JP2807008B2 - Pb alloy solder with excellent thermal fatigue properties - Google Patents

Pb alloy solder with excellent thermal fatigue properties

Info

Publication number
JP2807008B2
JP2807008B2 JP1342784A JP34278489A JP2807008B2 JP 2807008 B2 JP2807008 B2 JP 2807008B2 JP 1342784 A JP1342784 A JP 1342784A JP 34278489 A JP34278489 A JP 34278489A JP 2807008 B2 JP2807008 B2 JP 2807008B2
Authority
JP
Japan
Prior art keywords
alloy
thermal fatigue
fatigue properties
excellent thermal
alloy solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1342784A
Other languages
Japanese (ja)
Other versions
JPH03204194A (en
Inventor
俊典 小柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP1342784A priority Critical patent/JP2807008B2/en
Publication of JPH03204194A publication Critical patent/JPH03204194A/en
Application granted granted Critical
Publication of JP2807008B2 publication Critical patent/JP2807008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱疲労特性及び耐クリープ性に優れたPb合金
ろう、詳しくは各種電子回路基板、半導体部品等の電子
部品の接合に際し、とくにフリップチップボンディング
法又はテープキャリアボンディング法により半導体チッ
プを基板に接合する際に用いて有用なPb合金ろうに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a Pb alloy brazing alloy having excellent thermal fatigue properties and creep resistance, and more particularly, to flipping when bonding electronic parts such as various electronic circuit boards and semiconductor parts. The present invention relates to a Pb alloy solder useful for bonding a semiconductor chip to a substrate by a chip bonding method or a tape carrier bonding method.

(従来技術とその課題) 従来、熱疲労特性に優れたPb合金ろうを作製するため
には、所要の元素を添加したPb合金基材中の不可避不純
物としての酸素含有量を低い値に抑えたり、平均結晶粒
径を微細化させることが有効であると考えられていた。
(Prior art and its problems) Conventionally, in order to produce a Pb alloy solder having excellent thermal fatigue properties, it has been necessary to reduce the oxygen content as an inevitable impurity in a Pb alloy base material to which a required element has been added to a low value. It has been considered effective to reduce the average crystal grain size.

しかしながら、一般に熱サイクル試験(150〜−50
℃)において、接合材料の熱膨張歪に起因する割れの伝
播は、当該材料の結晶粒界に沿って生じていることが確
認された。
However, heat cycle tests (150 to -50
(° C.), it was confirmed that the propagation of cracks caused by the thermal expansion strain of the joining material occurred along the crystal grain boundaries of the material.

而して上記結晶粒界部における粒界すべりを抑えて補
強することによって、熱疲労特性、耐クリープ性の改善
に有効であることを知見した。Pb合金ろうは接合性に優
れているものの、耐クリープ性の向上が要求される。耐
クリープ性が弱いとPb合金ろうのずれにともない、ボイ
ドが発生したりして接合層が損傷してくる。本発明は斯
る熱疲労特性、耐クリープ性に優れた成分組成のPb合金
ろうを提供することを目的とする。
Thus, it has been found that the reinforcement by suppressing the grain boundary slip in the crystal grain boundary portion is effective for improving the thermal fatigue characteristics and the creep resistance. Although Pb alloy brazing has excellent bondability, improvement in creep resistance is required. If the creep resistance is weak, the bonding layer is damaged due to the occurrence of voids or the like due to the displacement of the Pb alloy solder. An object of the present invention is to provide a Pb alloy braze having a component composition excellent in such thermal fatigue characteristics and creep resistance.

(課題を解決するための技術的手段) 斯る本発明のPb合金ろうは、Sn:1〜60wt%含有するPb
合金基材に、Sb:0.01〜10wt%及びNi:0.1〜2.0wt%を含
有し、且つAu,Ag,Pt,Pd,Mg,Ca,Li,In,Ce,Cd,Co,Cr,Fe,M
n,Se,Te,Zrの1種又は2種以上を0.1〜5.0wt%含有した
ことを特徴とする。
(Technical Means for Solving the Problems) The Pb alloy brazing according to the present invention comprises Sn: Pb containing 1 to 60 wt%.
The alloy substrate contains Sb: 0.01 to 10 wt% and Ni: 0.1 to 2.0 wt%, and contains Au, Ag, Pt, Pd, Mg, Ca, Li, In, Ce, Cd, Co, Cr, Fe, M
One or more of n, Se, Te, and Zr are contained in an amount of 0.1 to 5.0 wt%.

