a photosensitive drum substrate made of aluminum with a thickness of 1 m and a length of 340 mm, the inner diameter of the coating solution was 0.15 mm
Using a multi-nozzle body for coating, in which five discharge nozzles consisting of narrow tubes are arranged in a row at 0.85 mm intervals, the distance between the surface of the photosensitive drum and the discharge opening end of each nozzle is 0.1 mm, and The arrangement direction of each nozzle was arranged parallel to the rotation axis of the drum.
塗布液としては、フェノキシ樹脂,ポリビニルブチラ
ール樹脂および電荷発生物質の4−メトキシ−4−メチ
ル−ペンタノン−分散液(固形分濃度1.5wt%,表面張
力28.2dyn/cm,粘度3cps)を用い、この塗布液を塗布用
マルチノズル体の各ノズル吐出開口から11ml/minで吐出
させると共に、感光体ドラムを320rpmで回転させ、かつ
塗布用マルチノズル体を回転軸線に平行に配置して、そ
の送りピッチを4.25mm/回転としておき、感光体ドラム
の表面に対して塗布用マルチノズル体を相対的にスパイ
ラル状の移動軌跡で移動させながら塗布作業を行なつ
た。As a coating liquid, a phenoxy resin, a polyvinyl butyral resin, and a 4-methoxy-4-methyl-pentanone-dispersion of a charge generating substance (solid content: 1.5 wt%, surface tension: 28.2 dyn / cm, viscosity: 3 cps) were used. The coating liquid is discharged at 11 ml / min from each nozzle discharge opening of the multi-nozzle body for coating, the photosensitive drum is rotated at 320 rpm, and the multi-nozzle body for coating is arranged parallel to the rotation axis, and the feed pitch is Was set at 4.25 mm / rotation, and the coating operation was performed while moving the multi-nozzle body for coating relative to the surface of the photosensitive drum along a spiral movement locus.
塗布直後には、塗膜面にスパイラル状の塗膜ムラが見
られたが,次第にレベリングされてゆき、その後、これ
を遠赤外線により乾燥させた結果、膜厚0.6μmの均一
性のよい電荷発生層としての塗布膜が得られた。Immediately after coating, spiral coating unevenness was observed on the coating surface, but it was gradually leveled, and then dried with far-infrared rays. As a result, a uniform charge of 0.6 μm in film thickness was generated. A coating film as a layer was obtained.
具体例II. 被塗布対象物である円筒状基体としては、具体例Iと
同様の感光体ドラムを用い、塗布液の吐出手段として
は、内径0.39mmの細管からなる4本の吐出ノズルを1.25
mmの間隔で一列に配設させた塗布用マルチノズル体を用
い、感光体ドラムの表面と各ノズルの吐出開口端との間
隔を0.1mmとし、かつドラム回転軸線に対して各ノズル
の配設方向を37゜の傾斜角度で配置させた。Example II. The same photosensitive drum as in Example I was used as the cylindrical substrate as the object to be coated, and four ejection nozzles each composed of a thin tube having an inner diameter of 0.39 mm were used as the means for discharging the coating liquid.
Using a multi-nozzle body for coating arranged in a line at an interval of mm, the distance between the surface of the photosensitive drum and the discharge opening end of each nozzle is 0.1 mm, and each nozzle is arranged with respect to the drum rotation axis. The directions were arranged at a tilt angle of 37 °.
