JP2812419B2 - Decomposition method of chloroformate - Google Patents

Decomposition method of chloroformate

Info

Publication number
JP2812419B2
JP2812419B2 JP5119871A JP11987193A JP2812419B2 JP 2812419 B2 JP2812419 B2 JP 2812419B2 JP 5119871 A JP5119871 A JP 5119871A JP 11987193 A JP11987193 A JP 11987193A JP 2812419 B2 JP2812419 B2 JP 2812419B2
Authority
JP
Japan
Prior art keywords
chloroformate
gas
methyl
reaction
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5119871A
Other languages
Japanese (ja)
Other versions
JPH06329597A (en
Inventor
圭吾 西平
秀二 田中
祐樹 西田
宣明 真田
敏雄 蔵藤
村上  真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP5119871A priority Critical patent/JP2812419B2/en
Priority to CA 2123973 priority patent/CA2123973A1/en
Priority to DE1994602462 priority patent/DE69402462T2/en
Priority to EP19940107893 priority patent/EP0625496B1/en
Priority to ES94107893T priority patent/ES2099508T3/en
Publication of JPH06329597A publication Critical patent/JPH06329597A/en
Priority to US08/670,552 priority patent/US5869729A/en
Application granted granted Critical
Publication of JP2812419B2 publication Critical patent/JP2812419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、クロロギ酸エステルを
種々の濃度で含有する気体を活性炭又は金属酸化物系担
体物質と接触させ、クロロギ酸エステルを分解して塩化
アルキルを生成させることによって、クロロギ酸エステ
ルを分解・除去する方法に係わる。本発明は、例えば、
一酸化炭素と亜硝酸エステルを、固体触媒の存在下及び
塩化水素供給下に反応させて炭酸エステル等を生成する
カルボニル化反応などにおいて副生するクロロギ酸エス
テルを効果的に分解・除去して、副生したクロロギ酸エ
ステルによる腐食等の問題を解消するために適用するこ
とができる。
BACKGROUND OF THE INVENTION The present invention relates to a method comprising contacting a gas containing various concentrations of chloroformate with activated carbon or a metal oxide-based carrier material to decompose the chloroformate to form an alkyl chloride. The present invention relates to a method for decomposing and removing chloroformate. The present invention, for example,
Carbon monoxide and nitrite are reacted in the presence of a solid catalyst and under the supply of hydrogen chloride to effectively decompose and remove the chloroformate produced as a by-product in a carbonylation reaction or the like that produces a carbonate or the like, It can be applied to solve problems such as corrosion due to by-produced chloroformate.

【0002】[0002]

【従来の技術】クロロギ酸エステルを分解する方法とし
ては、三弗化ホウ素などのルイス酸の存在下でクロロギ
酸エステルを熱して塩化アルキルとする方法が J. Am.
Chem.Soc., 77, 5033 (1955) に示されているが、この
方法は低級アルコールのクロロギ酸エステルの分解に長
時間を要しその分解率も低いものであった。また、N−
メチルピロリドンのような非プロトン性溶媒中でクロロ
ギ酸エステルを120〜130℃に加熱して塩化アルキ
ルを製造する方法が、ドイツ特許公開第2545659
号に開示されているが、特別な溶媒を用いる液相法であ
りそのための溶媒槽を必要とするなどクロロギ酸エステ
ルを分解するには工業的に経済的な方法ではなかった。
2. Description of the Related Art As a method of decomposing chloroformate, a method of heating chloroformate to alkyl chloride in the presence of a Lewis acid such as boron trifluoride is disclosed in J. Am.
As shown in Chem. Soc., 77, 5033 (1955), this method took a long time to decompose the chloroformate of lower alcohol and the decomposition rate was low. Also, N-
A method for producing an alkyl chloride by heating a chloroformate to 120 to 130 ° C. in an aprotic solvent such as methylpyrrolidone is disclosed in German Patent Publication No. 2545659.
However, this method is not an industrially economical method for decomposing chloroformate, for example, it is a liquid phase method using a special solvent and requires a solvent tank for that purpose.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来公
知のクロロギ酸エステルの分解方法は工業的に実施する
にはいずれも経済的な方法ではなかった。特に、化学工
業等における化学反応において反応ガス中に目的化合物
の生成と共に副生した微量のクロロギ酸エステルを簡単
な手段で除去する方法は実質的に知られていなかったの
である。
As described above, none of the conventionally known methods for decomposing chloroformate is economical to carry out industrially. In particular, a method for removing trace amounts of chloroformate by-produced together with generation of a target compound in a reaction gas in a chemical reaction in a chemical industry or the like by a simple means has not been practically known.