Pb合金基材としてSnを1〜60wt%含有させるのは、半
田(ろう)材として一般的な組成範囲を選定したもので
ある。
The inclusion of 1 to 60 wt% of Sn as a Pb alloy base material selects a general composition range as a solder (brazing) material.

このPbSn基材にSbを添加することによって、該基材に
SbSn化合物が折出した結晶粒界部が形成される。Sbの含
有量が0.01wt%未満の場合には、SbSn化合物の折出量が
少なく所定の効果が得られず、含有量が10wt%を越える
場合は、Sbsn化合物の折出が過多となり、粒界部のみな
らずマトリックス部分にも折出して硬化、脆化の原因と
なる。
By adding Sb to this PbSn substrate,
A crystal grain boundary portion formed by the SbSn compound is formed. If the Sb content is less than 0.01 wt%, the amount of the SbSn compound deposited is small and the desired effect cannot be obtained. If the Sb content exceeds 10 wt%, the SbSn compound is excessively precipitated and the grain size is excessive. It is bent out not only in the boundary part but also in the matrix part, causing hardening and embrittlement.

従って、Sbの含有量は0.01〜10wt%の範囲に選定す
る。
Therefore, the content of Sb is selected in the range of 0.01 to 10 wt%.

上記PbSn基材に金属間化合物を折出させるために、Sn
と化合物を形成しやすい元素を添加含有させるが、それ
ら元素としてはNi,Au,Ag,Pt,Pd,Mg,Ca,Li,In,Ce,Cd,Co,
Cr,Fe,Mn,Se,Te,Zrがあり、これらの元素とSnとの化合
物が、前記SbSn化合物からなる粒界部分内に金属間化合
物として折出し、該化合物粒子が分散状となることによ
ってPbSn基材の熱疲労特性、耐クリープ性が改善され
る。
In order to deposit the intermetallic compound on the PbSn substrate, Sn
And elements that are easy to form compounds are added and contained as Ni, Au, Ag, Pt, Pd, Mg, Ca, Li, In, Ce, Cd, Co,
There are Cr, Fe, Mn, Se, Te, and Zr, and a compound of these elements and Sn is protruded as an intermetallic compound in a grain boundary portion made of the SbSn compound, and the compound particles are dispersed. This improves the thermal fatigue properties and creep resistance of the PbSn substrate.

上記金属間化合物粒子を分散折出させる具体的手段と
しては、前記元素群のうち、Ni:0.1〜2.0wt%を含有
し、且つAu,Ag,Pt,Pd,Mg,Ca,Li,In,Ce,Cd,Co,Cr,Fe,Mn,
Se,Te,Zrの1種又は2種以上を0.1〜5.0wt%含有の組成
とすることにより達成される。
As a specific means for dispersing and depositing the intermetallic compound particles, among the above-mentioned element group, Ni: 0.1 to 2.0 wt%, and Au, Ag, Pt, Pd, Mg, Ca, Li, In, Ce, Cd, Co, Cr, Fe, Mn,
This can be achieved by forming a composition containing 0.1 to 5.0 wt% of one or more of Se, Te, and Zr.

Niの含有量が0.1wt%未満であるか、又はAu,Ag,Pt,P
d,Mg,Ca,Li,In,Ce,Cd,Co,Cr,Fe,Mn,Se,Te,Zrの1種又は
2種以上の含有量が0.1wt%未満では金属間化合物の折
出が少なくて所定の効果が得られず、Niの含有量が2.0w
t%を越えた場合、又はAu,Ag,Pt,Pd,Mg,Ca,Li,In,Ce,C
d,Co,Cr,Fe,Mn,Se,Te,Zrの1種又は2種以上の含有量が
5.0wt%を越えた場合には金属間化合物の分散形態が得
られないともに偏折が起り硬化、脆化の原因となる。
Ni content is less than 0.1 wt%, or Au, Ag, Pt, P
If the content of one or more of d, Mg, Ca, Li, In, Ce, Cd, Co, Cr, Fe, Mn, Se, Te, and Zr is less than 0.1 wt%, the intermetallic compound precipitates. Predetermined effect cannot be obtained due to small amount, Ni content is 2.0w
t% or Au, Ag, Pt, Pd, Mg, Ca, Li, In, Ce, C
The content of one or more of d, Co, Cr, Fe, Mn, Se, Te, Zr
If it exceeds 5.0% by weight, a dispersion form of the intermetallic compound cannot be obtained, and at the same time, eccentricity occurs and causes hardening and embrittlement.

