JP2807603B2 - Underwater power unit - Google Patents

Underwater power unit

Info

Publication number
JP2807603B2
JP2807603B2 JP4274513A JP27451392A JP2807603B2 JP 2807603 B2 JP2807603 B2 JP 2807603B2 JP 4274513 A JP4274513 A JP 4274513A JP 27451392 A JP27451392 A JP 27451392A JP 2807603 B2 JP2807603 B2 JP 2807603B2
Authority
JP
Japan
Prior art keywords
fuel
carrier gas
oxidant
circulation line
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4274513A
Other languages
Japanese (ja)
Other versions
JPH06124719A (en
Inventor
正輝 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP4274513A priority Critical patent/JP2807603B2/en
Publication of JPH06124719A publication Critical patent/JPH06124719A/en
Application granted granted Critical
Publication of JP2807603B2 publication Critical patent/JP2807603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水中動力装置に係り、
特に内部消費動力の少ない高効率の水中動力装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater power unit,
In particular, the present invention relates to a high-efficiency underwater power unit that consumes less internal power.

【0002】[0002]

【従来の技術】従来、水中動力装置としては,使用の簡
便さ、信頼性等の理由からバッテリーが使用されてい
た。しかし、近年、動力のパワーアップや持続時間の長
期化が要求されるに伴い、スターリング機関やクローズ
ドサーキットディーゼル機関等が利用されるようになっ
た。
2. Description of the Related Art Conventionally, a battery has been used as an underwater power unit because of its simplicity of use and reliability. However, in recent years, with the demand for increased power and longer duration, Stirling engines, closed circuit diesel engines, and the like have come to be used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術におけるスターリング機関は比較的騒音および振
動は少ないが、高い熱効率が得られにくいという欠点が
あり、またクローズドサーキットディーゼル機関は上記
欠点に加え、高温高圧の燃焼を伴うために振動および騒
音が激しいうえ、爆発力が大きいので機関重量を大きく
しなければならないという欠点がある。このように従来
の技術は熱効率的にも十分なものではなく、特に騒音、
振動が大きいという致命的な欠点があり、システムも複
雑になる等水中動力装置としては不満足なものであっ
た。
However, the Stirling engine of the prior art described above has relatively low noise and vibration, but has the disadvantage that it is difficult to obtain high thermal efficiency. There are disadvantages in that high pressure combustion accompanies severe vibration and noise, and that the explosive power is large, so that the engine weight must be increased. As described above, the conventional technology is not sufficient in terms of thermal efficiency.
It had a fatal drawback of large vibration, and was unsatisfactory as an underwater power unit because of the complicated system.

【0004】本発明の目的は、上記従来技術の問題点を
解決し、騒音、振動等が少なく、熱効率の高い水中動力
装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a submersible power unit with low noise and vibration and high heat efficiency.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、固体電解質型燃料電池と、該固体電解質型燃
料電池に燃料を供給する燃料系キャリヤーガス循環ライ
ンおよび酸素を供給する酸化剤系キャリヤーガス循環ラ
インと、燃料を供給したのち前記固体電解質型燃料電池
から流出する燃料系キャリヤーガスを用いて固体電解質
型燃料電池に流入する燃料系キャリヤーガスおよび/ま
たは酸化剤系キャリヤーガスを加熱する熱交換器と、該
熱交換器で冷却された前記固体電解質型燃料電池から流
出した燃料系キャリヤーガスを圧縮、冷却して該燃料系
キャリヤーガスの一部および同伴される水分を凝縮して
分離する圧縮機および冷却器を有することを特徴とす
る。
In order to achieve the above object, the present invention provides a solid oxide fuel cell, a fuel carrier gas circulation line for supplying fuel to the solid oxide fuel cell, and an oxidant for supplying oxygen. Heating the fuel carrier gas and / or the oxidant carrier gas flowing into the solid oxide fuel cell by using the system carrier gas circulation line and the fuel carrier gas flowing out of the solid oxide fuel cell after supplying the fuel; Heat exchanger, and compresses and cools the fuel carrier gas flowing out of the solid oxide fuel cell cooled by the heat exchanger to condense a part of the fuel carrier gas and condensed moisture. It has a compressor and a cooler for separating.