【0004】[0004]

【課題を解決するための手段】本発明者らは、従来公知
のクロロギ酸エステルの分解方法における前述のような
問題点を解決すべく、クロロギ酸エステルが種々の割合
で含有されている混合気体中のクロロギ酸エステルを効
率よく分解できる経済的な方法について鋭意検討した結
果、クロロギ酸エステルを活性炭又は金属酸化物系担体
物質に接触させることにより極めて容易にクロロギ酸エ
ステルを分解し塩化アルキルへ転化できることを見出し
て、本発明を完成するに至った。
Means for Solving the Problems In order to solve the above-mentioned problems in the conventionally known method for decomposing chloroformate, the present inventors have developed a mixed gas containing chloroformate in various ratios. As a result of intensive studies on an economical method that can efficiently decompose chloroformate in water, the chloroformate is extremely easily decomposed and converted to alkyl chloride by contacting the chloroformate with activated carbon or a metal oxide carrier material. We have found that we can do this and have completed the present invention.

【0005】即ち、本発明は、クロロギ酸エステルを含
有する気体を、活性炭又は金属酸化物系担体物質と接触
させ、クロロギ酸エステルを分解して塩化アルキルを生
成させることを特徴とするクロロギ酸エステルの分解方
法に関する。
That is, the present invention provides a chloroformate ester characterized in that a gas containing a chloroformate ester is brought into contact with activated carbon or a metal oxide-based carrier material to decompose the chloroformate ester to form an alkyl chloride. And a method for disassembling.

【0006】以下に本発明の分解方法を詳しく説明す
る。本発明において使用されるクロロギ酸エステルは、
クロロギ酸と炭素数1〜4の脂肪族アルコールとから形
成されているクロロギ酸低級アルキルエステルなどであ
ればよく、例えば、クロロギ酸メチル、クロロギ酸エチ
ル、クロロギ酸n−(又はi−)プロピル、クロロギ酸
n−(又はi−,sec−)ブチル等のクロロギ酸低級
アルキルエステルを好適に挙げることができる。すなわ
ち、前記のクロロギ酸低級アルキルエステルにおける低
級アルキル基は、メチル、エチル、n−プロピル、i−
プロピル、n−ブチル、i−ブチル、sec−ブチル、
t−ブチル等の炭素数1〜4のアルキル基を挙げること
ができる。
Hereinafter, the decomposition method of the present invention will be described in detail. The chloroformate used in the present invention is:
Any lower alkyl ester of chloroformate formed from chloroformic acid and an aliphatic alcohol having 1 to 4 carbon atoms may be used, such as methyl chloroformate, ethyl chloroformate, n- (or i-) propyl chloroformate, Preferred examples include lower alkyl chloroformates such as n- (or i-, sec-) butyl chloroformate. That is, the lower alkyl group in the lower alkyl chloroformate is methyl, ethyl, n-propyl, i-
Propyl, n-butyl, i-butyl, sec-butyl,
Examples thereof include an alkyl group having 1 to 4 carbon atoms such as t-butyl.

【0007】本発明におけるクロロギ酸エステルを含有
する気体としては、クロロギ酸エステルをいかなる割合
で含有している気体であってもよく、例えば、10pp
m〜100容量%の含有割合、更に20ppm〜50容
量%の含有割合でクロロギ酸エステルを含有する気体で
あってもよい。本発明の分解方法は、前記のクロロギ酸
エステルを含有する気体として20〜10000pp
m、特に50〜5000ppm程度の低い含有割合でク
ロロギ酸エステルを含有する気体にも好適に適用するこ
とができる。
The gas containing chloroformate in the present invention may be a gas containing chloroformate at any ratio, for example, 10 pp.
A gas containing a chloroformate at a content of m to 100% by volume, more preferably 20 ppm to 50% by volume may be used. The decomposition method of the present invention is characterized in that the gas containing chloroformate is 20 to 10000 pp
m, in particular, a gas containing a chloroformate in a low content ratio of about 50 to 5000 ppm.

【0008】また、この発明では、前記のクロロギ酸エ
ステルを含有する気体において、クロロギ酸エステルと
共に共存することができる気体について特に制限される
ものではなく、例えば、その共存可能な気体としては、
窒素ガス、二酸化炭素ガスなどの不活性ガスを挙げるこ
とができ、更に、一酸化炭素、亜硝酸エステル、アルコ
ール、酸素などの気体が存在してもよい。
Further, in the present invention, in the above-mentioned gas containing chloroformate, the gas which can coexist with the chloroformate is not particularly limited. For example, the gas which can coexist is as follows:
An inert gas such as a nitrogen gas or a carbon dioxide gas can be used, and a gas such as carbon monoxide, a nitrite, an alcohol, or oxygen may be present.

【0009】本発明のクロロギ酸エステルの分解方法に
よって生成する塩化アルキルとしては、最初に使用した
気体中のクロロギ酸エステルに対応して、それぞれ、塩
化メチル、塩化エチル、塩化n−(又はi−)プロピ
ル、塩化n−(又はi−,sec−)ブチル等の炭素数
1〜4低級アルキルモノクロライドを例示することがで
きる。
The alkyl chloride produced by the method for decomposing chloroformate of the present invention includes methyl chloride, ethyl chloride, and n- (or i-chloride) corresponding to the chloroformate in the gas used first. ) Lower alkylmonochloride having 1 to 4 carbon atoms such as) propyl and n- (or i-, sec-) butyl chloride.

【0010】本発明の分解方法においてクロロギ酸エス
テルを分解するために活性炭を使用することが最も好ま
しく、その活性炭は、一般に、反応触媒の担体、吸着剤
又は脱色剤として使用されうるものであれば、その形
状、サイズ(粒子径)、物理的性状(比表面積、密度な
ど)、化学的性状(酸強度など)等が特に限定されるこ
とはないが、その活性炭の比表面積が100m2 /g以
上、特に200〜3000m2 /g、更に300〜20
00m2 /g程度であるような、粒状、ペレット、ハニ
カムなどの形状のものが好ましい。
[0010] Most preferably, activated carbon is used to decompose chloroformate in the decomposition method of the present invention. The activated carbon is generally used as long as it can be used as a carrier, adsorbent or decolorizing agent for a reaction catalyst. The shape, size (particle size), physical properties (specific surface area, density, etc.), chemical properties (acid strength, etc.), etc. are not particularly limited, but the specific surface area of the activated carbon is 100 m 2 / g. Above, especially 200 to 3000 m 2 / g, and more preferably 300 to 20
Granular, pellet, honeycomb and other shapes having a size of about 00 m 2 / g are preferred.

【0011】本発明の分解方法において使用される金属
酸化物系担体物質としては、一般に、反応触媒の担体と
して使用されうるものであれば、その形状、サイズ(粒
子径)、物理的性状(比表面積、密度など)、化学的性
状(酸強度など)等が特に限定されることはないが、そ
の比表面積が100m2 以上、特に200〜1000m
2 /g、更に300〜800m2 /g程度であるよう
な、粒状、ペレット、ハニカムなどの形状のものが好ま
しい。
As the metal oxide-based carrier substance used in the decomposition method of the present invention, generally, as long as it can be used as a carrier for a reaction catalyst, its shape, size (particle size), physical properties (specificity) Surface area, density, etc., chemical properties (acid strength, etc.) are not particularly limited, but the specific surface area is 100 m 2 or more, particularly 200 to 1000 m 2.
2 / g, and more preferably about 300 to 800 m 2 / g, such as granules, pellets, and honeycombs.

【0012】前記の金属酸化物系担体物質としては、例
えば、γ−アルミナ、α−アルミナ、η−アルミナ等の
アルミナ、シリカアルミナ、X型、Y型、A型などの合
成ゼオライト、ソーダフッ石、モルデンフッ石などの天
然ゼオライト、モレキュラーシーブ、シリカアルミナ、
シリカ、チタニア、ジルコニアなど金属酸化物系の担体
物質が挙げられる。本発明では、前記の金属酸化物系担
体物質としては、特にγ−アルミナ、α−アルミナ、η
−アルミナ等のアルミナ、ゼオライトなどのアルミニウ
ム酸化物系の粒状担体及び活性炭が好ましい。
Examples of the metal oxide-based support material include aluminas such as γ-alumina, α-alumina and η-alumina, silica zeolites, synthetic zeolites such as X-type, Y-type and A-type, soda-fluorite, Natural zeolites such as mordenite, molecular sieves, silica alumina,
Metal oxide-based carrier materials such as silica, titania, and zirconia are exemplified. In the present invention, as the metal oxide-based carrier material, in particular, γ-alumina, α-alumina, η
-Alumina, such as alumina, and aluminum oxide-based granular supports, such as zeolite, and activated carbon are preferred.

【0013】本発明では、クロロギ酸エステルを塩化ア
ルキルへ分解する反応はバッチ式又は連続式の何れでも
行うことができるが、工業的には連続式気相反応が有利
である。このとき、活性炭又は金属酸化物系担体物質の
存在形態としては、固定床又は流動床の何れの状態で使
用してもよい。
In the present invention, the reaction for decomposing the chloroformate into an alkyl chloride can be carried out either in a batch system or a continuous system, but a continuous gas phase reaction is industrially advantageous. At this time, the activated carbon or the metal oxide-based carrier substance may be used in any state of a fixed bed or a fluidized bed.