従って、上記元素の含有量は前述の範囲に選定する。 Therefore, the content of the above elements is selected within the above-mentioned range.

(実施例) 第1図は本発明Pb合金ろうの組織図であって、図示の
如くマトリックス(PbSn)間にSbSn化合物が折出した結
晶粒界部が形成され、その粒界部内にSn化合物からなる
金属間化合物粒子が断続的分散状に析出された状態であ
る。
(Example) FIG. 1 is a structural diagram of a Pb alloy brazing alloy of the present invention. As shown in FIG. Is in a state in which intermetallic compound particles composed of are intermittently dispersed.

第2図はPb合金ろうの実際の顕微鏡写真である。この
第2図において粒界部内に金属間化合物が分散状に析出
していることが認められる。
FIG. 2 is an actual micrograph of a Pb alloy solder. In FIG. 2, it is recognized that the intermetallic compound is precipitated in a dispersed state in the grain boundary part.

第3図〜第5図は何れも本発明の成分組成を有しない
比較例の顕微鏡写真を示し、第3図Pb2Sn,第4図はPb2S
n0.5Sb,第5図はPb2Sn1Auである。
3 to 5 show micrographs of a comparative example having no component composition of the present invention. FIG. 3 shows Pb2Sn, and FIG. 4 shows Pb2S.
n0.5Sb, FIG. 5 shows Pb2Sn1Au.

第3図のPb2Snの場合は、結晶粒界部が形成されてお
らず、第4図のPb2Sn0.5Sbにおいては粒界(SbSn化合
物)が形成されているが、その粒界部内には金属間化合
物が形成されておらず、第5図のPb2Sn1Auにおいては粒
界部がAuSn化合物の折出により形成されているが、金属
間化合物の折出が見られないことが確認された。
In the case of Pb2Sn in FIG. 3, no grain boundary is formed, and in Pb2Sn0.5Sb in FIG. 4, a grain boundary (SbSn compound) is formed. No compound was formed, and it was confirmed that in Pb2Sn1Au in FIG. 5, the grain boundary was formed by the precipitation of the AuSn compound, but no precipitation of the intermetallic compound was observed.

次に、成分組成の異なるPb合金ろうのサンプルを作製
し、各サンプルを使って熱サイクル試験を行なった試験
結果を次表に示す。
Next, the following table shows the test results of preparing samples of Pb alloy solder having different component compositions and performing a heat cycle test using each sample.

熱サイクル試験は第6図に示す如く、各サンプルでFe
NiCo板とCu板(それぞれNiメッキを施してある)とを接
合させ、熱サイクル条件:150℃→RT→−50℃で剥離が発
生するまでの熱サイクル回数を測定した。
As shown in Fig. 6, the heat cycle test showed that each sample
A NiCo plate and a Cu plate (each plated with Ni) were joined, and the number of heat cycles until peeling occurred at a heat cycle condition of 150 ° C. → RT → −50 ° C. was measured.

熱疲労特性の優劣は、熱サイクル数が250回以上のも
を優れていると判断して本発明実施品とし、250回に達
しないものを比較品とした。
Regarding the superiority of the thermal fatigue characteristics, it was determined that the thermal cycle number was excellent when the number of thermal cycles was 250 or more.

さらに、以下の方法により耐クリープ性の試験を行っ
た。
Further, a creep resistance test was performed by the following method.

まず、鋳造して得られた表中に示す組成のPb合金ろう
を機械加工により次の寸法の平行部付板状試験片に加工
した。
First, a Pb alloy solder having the composition shown in the table obtained by casting was machined into a plate-shaped test piece having a parallel portion having the following dimensions.

試験片寸法;厚さ2mm,幅10mm,長さ35mm 平行部幅4mm,平行部長さ16mm 該試験片は残留応力の除去と組織の安定化を図るた
め、室温で1か月放置した後、クリープ試験に供した。
Specimen dimensions; thickness 2mm, width 10mm, length 35mm Parallel part width 4mm, parallel part length 16mm The test piece was left at room temperature for one month to remove residual stress and stabilize the structure, then creep Tested.

クリープ試験は恒温槽付きのモータ駆動式引張試験機
を用いて行った。試験温度は100℃、付加応力は1MPaと
した。試験片の伸びは試験片標点距離の伸びを実測し
た。
The creep test was performed using a motor-driven tensile tester equipped with a thermostat. The test temperature was 100 ° C. and the applied stress was 1 MPa. The elongation of the test piece was measured by measuring the elongation of the test piece gauge distance.

各試験片ごとに100時間のクリープ試験を行い、1秒
あたりの歪量に換算して、その測定結果を表中に示し
た。
A creep test was performed for each test piece for 100 hours, and the results were shown in the table after being converted into the amount of strain per second.

尚、上記成分組成に関し、Mg,Ca,Li,In,Ce,Cd,Co,Cr,
Fe,Mn,Se,Te,Zrの測定データを示していないが、それら
はSnとの関係では表に示した元素に近似する特性を有す
るので省略した。
Incidentally, regarding the above component composition, Mg, Ca, Li, In, Ce, Cd, Co, Cr,
Although the measured data of Fe, Mn, Se, Te, and Zr are not shown, they are omitted because they have characteristics similar to those shown in the table in relation to Sn.

(効果) 本発明によれば、Pb合金ろうの結晶粒界部内に金属間
化合物が分散状に折出するので、粒界部における粒界す
べりが抑制され、熱疲労特性、耐クリープ性に優れたPb
合金ろうを提供し得た。
(Effect) According to the present invention, the intermetallic compound is dispersed in the crystal grain boundary portion of the Pb alloy brazing, so that the intergranular slip at the grain boundary portion is suppressed, and the thermal fatigue characteristics and the creep resistance are excellent. Pb
Alloy brazing could be provided.

【図面の簡単な説明】 第1図は本発明Pb合金ろうの要部を拡大した組織図、第
2図は金属組織を示す顕微鏡写真、第3図〜第5図は比
較品の金属組織を示す顕微鏡写真、第6図は熱サイクル
試験のサンプル断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged structural view of a main part of the Pb alloy brazing alloy of the present invention, FIG. 2 is a micrograph showing the metallographic structure, and FIGS. The micrograph shown in FIG. 6 is a cross-sectional view of a sample in a heat cycle test.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Sn:1〜60wt%含有するPb合金基材に、Sb:
0.01〜10wt%及びNi:0.1〜2.0wt%を含有し、且つAu,A
g,Pt,Pd,Mg,Ca,Li,In,Ce,Cd,Co,Cr,Fe,Mn,Se,Te,Zrの1
種又は2種以上を0.1〜5.0wt%含有した熱疲労特性と耐
クリープ性に優れたPb合金ろう。
1. A Pb alloy substrate containing Sn: 1 to 60 wt%, wherein Sb:
Au, A containing 0.01 to 10 wt% and Ni: 0.1 to 2.0 wt%
g, Pt, Pd, Mg, Ca, Li, In, Ce, Cd, Co, Cr, Fe, Mn, Se, Te, Zr 1
A Pb alloy braze containing 0.1% to 5.0% by weight of one or more kinds and having excellent thermal fatigue properties and creep resistance.
JP1342784A 1989-12-29 1989-12-29 Pb alloy solder with excellent thermal fatigue properties Expired - Lifetime JP2807008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1342784A JP2807008B2 (en) 1989-12-29 1989-12-29 Pb alloy solder with excellent thermal fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1342784A JP2807008B2 (en) 1989-12-29 1989-12-29 Pb alloy solder with excellent thermal fatigue properties

Publications (2)

Publication Number Publication Date
JPH03204194A JPH03204194A (en) 1991-09-05
JP2807008B2 true JP2807008B2 (en) 1998-09-30

Family

ID=18356474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1342784A Expired - Lifetime JP2807008B2 (en) 1989-12-29 1989-12-29 Pb alloy solder with excellent thermal fatigue properties

Country Status (1)

Country Link
JP (1) JP2807008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109048115A (en) * 2018-09-20 2018-12-21 南京理工大学 A kind of Sn-Ag-Cu lead-free brazing containing Ga and Nd

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825051B2 (en) * 1992-06-22 1996-03-13 株式会社日本スペリア社 Solder alloy
US5390845A (en) * 1992-06-24 1995-02-21 Praxair Technology, Inc. Low-bridging soldering process
ES2087815B1 (en) * 1993-10-13 1997-02-16 Mecanismos Aux Ind IMPROVEMENTS INTRODUCED IN THE PATENT OF INVENTION N-9200325 BY IMPROVEMENTS IN THE PROCESSES OF MANUFACTURING OF SERVICE BOXES AND THEIR PARTS.
EP0652072A1 (en) * 1993-11-09 1995-05-10 Matsushita Electric Industrial Co., Ltd. Solder
WO1995015587A1 (en) * 1993-11-30 1995-06-08 Shi Xue Dou Improved grid alloy for lead-acid battery
JP2783981B2 (en) * 1994-11-01 1998-08-06 石川金属株式会社 Solder alloy
CN1039923C (en) * 1995-05-16 1998-09-23 中国有色金属工业总公司昆明贵金属研究所 High strength soft solder lead-base alloy
CN1039499C (en) * 1995-05-16 1998-08-12 中国有色金属工业总公司昆明贵金属研究所 Heat resistance soft solder lead-base alloy
JPH09115957A (en) * 1995-10-18 1997-05-02 Sanken Electric Co Ltd Electronic component and manufacture of electronic circuit device using electronic component
JPH10146690A (en) * 1996-11-14 1998-06-02 Senju Metal Ind Co Ltd Solder paste for soldering chip part
US5973932A (en) * 1997-02-14 1999-10-26 Pulse Engineering, Inc. Soldered component bonding in a printed circuit assembly
JP3752064B2 (en) * 1997-05-23 2006-03-08 内橋エステック株式会社 Solder material and electronic component using the same
DE69838586T2 (en) 1997-06-04 2008-07-24 Ibiden Co., Ltd., Ogaki SOLDERING ELEMENT FOR PRINTED PCB
US5833921A (en) * 1997-09-26 1998-11-10 Ford Motor Company Lead-free, low-temperature solder compositions
US6059900A (en) * 1998-02-18 2000-05-09 Indium Corporation Of America Lead-based solders for high temperature applications
DE19955297C1 (en) * 1999-11-17 2001-04-26 Ks Gleitlager Gmbh Galvanically deposited bearing lead alloy contains alloying additions of tin, antimony and copper
DE50102446D1 (en) * 2001-01-17 2004-07-01 Ks Gleitlager Gmbh GALVANICALLY DEPOSED STORAGE ALLOY, GALVANIC BATH AND METHOD FOR GALVANIC DEPOSIT
FR2846010B1 (en) * 2002-10-16 2005-07-15 Michele Vendrely METAL ALLOYS BASED ON LEAD AND TIN, AND PROCESS FOR THEIR PREPARATION
DE102004050441A1 (en) * 2004-10-16 2006-04-20 Stannol Gmbh solder
WO2014181883A1 (en) * 2013-05-10 2014-11-13 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
CN103317252B (en) * 2013-06-03 2015-07-22 北京科技大学 Tin-based solder for aluminum/copper brazing and preparing method thereof
CN112621011B (en) * 2020-12-10 2022-02-22 北京有色金属与稀土应用研究所 High-strength lead-based alloy solder and preparation method thereof
CN114457257B (en) * 2022-01-21 2022-06-21 商丘师范学院 Rare earth lead alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109048115A (en) * 2018-09-20 2018-12-21 南京理工大学 A kind of Sn-Ag-Cu lead-free brazing containing Ga and Nd

Also Published As

Publication number Publication date
JPH03204194A (en) 1991-09-05

Similar Documents

Publication Publication Date Title
JP2807008B2 (en) Pb alloy solder with excellent thermal fatigue properties
JP2599890B2 (en) Lead-free solder material
Hirata et al. Improvements in mechanical properties of Sn–Bi alloys with addition of Zn and In
TW201217543A (en) characterized by having a reduced Ag content to lower cost, having excellent stretching properties, a melting point, strength, and also having high fatigue resistance (cold thermal fatigue resistance) and long-lasting reliability
WO2000024544A1 (en) Lead-free solder
TW200927357A (en) Lead-free solder
JPS63149140A (en) Composite sliding body
TW200927358A (en) Pb-free solder alloy
JPS5868493A (en) Nickel-palladium-chromium-boron brazed alloy
JPH02179388A (en) Low melting point ag solder
JP3517462B2 (en) Iron-aluminum alloys and their uses
Huh et al. Effect of Au addition on microstructural and mechanical properties of Sn-Cu eutectic solder
JP3776361B2 (en) Lead-free solder and solder joints
TWI782134B (en) Low-silver alternative to standard sac alloys for high reliability applications
JPS6247117B2 (en)
JPS6218275B2 (en)
JP4890221B2 (en) Die bond material
EP3707286B1 (en) High reliability lead-free solder alloy for electronic applications in extreme environments
JPS61242787A (en) Silver brazing filler metal
JP2667691B2 (en) Low melting point Ag solder
JPS6218276B2 (en)
JPS6178590A (en) Silver solder material
JP2000096167A (en) Titanium - nickel target material, electrode material and packaging component
JP2667690B2 (en) Low melting point Ag solder
JP4348212B2 (en) Sn-Zn solder alloy