【0006】本発明において水中動力装置とは、みずか
ら燃料等を携行し、任意の期間水面以上から何等の物質
の供給を受ける事も無く、また水面以上への何等の物質
の排出も伴う事も無く自立して作動する動力装置であっ
て、今後進展が予想される海洋開発に際して、潜行中の
潜水船の推進動力装置や深海で作動するロボットの動力
装置等として使用されるものである。
[0006] In the present invention, the underwater power unit means that the fuel or the like is carried by itself, that no substance is supplied from above the water surface for an arbitrary period, and that any substance is discharged to above the water surface. It is a power device that operates independently and is used as a propulsion power device for a submerged submersible vehicle or a power device for a robot that operates in the deep sea when developing the ocean, which is expected to progress in the future.

【0007】[0007]

【作用】水中動力装置を、固体電解質型燃料電池と、該
固体電解質型燃料電池に燃料および酸化剤を供給する燃
料系キャリヤーガス循環ラインおよび酸化剤系キャリヤ
ーガス循環ラインとで構成したことにより、燃料系キャ
リヤーガスによって、例えば炭化水素燃料を固体電解質
型燃料電池に供給し、これを内部改質して生成した水素
を電極反応物質として使用することができるので、装置
の高効率が計れるうえ、燃料利用率が向上する。
The underwater power unit comprises a solid oxide fuel cell, and a fuel carrier gas circulation line and an oxidant carrier gas circulation line for supplying fuel and oxidant to the solid electrolyte fuel cell. By using a fuel carrier gas, for example, a hydrocarbon fuel can be supplied to a solid oxide fuel cell, and the hydrogen produced by internally reforming the fuel can be used as an electrode reactant. Fuel utilization is improved.

【0008】また、固体電解質型燃料電池から流出する
高温ガスと、これから固体電解質型燃料電池に流入する
低温ガスとを熱交換する熱交換器を設けたことにより、
熱効率が向上する。さらに燃料と酸化剤をそれぞれ別系
統で供給する、燃料系および酸化剤系キャリヤーガス循
環ラインを設けたこと、および該燃料系キャリヤーガス
循環ラインに圧縮機および冷却器を設けたことにより、
燃料および酸化剤の連続供給ならびに、燃料の内部改質
で生成した電極反応に関与しない成分および電極反応で
生じた水分を連続的に抜き出すことができるようにな
る。
Further, by providing a heat exchanger for exchanging heat between the high-temperature gas flowing out of the solid oxide fuel cell and the low-temperature gas flowing into the solid oxide fuel cell,
Thermal efficiency is improved. Furthermore, by supplying the fuel and the oxidant in separate systems, by providing a fuel and oxidant-based carrier gas circulation line, and by providing a compressor and a cooler in the fuel-based carrier gas circulation line,
This makes it possible to continuously supply the fuel and the oxidizing agent and continuously extract components not involved in the electrode reaction generated by the internal reforming of the fuel and water generated by the electrode reaction.

【0009】本発明において、固体電解質型燃料電池
(以下、SOFCという)とは、固体電解質膜と、該固
体電解質膜の両面にそれぞれ積層された燃料側電極およ
び酸素側電極とからなる単セルを、例えばガスセパレー
タを介して多数積層し、これを電気的に接続した、高効
率で、しかも高圧力下での稼動も十分可能な燃料電池で
ある。
In the present invention, a solid oxide fuel cell (hereinafter referred to as SOFC) is a single cell comprising a solid electrolyte membrane and a fuel electrode and an oxygen electrode laminated on both surfaces of the solid electrolyte membrane, respectively. For example, a fuel cell in which a large number of fuel cells are stacked via a gas separator and electrically connected to each other, and which is highly efficient and can sufficiently operate under a high pressure.