そして、塗布液としては、ポリカーボネート樹脂,電
荷発生物質および添加剤のシクロヘキサノン溶液(固形
分濃度17wt%,表面張力29.7dyn/cm,粘度90cps)を用
い、この塗布液を塗布用マルチノズル体の各ノズル吐出
開口から40ml/minで吐出させると共に、同時に、感光ド
ラムを255rpmで回転させ、かつ塗布用マルチノズル体を
送りピッチ4mm/回転とし、感光体ドラムの表面に対して
塗布用マルチノズル体を相対的にスパイラル状の軌跡で
移動させながら塗布作業を行なつた。As a coating solution, a cyclohexanone solution (solid content concentration: 17 wt%, surface tension: 29.7 dyn / cm, viscosity: 90 cps) of a polycarbonate resin, a charge generating substance, and an additive was used. At the same time as discharging at 40 ml / min from the nozzle discharge opening, the photosensitive drum is rotated at 255 rpm, and the coating multi-nozzle body is set at a feed pitch of 4 mm / rotation, and the coating multi-nozzle body is applied to the surface of the photosensitive drum. The coating operation was performed while moving along a relatively spiral locus.
塗布直後には、塗布面にスパイラル状の塗膜ムラが見
られたが、これが次第にレベリングされてゆき、その
後、これを遠赤外線乾燥させた結果、こゝでも、膜厚20
±0.2μmの均一性のよい電荷発生層としての塗布膜が
得られた。Immediately after the application, a spiral coating unevenness was observed on the application surface, but this was gradually leveled. After that, this was dried with far infrared rays.
A coating film as a charge generation layer having good uniformity of ± 0.2 μm was obtained.
具体例III. 具体例IIにおいて、ドラム回転軸線に対して各ノズル
の配設方向を平行に配置させると共に、感光体ドラムを
204rpmで回転させ、かつ塗布用マルチノズル体を送りピ
ッチ5mm/回転とするほかは、すべて同様にして塗布作業
を行なつたところ、筋状の未塗布部が数カ所に発生し
た。Specific Example III. In specific example II, the arrangement direction of each nozzle is arranged parallel to the drum rotation axis, and the photosensitive drum is
When the coating operation was performed in the same manner except that the rotation was performed at 204 rpm and the multi-nozzle body for coating was set at a feed pitch of 5 mm / rotation, streaky uncoated portions were generated at several places.
比較例I. 対象物である円筒状基体としては、具体例Iと同様の
感光体ドラム用基体を用い、塗布液の吐出手段として
は、幅0.1mm,長さ3.7mmのスリットを開口させたスリッ
トノズルを用い、感光体ドラムの表面とスリットの吐出
開口端との間隔を0.1mmとし、かつ具体例IIと同様の塗
布液を40ml/minで吐出させると共に、感光体ドラムを27
6prmで回転させ、かつ塗布用マルチノズル体を送りピッ
チ3.7mm/回転とし、感光体ドラムの表面に対してスリッ
トノズルを相対的にスパイラル状の軌跡で移動させなが
ら塗布作業を行なつた。Comparative Example I. The same photosensitive drum substrate as in Example I was used as a cylindrical substrate as an object, and a slit having a width of 0.1 mm and a length of 3.7 mm was opened as a means for discharging a coating liquid. Using a slit nozzle, the distance between the surface of the photosensitive drum and the discharge opening end of the slit was 0.1 mm, and the same coating liquid as in Example II was discharged at 40 ml / min.
The coating operation was performed while rotating the coating nozzle at 6 prm and the feed multi-nozzle body at a feed pitch of 3.7 mm / rotation, while moving the slit nozzle relative to the surface of the photosensitive drum along a spiral locus.
塗布直後から塗膜面に大きな膜厚ムラを生じ、これが
最後までレベリングされることなく経過して、乾燥後
は、目視によつても明らかに凹凸が確認された。Immediately after the application, a large thickness unevenness was generated on the coating film surface. This level was not leveled until the end, and after drying, the unevenness was clearly confirmed by visual inspection.