【0014】本発明において、クロロギ酸エステルを塩
化アルキルへ分解する反応は、フィードされるガスの空
間速度(GHSV)が1000〜30000hr-1、特
に2000〜20000hr-1であることが好ましく、
又、分解反応の温度が0〜220℃、特に10〜200
℃程度、更に転化率を上げるために20〜150℃の範
囲に維持されることが好ましい。また、この分解反応は
圧力に対する依存性が大きくないため、常圧下又は加圧
下(例えば1〜20kg/cm2 、好ましくは2〜5k
g/cm2 の範囲)で問題なく実施することができる。
[0014] In the present invention, the reaction for decomposing the chloroformates to alkyl chlorides is preferably a space velocity of the gas being fed (GHSV) is 1000~30000Hr -1, in particular 2000~20000Hr -1,
Further, the temperature of the decomposition reaction is 0 to 220 ° C, particularly 10 to 200 ° C.
It is preferable to maintain the temperature in the range of about 20C to about 150C in order to further increase the conversion. Further, since this decomposition reaction does not largely depend on pressure, the decomposition reaction is performed under normal pressure or under pressure (for example, 1 to 20 kg / cm 2 , preferably 2 to 5 k
g / cm 2 ).

【0015】本発明においては、前記活性炭又は金属酸
化物系担体物質を充填する分解反応器は、この分解反応
が比較的大きな発熱を伴わない場合には、多管式であっ
ても単管式又はその他の形状のものであっても差し支え
ない。
In the present invention, the decomposition reactor filled with the activated carbon or the metal oxide-based carrier material is a single-tube type even if it is a multi-tube type, if the decomposition reaction does not involve relatively large heat generation. Or other shapes may be used.

【0016】本発明のような分解反応を行った気体は、
クロロギ酸エステルが実質的に分解されて塩化アルキル
に転化され、実質的にクロロギ酸エステルが残存しない
状態になるので、後続の配管等の腐食を起こすことがか
なり減少するのである。
The gas that has undergone the decomposition reaction as in the present invention is:
Since the chloroformate is substantially decomposed and converted to an alkyl chloride, and substantially no chloroformate remains, corrosion of the subsequent piping and the like is considerably reduced.

【0017】[0017]

【実施例】次に、実施例及び比較例を挙げて本発明の方
法を具体的に説明するが、これらは本発明の方法を何ら
限定するものではない。
EXAMPLES Next, the method of the present invention will be specifically described with reference to examples and comparative examples, but these do not limit the method of the present invention at all.

【0018】実施例1 内径13mm、長さ250mmのガラス製気相反応管
(外部ジャケット付)に、比表面積1040m2 /gの
粒状活性炭(白鷺:武田薬品製)5mlを充填した後、
反応管ジャケットに熱媒を循環させて反応層内温度が1
20℃になるように加熱制御した。この反応管の上部か
ら、クロロギ酸メチル:500容量ppmを含む窒素で
希釈されたガスを4000hr-1の空間速度(GHS
V)で供給し、常圧下、反応温度120℃で1時間反応
を行った。反応器出ガス中のクロロギ酸メチル及び塩化
メチルをガスクロマトグラフィーで分析したところ、ク
ロロギ酸メチルは確認できず、塩化メチルの濃度は50
0容量ppmであった。これより、クロロギ酸メチルは
100%分解されていた。
Example 1 A glass gas-phase reaction tube (with an outer jacket) having an inner diameter of 13 mm and a length of 250 mm was charged with 5 ml of granular activated carbon (Shirasagi: manufactured by Takeda Pharmaceutical Co., Ltd.) having a specific surface area of 1040 m 2 / g.
The heat medium is circulated through the jacket of the reaction tube so that the temperature in the reaction layer becomes 1
The heating was controlled to 20 ° C. From the top of this reaction tube, a gas diluted with nitrogen containing 500 ppm by volume of methyl chloroformate was charged at a space velocity of 4000 hr -1 (GHS
V), and the reaction was carried out under normal pressure at a reaction temperature of 120 ° C. for 1 hour. Analysis of methyl chloroformate and methyl chloride in the output gas from the reactor by gas chromatography revealed no methyl chloroformate and a methyl chloride concentration of 50%.
It was 0 ppm by volume. From this, 100% of methyl chloroformate was decomposed.

【0019】実施例2 実施例1における粒状活性炭を活性アルミナ(24メッ
シュ粉砕品:関東化学製)1mlに変え、クロロギ酸メ
チルを840容量ppmに、ガス空間速度(GHSV)
を20000hr-1に変えた以外は、実施例1と同様に
反応を行って生成物を分析した。その結果、反応器出ガ
ス中のクロロギ酸メチルは確認できず、塩化メチルの濃
度は840容量ppmであった。これより、クロロギ酸
メチルは100%分解されていた。
Example 2 The granular activated carbon in Example 1 was changed to 1 ml of activated alumina (24-mesh pulverized product: manufactured by Kanto Kagaku), methyl chloroformate was changed to 840 ppm by volume, and gas space velocity (GHSV)
Was changed to 20000 hr -1 , and the reaction was carried out in the same manner as in Example 1 to analyze the product. As a result, methyl chloroformate in the reactor outlet gas could not be confirmed, and the concentration of methyl chloride was 840 ppm by volume. From this, 100% of methyl chloroformate was decomposed.

【0020】実施例3 実施例1における粒状活性炭を活性アルミナ(24メッ
シュ粉砕品:関東化学製)1mlに変え、クロロギ酸メ
チルを800容量ppmに、ガス空間速度(GHSV)
を20000hr-1に、反応温度を80℃に変えた以外
は、実施例1と同様に反応を行って生成物を分析した。
その結果、反応器出ガス中のクロロギ酸メチルの濃度は
260容量ppmで、塩化メチルの濃度は540容量p
pmであった。これより、クロロギ酸メチルは65%分
解されていた。
Example 3 The granular activated carbon in Example 1 was changed to 1 ml of activated alumina (24-mesh pulverized product: manufactured by Kanto Chemical), methyl chloroformate to 800 ppm by volume, gas space velocity (GHSV)
Was changed to 20,000 hr -1 and the reaction temperature was changed to 80 ° C., and the reaction was carried out in the same manner as in Example 1 to analyze the product.
As a result, the concentration of methyl chloroformate in the outlet gas of the reactor was 260 ppm by volume, and the concentration of methyl chloride was 540 vol.
pm. As a result, methyl chloroformate had been decomposed by 65%.

【0021】実施例4 実施例1における粒状活性炭をゼオライト(HSZ−3
20NAD:東ソー製)5mlに変え、クロロギ酸メチ
ルを600容量ppmに、ガス空間速度(GHSV)を
20000hr-1に変えた以外は、実施例1と同様に反
応を行って生成物を分析した。その結果、反応器出ガス
中のクロロギ酸メチルの濃度は430容量ppmで、塩
化メチルの濃度は1970容量ppmであった。これよ
り、クロロギ酸メチルは82%分解されていた。
Example 4 The granular activated carbon in Example 1 was replaced with zeolite (HSZ-3).
The reaction was carried out in the same manner as in Example 1 except that the amount of methyl chloroformate was changed to 600 ppm by volume and the gas hourly space velocity (GHSV) was changed to 20,000 hr -1 , and the product was analyzed. As a result, the concentration of methyl chloroformate in the reactor outlet gas was 430 ppm by volume, and the concentration of methyl chloride was 1970 ppm by volume. As a result, methyl chloroformate was decomposed by 82%.

【0022】実施例5 実施例1における粒状活性炭をゼオライト(HSZ−3
20NAD:東ソー製)10mlに変え、クロロギ酸メ
チルを2000容量ppmに、ガス空間速度(GHS
V)を3000hr-1に変えた以外は、実施例1と同様
に反応を行って生成物を分析した。その結果、反応器出
ガス中のクロロギ酸メチルは確認できず、塩化メチルの
濃度は2000容量ppmであった。これより、クロロ
ギ酸メチルは100%分解されていた。
Example 5 The granular activated carbon in Example 1 was replaced with zeolite (HSZ-3).
20NAD: manufactured by Tosoh) 10 ml, methyl chloroformate to 2000 vol ppm, gas space velocity (GHS
The reaction was carried out in the same manner as in Example 1 except that V) was changed to 3000 hr -1 , and the product was analyzed. As a result, methyl chloroformate in the reactor outlet gas could not be confirmed, and the concentration of methyl chloride was 2000 ppm by volume. From this, 100% of methyl chloroformate was decomposed.

【0023】実施例6 実施例1における粒状活性炭をチタニア(DC314
4、24メッシュ粉砕品:ダイヤモンドキャタリスト
製)5mlに変え、クロロギ酸メチルを2000容量p
pmに、ガス空間速度(GHSV)を6000hr
-1に、反応温度を150℃に変えた以外は、実施例1と
同様に反応を行って生成物を分析した。その結果、反応
器出ガス中のクロロギ酸メチルの濃度は800容量pp
mで、塩化メチルの濃度は1200容量ppmであっ
た。これより、クロロギ酸メチルは60%分解されてい
た。
Example 6 The granular activated carbon in Example 1 was replaced with titania (DC314).
4, 24 mesh pulverized product: manufactured by Diamond Catalyst) Changed to 5 ml and 2,000 volumes of methyl chloroformate
pm, gas hourly space velocity (GHSV) 6000hrs
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was changed to 150 ° C., and the product was analyzed. As a result, the concentration of methyl chloroformate in the reactor outlet gas was 800 vol.
In m, the concentration of methyl chloride was 1200 ppm by volume. As a result, methyl chloroformate was decomposed by 60%.

【0024】実施例7 実施例1における粒状活性炭をγ−アルミナ(KHA−
24:住友化学製)1mlに変え、クロロギ酸メチルを
1250容量ppmに、ガス空間速度(GHSV)を2
0000hr-1に変えた以外は、実施例1と同様に反応
を行って生成物を分析した。その結果、反応器出ガス中
のクロロギ酸メチルの濃度は440容量ppmで、塩化
メチルの濃度は810容量ppmであった。これより、
クロロギ酸メチルは65%分解されていた。
Example 7 The granular activated carbon in Example 1 was replaced with γ-alumina (KHA-
24: manufactured by Sumitomo Chemical Co., Ltd.) 1 ml, methyl chloroformate to 1250 ppm by volume, and gas hourly space velocity (GHSV) to 2
The reaction was carried out in the same manner as in Example 1 except that the reaction product was changed to 0000 hr -1 , and the product was analyzed. As a result, the concentration of methyl chloroformate in the outlet gas from the reactor was 440 ppm by volume, and the concentration of methyl chloride was 810 ppm by volume. Than this,
Methyl chloroformate was 65% degraded.

【0025】実施例8 実施例1における粒状活性炭を比表面積1300m2
gの粒状活性炭(クレハビーズ:呉羽化学製)5mlに
変え、クロロギ酸メチルを1000容量ppmに、ガス
空間速度(GHSV)を6000hr-1に、反応温度を
40℃に変えた以外は、実施例1と同様に反応を行って
生成物を分析した。その結果、反応器出ガス中のクロロ
ギ酸メチルは確認できず、塩化メチルの濃度は1000
容量ppmであった。これより、クロロギ酸メチルは1
00%分解されていた。
Example 8 The granular activated carbon in Example 1 was converted to a specific surface area of 1300 m 2 /
g of granular activated carbon (Kureha beads: manufactured by Kureha Chemical Co., Ltd.), 5 ml, methyl chloroformate at 1000 ppm by volume, gas hourly space velocity (GHSV) at 6000 hr -1 and reaction temperature at 40 ° C. The reaction was carried out in the same manner as described above, and the product was analyzed. As a result, methyl chloroformate in the reactor outlet gas could not be confirmed, and the concentration of methyl chloride was 1000
The volume was ppm. Thus, methyl chloroformate is 1
It had been decomposed by 00%.

【0026】実施例9 実施例1における粒状活性炭を比表面積490m2 /g
の粒状活性炭(モルシーボン:武田薬品製)5mlに変
え、クロロギ酸メチルを1000容量ppmに、ガス空
間速度(GHSV)を6000hr-1に、反応温度を2
0℃に変えた以外は、実施例1と同様に反応を行って生
成物を分析した。その結果、反応器出ガス中のクロロギ
酸メチルは確認できず、塩化メチルの濃度は1000容
量ppmであった。これより、クロロギ酸メチルは10
0%分解されていた。
Example 9 The granular activated carbon obtained in Example 1 was converted to a specific surface area of 490 m 2 / g.
Was changed to 5 ml of granular activated carbon (Morshibon: manufactured by Takeda Pharmaceutical Co., Ltd.), methyl chloroformate to 1000 ppm by volume, gas space velocity (GHSV) to 6000 hr -1 and reaction temperature to 2 ppm.
The reaction was carried out in the same manner as in Example 1 except that the temperature was changed to 0 ° C., and the product was analyzed. As a result, methyl chloroformate in the reactor outlet gas was not confirmed, and the concentration of methyl chloride was 1000 ppm by volume. Thus, methyl chloroformate is 10
It had been decomposed by 0%.

【0027】実施例10 実施例1における粒状活性炭を比表面積490m2 /g
の粒状活性炭(モルシーボン:武田薬品製)1mlに変
え、クロロギ酸メチルを2000容量ppmに、ガス空
間速度(GHSV)を30000hr-1に、反応温度を
40℃に変えた以外は、実施例1と同様に反応を行って
生成物を分析した。その結果、反応器出ガス中のクロロ
ギ酸メチルは確認できず、塩化メチルの濃度は2000
容量ppmであった。これより、クロロギ酸メチルは1
00%分解されていた。
Example 10 The granular activated carbon obtained in Example 1 was converted to a specific surface area of 490 m 2 / g.
Example 1 was changed to 1 ml of granular activated carbon (Morushibon: Takeda Pharmaceutical Co., Ltd.), the methyl chloroformate was changed to 2000 vol ppm, the gas hourly space velocity (GHSV) was changed to 30,000 hr −1 , and the reaction temperature was changed to 40 ° C. The reaction was performed in the same manner and the product was analyzed. As a result, methyl chloroformate in the reactor outgas was not confirmed, and the concentration of methyl chloride was 2,000.
The volume was ppm. Thus, methyl chloroformate is 1
It had been decomposed by 00%.

【0028】実施例11 実施例1における粒状活性炭を比表面積490m2 /g
の粒状活性炭(モルシーボン:武田薬品製)1mlに変
え、クロロギ酸メチルを2000容量ppmに、ガス空
間速度(GHSV)を30000hr-1に、反応温度を
20℃に変えた以外は、実施例1と同様に反応を行って
生成物を分析した。その結果、反応器出ガス中のクロロ
ギ酸メチルの濃度は400容量ppmで、塩化メチルの
濃度は1600容量ppmであった。これより、クロロ
ギ酸メチルは80%分解されていた。
Example 11 The granular activated carbon in Example 1 was converted to a specific surface area of 490 m 2 / g.
Example 1 was changed to 1 ml of granular activated carbon (Morushibon: manufactured by Takeda Pharmaceutical Co., Ltd.), the methyl chloroformate was changed to 2000 vol ppm, the gas hourly space velocity (GHSV) was changed to 30,000 hr −1 , and the reaction temperature was changed to 20 ° C. The reaction was performed in the same manner and the product was analyzed. As a result, the concentration of methyl chloroformate in the gas discharged from the reactor was 400 ppm by volume, and the concentration of methyl chloride was 1600 ppm by volume. As a result, methyl chloroformate was decomposed by 80%.

【0029】比較例1 実施例1における粒状活性炭をガラスビーズ(パイレッ
クス)10mlに変え、クロロギ酸メチルを1000容
量ppmに、ガス空間速度(GHSV)を3000hr
-1に変えた以外は、実施例1と同様に反応を行って生成
物を分析した。その結果、反応器出ガス中のクロロギ酸
メチルの濃度は1000容量ppmで、塩化メチルは確
認できなかった。これより、クロロギ酸メチルは全く分
解されていなかった。実施例1〜12及び比較例1の結
果をまとめて表1に示す。
Comparative Example 1 The granular activated carbon in Example 1 was changed to glass beads (Pyrex) 10 ml, methyl chloroformate to 1000 ppm by volume, and gas hourly space velocity (GHSV) to 3000 hr.
The reaction was carried out in the same manner as in Example 1 except that the product was changed to -1 , and the product was analyzed. As a result, the concentration of methyl chloroformate in the gas discharged from the reactor was 1000 ppm by volume, and no methyl chloride could be confirmed. From this, methyl chloroformate was not decomposed at all. Table 1 summarizes the results of Examples 1 to 12 and Comparative Example 1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の作用効果】本発明の方法により、クロロギ酸エ
ステルを極めて容易に経済的に効率よく分解して、塩化
アルキルに転化することが可能である。特に、本発明で
は、クロロギ酸エステルの含有割合が低い気体中の微量
のクロロギ酸エステルについても、極めて高い割合で効
率的にクロロギ酸エステルを分解して塩化アルキルに転
化し、クロロギ酸エステルを除去することができる。
According to the process of the present invention, it is possible to very easily, economically and efficiently decompose chloroformate and convert it to alkyl chloride. In particular, in the present invention, even for trace amounts of chloroformate in a gas having a low chloroformate content, the chloroformate is efficiently decomposed and converted to alkyl chloride at an extremely high rate to remove the chloroformate. can do.

フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 21/18 B01J 21/18 X C07C 17/00 C07C 17/00 19/03 19/03 68/00 68/00 A 68/08 68/08 // C07B 61/00 300 C07B 61/00 300 (72)発明者 蔵藤 敏雄 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 (72)発明者 村上 真人 山口県宇部市大字小串1978番地の5 宇 部興産株式会社 宇部研究所内 審査官 藤原 浩子 (56)参考文献 特開 平6−329596(JP,A) 米国特許4814524(US,A) 西独国特許出願公開2545659(DE, A1) (58)調査した分野(Int.Cl.6,DB名) C07C 69/96 C07C 17/00 C07C 19/03 C07C 68/00 C07C 68/08 CA(STN)Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01J 21/18 B01J 21/18 X C07C 17/00 C07C 17/00 19/03 19/03 68/00 68/00 A 68/08 68 / 08 // C07B 61/00 300 C07B 61/00 300 (72) Inventor: Toshio Kurato, 1978 Kogushi, Oji, Ube City, Yamaguchi Prefecture 5 Ube Industries, Ltd. Ube Research Laboratory (72) Inventor: Masato Murakami Ube City, Yamaguchi Prefecture 1978 Ogushi Kogushi 5 Ube Industries, Ltd. Ube Research Laboratory Examiner Hiroko Fujiwara (56) References JP-A-6-329596 (JP, A) US Patent 4,814,524 (US, A) West German Patent Application Publication 2545659 (DE) , A1) (58) Fields investigated (Int. Cl. 6 , DB name) C07C 69/96 C07C 17/00 C07C 19/03 C07C 68/00 C07C 68/08 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】クロロギ酸エステルを含有する気体を、活
性炭又は金属酸化物系担体物質と接触させ、クロロギ酸
エステルを分解して塩化アルキルを生成させることを特
徴とするクロロギ酸エステルの分解方法。
1. A method for decomposing chloroformate, comprising contacting a gas containing chloroformate with activated carbon or a metal oxide-based carrier material to decompose the chloroformate to form an alkyl chloride.
JP5119871A 1993-05-21 1993-05-21 Decomposition method of chloroformate Expired - Lifetime JP2812419B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5119871A JP2812419B2 (en) 1993-05-21 1993-05-21 Decomposition method of chloroformate
CA 2123973 CA2123973A1 (en) 1993-05-21 1994-05-19 Method of decomposing an alkyl chloroformate
DE1994602462 DE69402462T2 (en) 1993-05-21 1994-05-21 Process for the decomposition of alkyl chloroformate
EP19940107893 EP0625496B1 (en) 1993-05-21 1994-05-21 Method of decomposing an alkyl chloroformate
ES94107893T ES2099508T3 (en) 1993-05-21 1994-05-21 METHOD FOR DECOMPOSING AN ALKYL CHLOROFORMATE.
US08/670,552 US5869729A (en) 1993-05-21 1996-06-27 Method of producing an ester compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5119871A JP2812419B2 (en) 1993-05-21 1993-05-21 Decomposition method of chloroformate

Publications (2)

Publication Number Publication Date
JPH06329597A JPH06329597A (en) 1994-11-29
JP2812419B2 true JP2812419B2 (en) 1998-10-22

Family

ID=14772329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5119871A Expired - Lifetime JP2812419B2 (en) 1993-05-21 1993-05-21 Decomposition method of chloroformate

Country Status (1)

Country Link
JP (1) JP2812419B2 (en)

Also Published As

Publication number Publication date
JPH06329597A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
JP3301542B2 (en) Ethyl acetate production method
EP0609123B1 (en) Process for the fluorination of perchloroethylene or pentachloroethane
US5453551A (en) Purification of pentafluoroethane
EP0523728B1 (en) Continuous process for preparing dimethyl carbonate
EP0425197A2 (en) Process for preparing diester of carbonic acid
JPH07194981A (en) Catalytic composition and method for oxychlorination of ethylene using said composition
CZ20023756A3 (en) Integrated process for preparing vinyl acetate
JP3409665B2 (en) Method for producing dialkyl carbonate
KR960004870B1 (en) Process for the purification of 1,1,1,2-tetrafluoroethane
JP2812419B2 (en) Decomposition method of chloroformate
US5869729A (en) Method of producing an ester compound
JP2897454B2 (en) Purification method of 1,1,1,2-tetrafluoroethane
JP2812418B2 (en) Method for producing ester compound
US4393144A (en) Method for producing methanol
KR100643674B1 (en) Process for production of hydrofluorocarbons, products thereof and use of the products
US5705718A (en) Process for the purification of 1,1,1,2-tetrafluoroethane
JPH05995A (en) Production of acetic acid
WO2016163522A1 (en) Process for producing hydrofluoroolefin
JP2887278B2 (en) Method for producing 1-chloro-1,2,2-trifluoroethylene and 1,2,2-trifluoroethylene
US20070197843A1 (en) Method for purification of 1,1-dichloroethane and process for production of 1,1-difluroethane using this method
JP2870738B2 (en) Method for producing carbonic acid diester
JPH0825961B2 (en) Method for producing carbonic acid diester
WO2006030677A1 (en) Fluoromethane production process and product
EP0625496B1 (en) Method of decomposing an alkyl chloroformate
JPH10195019A (en) Production of methyl formate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070807

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110807

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110807

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110807

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110807

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110807

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 15

EXPY Cancellation because of completion of term