【0010】本発明において、SOFCの電極反応に関
与する燃料は水素であるが、水素源としては炭化水素燃
料が使用される。炭化水素燃料は燃料系キャリヤーガス
循環ラインの、例えばSOFC入口側に供給され、キャ
リヤーガスに同伴してSOFC内に流入し、該SOFC
内で内部改質されて水素を発生し、この水素が電極反応
に寄与する。炭化水素燃料としては改質し易くエネルギ
ー密度の高いもの、例えばメタノール(CH3 OH)が
使用される。一方、酸化剤系キャリヤーガスによってS
OFCに供給される酸化剤としては、例えば液体酸素を
蒸発させて作った酸素ガスが使用される。
In the present invention, the fuel participating in the electrode reaction of the SOFC is hydrogen, and a hydrocarbon fuel is used as a hydrogen source. The hydrocarbon fuel is supplied to, for example, the SOFC inlet side of the fuel-based carrier gas circulation line, flows into the SOFC along with the carrier gas, and
Internal reforming generates hydrogen, which contributes to the electrode reaction. As the hydrocarbon fuel, a fuel easily reformed and having a high energy density, for example, methanol (CH 3 OH) is used. On the other hand, the oxidant-based carrier gas
As the oxidant supplied to the OFC, for example, oxygen gas produced by evaporating liquid oxygen is used.

【0011】本発明において燃料系キャリヤーガスは、
燃料の種類によって決定される。すなわち燃料として炭
化水素燃料、例えばメタノールを使用するときは、燃料
系キャリヤーガスとしては炭酸ガス(CO2 )が使用さ
れる。一方、酸化剤系キャリヤーガスとしては、例えば
窒素(N2 )が使用されるが、同様の目的を達成できる
ものであれば、特に限定されない。また循環ライン内の
キャリヤーガス圧力はそれぞれ10気圧以上に設定する
ことが好ましく、これによって燃料系キャリヤーガス内
の炭酸ガス分圧を高めることができるので、炭化水素燃
料が改質した際に副生するCO2 を圧縮するための動力
を低減することができる。この目的を容易に達成するた
めに、装置全体を加圧容器の中に設置し、容器内圧力を
循環ライン内のキャリヤーガス圧力に均衡させることが
好ましい。
In the present invention, the fuel carrier gas is
It is determined by the type of fuel. That is, when a hydrocarbon fuel such as methanol is used as the fuel, carbon dioxide (CO 2 ) is used as the fuel carrier gas. On the other hand, as the oxidant-based carrier gas, for example, nitrogen (N 2 ) is used, but is not particularly limited as long as the same object can be achieved. Further, the carrier gas pressure in the circulation line is preferably set to 10 atm or more, and thereby the partial pressure of carbon dioxide in the fuel carrier gas can be increased. The power for compressing the CO 2 can be reduced. In order to easily achieve this object, it is preferable to install the entire apparatus in a pressurized container and to balance the pressure in the container with the carrier gas pressure in the circulation line.

【0012】本発明においては、SOFCから流出する
燃料系キャリヤーガスの有する熱量で、これからSOF
Cに流入する燃料系キャリヤーガスおよび/または酸化
剤系キャリヤーガスを加熱するために熱交換器を用い
る。この熱交換器は公知のものであるが、二系統に完全
に分離された燃料系および酸化剤系のキャリヤーガスの
双方を加熱できる高熱伝達率のものであることが好まし
い。
In the present invention, the amount of heat of the fuel carrier gas flowing out of the SOFC is referred to as SOF.
A heat exchanger is used to heat the fuel carrier gas and / or the oxidant carrier gas flowing into C. This heat exchanger is known, but preferably has a high heat transfer rate capable of heating both the fuel system and the oxidant system carrier gas which are completely separated into two systems.

【0013】本発明において、燃料系キャリヤーガスの
一部を凝縮分離する前に、該燃料系キャリヤーガスに同
伴される水分を凝縮分離するために、前記キャリヤーガ
スの一部を凝縮する圧縮機および冷却器の前段に水分分
離用の冷却器を設けることが好ましい。圧縮機および冷
却器としては公知のものが使用される。本発明におい
て、SOFCから流出する酸化剤系キャリヤーガスの有
する熱量で、これからSOFCに流入する酸化剤系キャ
リヤーガスを予熱する熱交換器を設けることもできる。
In the present invention, a compressor for condensing a part of the carrier gas to condense and separate the moisture accompanying the fuel carrier gas before condensing and separating a part of the fuel carrier gas; It is preferable to provide a cooler for separating water at a stage preceding the cooler. Known compressors and coolers are used. In the present invention, it is also possible to provide a heat exchanger for preheating the oxidant-based carrier gas flowing into the SOFC with the heat of the oxidant-based carrier gas flowing out of the SOFC.

【0014】[0014]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。図1は、本発明の一実施例を示す水中動力装置の
系統を示す図である。この装置は、SOFC1と、該S
OFC1に電極反応物質としての燃料および酸素をそれ
ぞれ供給する燃料系キャリヤーガス循環ライン6および
酸化剤系キャリヤーガス循環ライン9と、両キャリヤー
ガス循環ライン6および9にそれぞれ設けられた燃料系
ガス循環ポンプ18および酸化剤系ガス循環ポンプ19
と、前記SOFCから流出した燃料系キャリヤーガスで
これからSOFCに流入する燃料系キャリヤーガスおよ
び/または酸化剤系キャリヤーガスを加熱する熱交換器
4および5と、熱交換後の前記固体電解質型燃料電池か
ら流出した燃料系キャリヤーガスの一部を液化分離す
る、前記燃料系キャリヤーガス循環ライン6の分岐配管
23に設けられた燃料系ガス圧縮ポンプ21および冷却
器16とから主として構成されており、前記燃料系キャ
リヤーガス循環ライン6のSOFC入口側と、例えばメ
タノールが貯留された燃料貯槽2とが燃料供給ポンプ1
7を有する燃料供給管10で連結されており、また、前
記酸化剤系キャリヤーガス循環ライン9と、例えば液体
酸素が貯留された酸化剤貯槽3とが酸化剤供給管11で
連結されている。7および8はそれぞれ酸化剤系キャリ
ヤーガス循環ライン9に設けられた熱交換器、13およ
び12は、それぞれ燃料系キャリヤーガス循環ライン6
および酸化剤系キャリヤーガス循環ライン9にそれぞれ
設けられた冷却器、14は凝縮水の受器、15は凝縮し
た液化炭酸ガスの受器、20は水排出用昇圧ポンプ、2
2は液化炭酸ガス昇圧ポンプである。
Next, the present invention will be described in more detail with reference to examples. FIG. 1 is a diagram showing a system of an underwater power plant showing one embodiment of the present invention. This device comprises a SOFC 1 and the S
A fuel carrier gas circulation line 6 and an oxidant carrier gas circulation line 9 for supplying fuel and oxygen as electrode reactants to the OFC 1, respectively, and a fuel gas circulation pump provided in each of the carrier gas circulation lines 6 and 9 18 and oxidant gas circulation pump 19
Heat exchangers 4 and 5 for heating a fuel carrier gas and / or an oxidant carrier gas flowing into the SOFC with the fuel carrier gas flowing out of the SOFC; and the solid oxide fuel cell after heat exchange. Mainly comprises a fuel-system gas compression pump 21 and a cooler 16 provided in a branch pipe 23 of the fuel-system carrier gas circulation line 6 for liquefying and separating a part of the fuel-system carrier gas flowing out of the fuel system. The fuel supply pump 1 is connected to the SOFC inlet side of the fuel carrier gas circulation line 6 and the fuel storage tank 2 in which, for example, methanol is stored.
The oxidant-based carrier gas circulation line 9 and the oxidant storage tank 3 containing, for example, liquid oxygen are connected by an oxidant supply pipe 11. 7 and 8 are heat exchangers provided in the oxidant-based carrier gas circulation line 9, respectively, and 13 and 12 are respectively provided in the fuel-based carrier gas circulation line 6.
And a chiller provided in the oxidant-based carrier gas circulation line 9; 14, a receiver for condensed water; 15, a receiver for condensed liquefied carbon dioxide;
Reference numeral 2 denotes a liquefied carbon dioxide gas pressure pump.

【0015】このような構成において、燃料系キャリヤ
ーガスとして、例えばCO2 が使用され、燃料系キャリ
ヤーガス循環ライン6を循環する、圧力30ataに調
整されたCO2 は、燃料系ガス循環ポンプ18を経たの
ち、熱交換器5および4を順次経て約850〜900℃
に加熱された後、燃料供給管10および燃料供給ポンプ
17を経て燃料貯槽2から供給されるメタノールを同伴
してSOFC1に流入し、該メタノールをSOFCの燃
料側電極に供給する。SOFCの燃料側電極に供給され
たメタノールは、約900℃、30ataで水素とCO
2 とに内部改質し、水素は燃料として燃料側電極に取り
入れられる。一方、CO2 はキャリヤーガスとしてのC
2 と合流してSOFCから流出し、熱交換器4および
5を順次経て約100〜150℃に冷却されたのち、冷
却器13に流入し、ここでさらに約20〜40℃に冷却
される。このときCO2 に同伴された、電極反応生成物
である水分が凝縮水として分離し、分離水は水排出用昇
圧ポンプ20を経て系外に排出される。水分が除去され
たCO2 の一部は、燃料系キャリヤーガス循環ライン6
から分岐した分岐配管23に流入し、燃料系ガス圧縮ポ
ンプ21および冷却器16で圧縮、冷却され、その一部
が凝縮して液化炭酸ガスとして分離される。分離された
液化炭酸ガスは液化炭酸ガス昇圧ポンプ22を経て系外
に排出される。このとき凝縮しないで残留するガス、例
えば水素は前記燃料系キャリヤーガス循環ライン6に戻
る。このようにしてメタノールの改質によって副生する
量に相当する余剰分が分離除去されたキャリヤーガスと
してのCO2 は、以下同様に燃料系キャリヤーガス循環
ライン6を循環して燃料であるメタノールを連続的にS
OFCに供給する。
[0015] In such a configuration, as a fuel-based carrier gas, for example CO 2 is used to circulate the fuel system carrier gas circulating line 6, CO 2, which is adjusted to a pressure 30ata is a fuel system gas circulation pump 18 After passing through the heat exchangers 5 and 4 sequentially, about 850-900 ° C.
After the fuel cell is heated to the temperature, the fuel flows into the SOFC 1 with the methanol supplied from the fuel storage tank 2 via the fuel supply pipe 10 and the fuel supply pump 17, and supplies the methanol to the fuel electrode of the SOFC. The methanol supplied to the fuel-side electrode of the SOFC is hydrogen and CO 2 at about 900 ° C. and 30 ata.
2 and hydrogen is taken into the fuel electrode as fuel. On the other hand, CO 2 is C as carrier gas.
After merging with O 2 and flowing out of the SOFC, it is cooled to about 100 to 150 ° C. through the heat exchangers 4 and 5 sequentially, and then flows into the cooler 13 where it is further cooled to about 20 to 40 ° C. . At this time, water, which is an electrode reaction product, entrained by CO 2 is separated as condensed water, and the separated water is discharged to the outside of the system via the water discharge pump 20. A part of the CO 2 from which water has been removed is supplied to the fuel carrier gas circulation line 6.
And compressed and cooled by the fuel gas compression pump 21 and the cooler 16, and a part thereof is condensed and separated as liquefied carbon dioxide gas. The separated liquefied carbon dioxide gas is discharged outside the system via the liquefied carbon dioxide gas pressure pump 22. At this time, the gas remaining without being condensed, for example, hydrogen, returns to the fuel carrier gas circulation line 6. In this way, CO 2 as a carrier gas from which a surplus corresponding to an amount produced as a by-product of the reforming of methanol is separated and removed, similarly circulates through the fuel-based carrier gas circulation line 6 to remove methanol as a fuel. Continuously S
Supply to OFC.

【0016】一方、酸化剤系キャリヤーガス循環ライン
9のキャリヤーガスとしては、例えば窒素ガスが使用さ
れる。この窒素ガスも前記燃料系キャリヤーガスと同様
に約30ataに調節され、酸化剤系ガス循環ポンプ1
9を経たのち、酸化剤貯槽3から導入される酸素を同伴
して酸化剤系キャリヤーガス循環ライン9を流れ、熱交
換器8および7でSOFC出口酸化剤系キャリヤーガス
の熱量を受けて約800〜850℃に予熱された後、前
記熱交換器4に流入し、ここでSOFC1出口燃料系キ
ャリヤーガスと熱交換して約850〜900℃に昇温さ
れ、その後、SOFC1に流入し、該SOFC1の酸素
側電極に酸素を供給する。SOFCの酸素側電極に酸素
を供給して流出した窒素ガスは熱交換器7および8を経
て冷却された後、消費した量に相当する酸素の供給を受
け、以下同様に循環ライン9を循環してSOFCに連続
的に酸素を供給する。
On the other hand, as the carrier gas in the oxidant-based carrier gas circulation line 9, for example, nitrogen gas is used. This nitrogen gas is also adjusted to about 30 ata in the same manner as the fuel carrier gas, and the oxidant gas circulation pump 1
After passing through the oxidizing agent storage tank 3, the oxygen gas flows from the oxidizing agent storage tank 3 and flows through the oxidizing agent carrier gas circulation line 9. After being preheated to 8850 ° C., it flows into the heat exchanger 4 where it exchanges heat with the fuel carrier gas at the outlet of the SOFC 1 and is heated to about 850-900 ° C., and then flows into the SOFC 1 and flows therethrough. Is supplied to the oxygen side electrode. The nitrogen gas that has been supplied by supplying oxygen to the oxygen-side electrode of the SOFC and cooled through the heat exchangers 7 and 8 is supplied with oxygen corresponding to the consumed amount. To continuously supply oxygen to the SOFC.

【0017】このようにして電極反応物質としての水素
および酸素が供給されたSOFC1内で電極反応が生じ
て電気エネルギーが発生し、このエネルギーが水中動力
源として使用される。本実施例によれば、水中動力装置
として固体電解質型燃料電池1を用いたことにより、燃
料の内部改質が可能となり、熱効率が著しく向上する。
また、スターリング機関やクローズドサーキットディー
ゼル機関等と異なり駆動部材を必要としないので騒音お
よび振動の発生がなく、静粛、かつコンパクトで制御性
の良好な装置となる。さらに本装置は高圧力下でも十分
稼動することができる。
In this manner, an electrode reaction occurs in the SOFC 1 to which hydrogen and oxygen as electrode reactants are supplied, and electric energy is generated, and this energy is used as an underwater power source. According to the present embodiment, since the solid oxide fuel cell 1 is used as the underwater power unit, the internal reforming of the fuel becomes possible, and the thermal efficiency is significantly improved.
Further, unlike a Stirling engine or a closed circuit diesel engine, a driving member is not required, so that noise and vibration are not generated, and the device is quiet, compact and has good controllability. Furthermore, the device can operate satisfactorily even under high pressure.

【0018】本実施例によれば、燃料系キャリヤーガス
と酸化剤系のキャリヤーガスの循環ライン6および9を
完全に分離したことにより、燃料利用率および総合的な
熱効率が向上するうえ、燃料の連続供給ならびに燃料の
内部改質で副生したCO2 および電極反応で生成した水
分を連続的に抜き出すことができるので、長期安定運転
が可能となる。
According to the present embodiment, since the fuel carrier gas and the oxidant carrier gas circulation lines 6 and 9 are completely separated from each other, the fuel utilization rate and the overall thermal efficiency are improved, and the fuel efficiency is improved. Since CO 2 by-produced by continuous supply and internal reforming of fuel and moisture generated by the electrode reaction can be continuously extracted, long-term stable operation can be performed.

【0019】[0019]

【発明の効果】本発明によれば、動力源として固体電解
質型燃料電池を用いたことにより、循環ガスの高圧化が
可能になり高効率で内部消費動力が少なく、しかも振動
および騒音の少ない水中動力装置となる。
According to the present invention, the use of a solid oxide fuel cell as a power source makes it possible to increase the pressure of the circulating gas, thereby achieving high efficiency, low internal power consumption, and low vibration and noise. Power unit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す水中動力装置の系統を
示す図。
FIG. 1 is a diagram showing a system of an underwater power plant showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質型燃料電池(SOFC)、2…燃料貯
槽、3…酸化剤貯槽、4、5…熱交換器、6…燃料系キ
ャリヤーガス循環ライン、7、8…熱交換器、9…酸化
剤系キャリヤーガス循環ライン、10…燃料供給管、1
1…酸化剤供給管、12、13…冷却器、14…凝縮水
受器、15…液化炭酸ガス受器、16…冷却器、17…
燃料供給ポンプ、18…燃料系ガス循環ポンプ、19…
酸化剤系ガス循環ポンプ、20…水排出用昇圧ポンプ、
21…燃料系ガス圧縮ポンプ、22…液化炭酸ガス昇圧
ポンプ。
DESCRIPTION OF SYMBOLS 1 ... Solid oxide fuel cell (SOFC), 2 ... Fuel storage tank, 3 ... Oxidizing agent storage tank, 4, 5 ... Heat exchanger, 6 ... Fuel system carrier gas circulation line, 7, 8 ... Heat exchanger, 9 ... Oxidation Agent carrier gas circulation line, 10 ... fuel supply pipe, 1
DESCRIPTION OF SYMBOLS 1 ... Oxidant supply pipe, 12, 13 ... Cooler, 14 ... Condensed water receiver, 15 ... Liquefied carbon dioxide gas receiver, 16 ... Cooler, 17 ...
Fuel supply pump, 18 ... Fuel system gas circulation pump, 19 ...
Oxidant gas circulation pump, 20 ... Pressure pump for discharging water,
21: fuel gas compression pump, 22: liquefied carbon dioxide gas pressure pump.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体電解質型燃料電池と、該固体電解質
型燃料電池に燃料を供給する燃料系キャリヤーガス循環
ラインおよび酸素を供給する酸化剤系キャリヤーガス循
環ラインと、燃料を供給したのち前記固体電解質型燃料
電池から流出する燃料系キャリヤーガスを用いて固体電
解質型燃料電池に流入する燃料系キャリヤーガスおよび
/または酸化剤系キャリヤーガスを加熱する熱交換器
と、該熱交換器で冷却された前記固体電解質型燃料電池
から流出した燃料系キャリヤーガスを圧縮、冷却して該
燃料系キャリヤーガスの一部および同伴される水分を凝
縮、液化して分離する圧縮機および冷却器を有すること
を特徴とする水中動力装置。
1. A solid oxide fuel cell, a fuel carrier gas circulation line for supplying fuel to the solid oxide fuel cell, an oxidant carrier gas circulation line for supplying oxygen, and the solid fuel after supplying the fuel. A heat exchanger for heating the fuel carrier gas and / or the oxidant carrier gas flowing into the solid oxide fuel cell by using the fuel carrier gas flowing out of the electrolyte fuel cell; and the heat exchanger cooled by the heat exchanger. It has a compressor and a cooler for compressing and cooling the fuel carrier gas flowing out of the solid oxide fuel cell and condensing, liquefying and separating a part of the fuel carrier gas and accompanying moisture. Underwater power unit.
JP4274513A 1992-10-13 1992-10-13 Underwater power unit Expired - Fee Related JP2807603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4274513A JP2807603B2 (en) 1992-10-13 1992-10-13 Underwater power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4274513A JP2807603B2 (en) 1992-10-13 1992-10-13 Underwater power unit

Publications (2)

Publication Number Publication Date
JPH06124719A JPH06124719A (en) 1994-05-06
JP2807603B2 true JP2807603B2 (en) 1998-10-08

Family

ID=17542750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4274513A Expired - Fee Related JP2807603B2 (en) 1992-10-13 1992-10-13 Underwater power unit

Country Status (1)

Country Link
JP (1) JP2807603B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233129A (en) * 1998-02-17 1999-08-27 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell generating system
NL1014585C2 (en) * 2000-03-08 2001-09-21 Kema Nv Fuel cell with improved efficiency for generating electrical energy.
US7096955B2 (en) 2000-05-17 2006-08-29 Schlumberger Technology Corporation Long duration fuel cell system
US6575248B2 (en) * 2000-05-17 2003-06-10 Schlumberger Technology Corporation Fuel cell for downhole and subsea power systems
DE10025035A1 (en) 2000-05-20 2001-11-29 Xcellsis Gmbh Fuel cell system has noise insulating arrangement for damping noise in air path of fuel cell system essentially mounted on areas of air path in which noise emissions are generated
US6875539B2 (en) * 2002-01-18 2005-04-05 Heiner Ophardt Combination liquid dispenser and electrochemical cell
KR101937506B1 (en) * 2014-05-19 2019-01-11 현대중공업 주식회사 Fuel Cell System with Recirculation System

Also Published As

Publication number Publication date
JPH06124719A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
US3982962A (en) Pressurized fuel cell power plant with steam powered compressor
US4865926A (en) Hydrogen fuel reforming in a fog cooled fuel cell power plant assembly
CA2096724C (en) Application of fuel cells to power generation systems
US6316134B1 (en) Fuel cell electric power generation system
US4917971A (en) Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
US7553568B2 (en) High efficiency load-following solid oxide fuel cell systems
US4080487A (en) Process for cooling molten carbonate fuel cell stacks and apparatus therefor
US4464444A (en) Fuel cell power generation system and method of operating the same
KR101978330B1 (en) Fuel Supply System For Fuel Cell
US20030207161A1 (en) Hydrogen production and water recovery system for a fuel cell
CN109065914B (en) Distributed energy system based on fuel cell and using liquefied natural gas as raw material
CA2518752C (en) High-efficiency fuel cell power system with power generating expander
CN1307735C (en) Fuel cell system
JP2002319428A (en) Molten carbonate fuel cell power generating device
JP2807603B2 (en) Underwater power unit
CN111854327A (en) Hydrogen fuel power ship cold energy comprehensive utilization system
KR101817432B1 (en) Fuel cell system
CA2028978A1 (en) Portable alkaline fuel cell with on board hydrogen supply
KR101788743B1 (en) Fuel cell system for ship
KR102602831B1 (en) Hybrid system of fuel cell
KR20220042014A (en) Ammonia-based reversible fuel cell system
JP2001076750A (en) High temperature fuel cell facility
CN217685946U (en) Electricity cold and heat cogeneration system based on ammonia freezer
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
RU2774852C1 (en) Closed-cycle power plant with solid polymer fuel cells

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980623

LAPS Cancellation because of no payment of annual fees