以上詳述したように、この発明の塗布方法によれば、
給送される塗布液を特定の塗布幅範囲内で吐出する複数
の吐出細孔を配設させた塗布用マルチノズル体を用い
て、被塗布対象物である円筒状基体を特定の軸線上で回
転させながら、この円筒状基体の被塗布対象表面に接近
して配設させた塗布用マルチノズル体を、回転軸線と平
行に進行させるようにしたから、結果的には、円筒状基
体の表面に対し、塗布用マルチノズル体を相対的にスパ
イラル状の軌跡で移動させた状態で、このスパイラル状
軌跡による塗布用マルチノズル体の移動に伴ない、これ
らの各吐出細孔から吐出される塗布液を、円筒状基体の
表面へ順次に付着塗布させることができるもので、その
後のレベリングによつて、初期通りの塗布膜を迅速かつ
容易に均等な膜厚で連続膜状に塗布形成させ得るのであ
り、このようにして、例えば、電子写真感光体における
光導電体膜のような高精度が要求される塗布膜を簡単に
形成できる。As described in detail above, according to the coating method of the present invention,
Using a coating multi-nozzle body provided with a plurality of discharge pores for discharging the supplied coating liquid within a specific coating width range, a cylindrical substrate as an object to be coated is positioned on a specific axis. While rotating, the multi-nozzle body for coating arranged close to the surface of the cylindrical substrate to be coated is advanced in parallel with the axis of rotation. On the other hand, in a state where the coating multi-nozzle body is relatively moved along a spiral locus, the coating discharged from each of these discharge pores is caused by the movement of the coating multi-nozzle body along the spiral locus. The liquid can be successively applied to the surface of the cylindrical substrate, and by the subsequent leveling, the initial coating film can be quickly and easily formed into a continuous film with a uniform film thickness. And in this way For example, easily forming a coating film high accuracy is required, such as the photoconductor film in an electrophotographic photoreceptor.
また、この発明においては、給送される塗布液を特定
の塗布幅範囲内で吐出し得るように、複数の吐出細孔を
所定間隔で直線状に配設させた塗布用マルチノズル体を
用いるので、前記した円筒状基体の表面に対する各吐出
細孔の相対的なスパイラル状の軌跡による移動に伴な
い、これらの各吐出細孔から吐出される塗布液を、円筒
状基体の被塗布対象表面へ順次に良好かつ効果的に付着
塗布させることができて、前記と同様に、その後のレベ
リングを経て、初期通りの塗布膜を迅速かつ容易に均等
な膜厚で連続膜状に塗布形成させ得るのであり、しか
も、構造的にも比較的簡単であつて容易に実施できるな
どの優れた特長を有するものである。Further, in the present invention, a multi-nozzle body for coating is used in which a plurality of discharge pores are linearly arranged at predetermined intervals so that the fed coating liquid can be discharged within a specific coating width range. Therefore, with the movement of each discharge pore relative to the surface of the cylindrical substrate by the spiral trajectory, the coating liquid discharged from each of the discharge pores is applied to the surface of the cylindrical substrate to be coated. Can be sequentially and satisfactorily and effectively adhered and applied, and, as described above, through subsequent leveling, an initial applied film can be quickly and easily formed into a continuous film with a uniform film thickness. In addition, it has excellent features such as a relatively simple structure and easy implementation.
第1図はこの発明の一実施例方法に適用する塗布用マル
チノズル体の概要構成を示す正面図、第2図(a)ない
し(c)は同上塗布用マルチノズル体の各吐出ノズルか
ら円筒状基体の表面に吐出される塗布液が、連続膜状の
塗布膜に展開される態様を順次に示すそれぞれに説明
図、第3図は同上連続膜状の塗布膜形成のための態様を
補足説明する部分斜視図、第4図はこの発明の他の実施
例方法に適用する塗布用マルチノズル体の各吐出ノズル
の形態を説明する部分斜視図、第5図はこの実施例方法
による円筒状基体の表面への塗布体の形成を行なう装置
全体の模式的に表わした斜視図である。11 ……塗布用マルチノズル体、12……マルチノズル体の
直線状に配設させた複数の吐出細管、12a……各吐出細
管の吐出細孔、21……感光体ドラム(円筒状基体)、21
a……ドラム表面(被塗布対象表面)、31,32……駆動
源、33……ボールネジ機構、34……給送ポンプ、A……
塗布液、a1……塗布液の初期付着状態、a2……塗布液の
中間付着状態、B……塗布膜。FIG. 1 is a front view showing a schematic configuration of a multi-nozzle body for coating applied to a method of one embodiment of the present invention, and FIGS. 2 (a) to 2 (c) show a cylinder from each discharge nozzle of the multi-nozzle body for coating. FIG. 3 is an explanatory view sequentially showing a mode in which a coating liquid discharged onto the surface of a substrate is developed into a continuous film coating film. FIG. 3 supplements the embodiment for forming a continuous film coating film. FIG. 4 is a partial perspective view illustrating the form of each discharge nozzle of a multi-nozzle body for application applied to a method of another embodiment of the present invention, and FIG. 5 is a cylindrical shape according to the method of this embodiment. It is the perspective view which represented typically the whole apparatus which forms the application body on the surface of a base material. 11: Multi-nozzle body for application, 12: A plurality of discharge thin tubes arranged linearly in the multi-nozzle body, 12a: Discharge pores of each discharge thin tube, 21: Photoconductor drum (cylindrical substrate) ,twenty one
a: Drum surface (surface to be coated), 31, 32: Drive source, 33: Ball screw mechanism, 34: Feed pump, A:
Coating liquid, a 1 ... Initial state of coating liquid, a 2 ... Intermediate state of coating liquid, B... Coating film.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B05D 1/26,1/04,1/42 B05C 5/00,5/02──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) B05D 1 / 26,1 / 04,1 / 42 B05C 5 / 00,5 / 02
Claims (2)
布膜を形成させて円筒状塗布体を製造する方法であっ
て、 給送される塗布液を特定の塗布幅範囲内で吐出する複数
の吐出細孔を配設した塗布用マルチノズル体を用い、 この塗布用マルチノズル体を円筒状基体の表面に接近さ
せた状態で、 前記円筒状基体を特定の軸線上で回転させると共に、前
記塗布用マルチノズル体を回転軸線と平行に移動させ
て、円筒状基体の表面に対し、各吐出細孔が相対的にス
パイラル状の移動軌跡をとるようにさせ、 前記複数の吐出細孔の相対的な移動により、各吐出細孔
から吐出される塗布液を、円筒状基体の表面へ連続膜状
に展開させるようにした ことを特徴とする円筒状塗布体の製造方法。1. A method for producing a cylindrical coating body by forming a coating film on a surface of a cylindrical substrate as an object to be coated, comprising discharging a fed coating liquid within a specific coating width range. Using a multi-nozzle body for application in which a plurality of discharge pores are arranged, and rotating the cylindrical body on a specific axis while bringing the multi-nozzle body for application close to the surface of the cylindrical base. Moving the coating multi-nozzle body in parallel with the rotation axis so that each discharge pore takes a relatively spiral movement trajectory with respect to the surface of the cylindrical substrate; Wherein the coating liquid discharged from each of the discharge pores is spread in a continuous film form on the surface of the cylindrical substrate by the relative movement of the cylindrical coating body.
吐出細孔の配設方向を、円筒状基体の回転軸線方向に傾
斜させた配置とし、 円筒状基体の表面に対して、相対的なスパイラル状の軌
跡で移動される各吐出細孔から塗布液を吐出させるよう
にした ことを特徴とする請求項1記載の円筒状塗布体の製造方
法。2. A dispensing direction of a plurality of discharge pores in the multi-nozzle body for application is arranged so as to be inclined with respect to a rotation axis direction of a cylindrical base, and a spiral relative to a surface of the cylindrical base is provided. The method for producing a cylindrical coated body according to claim 1, wherein the coating liquid is discharged from each of the discharge pores moved along a trajectory.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33292389A JP2812755B2 (en) | 1989-12-25 | 1989-12-25 | Manufacturing method of cylindrical coated body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33292389A JP2812755B2 (en) | 1989-12-25 | 1989-12-25 | Manufacturing method of cylindrical coated body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03193161A JPH03193161A (en) | 1991-08-22 |
JP2812755B2 true JP2812755B2 (en) | 1998-10-22 |
Family
ID=18260322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33292389A Expired - Fee Related JP2812755B2 (en) | 1989-12-25 | 1989-12-25 | Manufacturing method of cylindrical coated body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2812755B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0798089A1 (en) * | 1996-03-27 | 1997-10-01 | Forestry And Forest Products Research Institute | Construction material made of woody material and mortar, manufacturing method and apparatus thereof |
CN101587309B (en) | 2004-11-19 | 2012-01-25 | 三菱化学株式会社 | Coating liquid for undercoating layer formation, and electrophotographic photoreceptor |
US20100158561A1 (en) | 2006-05-18 | 2010-06-24 | Mitsubishi Chemical Corporation | Electrophotographic photosensitive body, method for producing conductive base, image forming device, and electrophotographic cartridge |
TW200813666A (en) | 2006-05-18 | 2008-03-16 | Mitsubishi Chem Corp | Electrophotographic photosensitive body, image forming device and electrophotographic cartridge |
JP4815318B2 (en) * | 2006-09-28 | 2011-11-16 | 富士フイルム株式会社 | Box manufacturing method |
JP2008122579A (en) | 2006-11-10 | 2008-05-29 | Fuji Xerox Co Ltd | Fixing member, fixing device, and image forming apparatus |
JP5398240B2 (en) * | 2008-11-28 | 2014-01-29 | 株式会社ミマキエンジニアリング | Inkjet printer |
CN103521401B (en) * | 2013-10-31 | 2015-10-14 | 刘飞 | A kind of bull glue dispensing valve |
JP6119657B2 (en) * | 2014-04-02 | 2017-04-26 | トヨタ車体株式会社 | Painting method |
-
1989
- 1989-12-25 JP JP33292389A patent/JP2812755B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03193161A (en) | 1991-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2812755B2 (en) | Manufacturing method of cylindrical coated body | |
US5112656A (en) | Coating method suitable for use in production of photosensitive member for electrophotography | |
US4628856A (en) | Coating apparatus with tangential slide allowing a vertical and fast flow of photographic emulsion | |
JPH03215931A (en) | Formation of photoresist | |
JPS58189061A (en) | Coater for surface of substrate having endlessly-formed continuous surface | |
JP2949799B2 (en) | Manufacturing method of cylindrical coated body | |
JPS63194779A (en) | Production of coating film | |
JPS618164A (en) | Coating apparatus | |
JP4304954B2 (en) | Thin film forming apparatus, thin film forming method, and display panel manufacturing method | |
JPH0780387A (en) | Spin coating method for liquid and device therefor | |
US3473955A (en) | Coating process | |
US3811926A (en) | Method for coating only the convex major surface of an apertured mask for a cathode-ray tube | |
JP3456050B2 (en) | Coating method | |
JPH07178367A (en) | Coating liquid applying method | |
JPH03193160A (en) | Method for continuously forming thin layer coating film | |
JP2781988B2 (en) | Coating equipment for manufacturing electrophotographic photoreceptors | |
JPH09192573A (en) | Method for forming thin film and apparatus therefor | |
JPH067265B2 (en) | Electrophotographic recording material base material coating device | |
JP2000157907A (en) | Sheet coating method and sheet coating device and production of color filter | |
JP2811219B2 (en) | Photosensitive drum positioning device | |
JPH105674A (en) | Coating film forming method | |
JPH02273575A (en) | Rotary coating method | |
JPS6261672A (en) | Preparation of cylindrical organic photosensitive body | |
JPH04263260A (en) | Production of seamless beltlike photosensitive body | |
JPH0764306A (en) | Production of photosensitive drum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070807 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080807 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090807 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |