JP2803490B2 - Cooling control method - Google Patents

Cooling control method

Info

Publication number
JP2803490B2
JP2803490B2 JP4256909A JP25690992A JP2803490B2 JP 2803490 B2 JP2803490 B2 JP 2803490B2 JP 4256909 A JP4256909 A JP 4256909A JP 25690992 A JP25690992 A JP 25690992A JP 2803490 B2 JP2803490 B2 JP 2803490B2
Authority
JP
Japan
Prior art keywords
cooling
band
zone
temperature
gjc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4256909A
Other languages
Japanese (ja)
Other versions
JPH06108166A (en
Inventor
和孝 田村
昭芳 本田
昇 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP4256909A priority Critical patent/JP2803490B2/en
Publication of JPH06108166A publication Critical patent/JPH06108166A/en
Application granted granted Critical
Publication of JP2803490B2 publication Critical patent/JP2803490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、連続溶融亜鉛メッキラ
インを初め、各種のストリップ移送ライン等に利用され
る冷却制御方法に係わり、特に急速冷却帯と徐冷帯とか
らなる冷却帯を移送する被冷却材の板厚や移送速度の変
更等に対し、徐冷帯の冷却能力を考慮しつつ被冷却材の
温度を適切に制御する機能をもった冷却制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling control method used for a continuous hot-dip galvanizing line and various strip transfer lines, and more particularly to a cooling zone comprising a rapid cooling zone and a slow cooling zone. The present invention relates to a cooling control method having a function of appropriately controlling the temperature of a cooling target material in consideration of the cooling capacity of a slow cooling zone in response to a change in the thickness or transfer speed of the cooling target material.

【0002】[0002]

【従来の技術】従来、ストリップを連続移送する連続移
送ラインのストリップを冷却するに際し、冷却ガスブロ
ーを用いた急速冷却帯{以下、GJC(Control Jet
Co-oling )帯と呼ぶ}と冷却チューブを用いた徐冷
帯 {以下、CC(ControlCooling)帯と呼ぶ}とで
構成される冷却帯を通すことにより、ストリップを所定
の温度に冷却することが行われている。
2. Description of the Related Art Conventionally, when cooling a strip in a continuous transfer line for continuously transferring the strip, a rapid cooling zone using a cooling gas blow is referred to as GJC (Control Jet Jet).
It is possible to cool the strip to a predetermined temperature by passing through a cooling zone consisting of a so-called Co-oling zone and a slow cooling zone using a cooling tube (hereinafter called a CC (Control Cooling) zone). Is being done.

【0003】ところで、このような連続移送ラインにお
いては、GJC帯とCC帯とではその用途,機能等の観
点からそれぞれ冷却能力が異なる。例えばGJC帯の場
合には、冷却能力が大きいが、ストリップの巾方向に温
度ムラが発生しやすい。これに対し、CC帯の場合に
は、冷却能力が小さいが、ストリップの巾方向,長手方
向に均一な温度が得られる。
[0003] In such a continuous transfer line, the cooling capacity differs between the GJC band and the CC band from the viewpoints of uses, functions, and the like. For example, in the case of the GJC band, although the cooling capacity is large, temperature unevenness tends to occur in the width direction of the strip. On the other hand, in the case of the CC band, although the cooling capacity is small, a uniform temperature can be obtained in the width direction and the longitudinal direction of the strip.

【0004】そこで、この種のストリップ移送ラインで
は、各冷却帯の冷却能力を考慮しつつ、鋼種の冷却条件
を満足し、かつ、均一の冷却を行うために、ラインの前
段側にGJC帯を設置してストリップを大きく冷却する
一方、ラインの後段側にCC帯を設置して均一冷却を行
う冷却制御方法が採用されている。その1つとして、例
えば連続溶融鍍金ラインの冷却制御方法が上げられ、後
記する図1に示すような冷却炉が用いられている。
Therefore, in this type of strip transfer line, in order to satisfy the cooling conditions of the steel type and to perform uniform cooling, a GJC band is provided in front of the line in consideration of the cooling capacity of each cooling zone. A cooling control method is adopted in which a cooling strip is installed to greatly cool the strip, while a CC band is installed downstream of the line for uniform cooling. As one of them, for example, a cooling control method for a continuous hot-dip galvanizing line has been proposed, and a cooling furnace as shown in FIG. 1 described later is used.

【0005】この鍍金ラインの冷却炉は、ストリップが
冷却炉を構成するGJC帯を通過するが、このとき冷却
ガスブローから冷却ガスをストリップに当てて強制対流
伝達冷却を行う他、炉壁とストリップとの輻射伝熱冷却
を行うことにより、入り側と出側とのストリップの冷却
温度差を約200°Cとなるように冷却する。引き続
き、ストリップがGJC帯から冷却炉を構成するCC帯
に移行するが、ここでは主として炉壁とストリップとの
輻射伝熱冷却を行うことにより、入り側と出側とのスト
リップの温度差がGJC帯よりも一般に冷却能力の小さ
い約100°Cとなるように冷却する。
[0005] In the cooling furnace of this plating line, the strip passes through the GJC band constituting the cooling furnace. At this time, a cooling gas is applied to the strip from a cooling gas blow to perform forced convection transfer cooling. Is performed so that the cooling temperature difference of the strip between the entrance side and the exit side becomes about 200 ° C. Subsequently, the strip shifts from the GJC band to the CC band constituting the cooling furnace. Here, mainly by performing radiant heat transfer cooling between the furnace wall and the strip, the temperature difference of the strip between the inlet side and the outlet side becomes GJC band. Cooling is performed so that the cooling capacity is about 100 ° C., which is generally smaller than that of the belt.

【0006】[0006]

【発明が解決しようとする課題】しかし、以上のような
CC帯では、輻射伝熱冷却であるので、炉温下限値によ
る冷却可能熱量に制約があり、このような冷却可能熱量
の制約は同時に単位巾当りの冷却熱量に対する制約(こ
れを炉床負荷と呼ぶ)となる。そのため、炉床負荷制約
によりCC帯で取り去るべき冷却熱量の上限値が決定さ
れる。一方、GJC帯では、そのGJC帯出側の目標板
温度が固定となつている。その結果、連続移送ラインに
おけるストリップの冷却温度の制御に対し、次のような
問題が生じてくる。
However, in the above-mentioned CC band, since radiation heat transfer cooling is used, there is a limit on the amount of heat that can be cooled by the lower limit of the furnace temperature. There is a restriction on the amount of cooling heat per unit width (this is called hearth load). Therefore, the upper limit of the amount of cooling heat to be removed in the CC band is determined by the hearth load restriction. On the other hand, in the GJC band, the target plate temperature on the exit side of the GJC band is fixed. As a result, the following problems arise in controlling the cooling temperature of the strip in the continuous transfer line.

【0007】すなわち、ストリップのサイズ(例えば板
厚,板巾等)や移送速度の変更時、前述したようにCC
帯の冷却熱量に制約があることから、CC帯出側で所要
とする冷却温度から外れる,いわゆる板温外れが発生す
る。そこで、この板温外れを回避するために、オペレー
タが思考錯誤的にストリップの移送速度、時にはGJC
帯出側の目標板温度を可変するように人為的に操作して
いるが、能率(ton/hr)ダウンは否めず、また操
作ミスによって同様に板温外れが発生し、製品の品質に
も悪影響を与える問題がある。
That is, when the size of the strip (eg, thickness, width, etc.) or the transfer speed is changed, as described above, the CC
Since there is a restriction on the amount of cooling heat in the band, a so-called plate temperature deviation that deviates from the required cooling temperature on the CC band exit side occurs. Therefore, in order to avoid the deviation of the plate temperature, the operator must think and error the strip transfer speed, sometimes GJC.
It is artificially operated to change the target plate temperature on the banding side, but the efficiency (ton / hr) can not be denied, and the wrong plate temperature also occurs due to an operation error, which adversely affects the product quality. There is a problem giving.

【0008】本発明は上記実情に鑑みてなされたもの
で、CC帯の冷却熱量特性を考慮しつつGJC帯出側の
板温度を制御することにより、被冷却材の種々の条件の
変更にもかかわらず、CC帯による最適な冷却熱量運転
を可能にし、よって冷却帯の板温外れを抑制し、製品の
品質向上に大きく寄与する冷却制御方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and by controlling the plate temperature on the exit side of the GJC band while taking into consideration the cooling calorie characteristics of the CC band, it is possible to change various conditions of the material to be cooled. In addition, an object of the present invention is to provide a cooling control method that enables an optimal cooling calorie operation in the CC band, thereby suppressing the temperature of the cooling band from deviating from the plate temperature, and greatly contributing to the improvement of product quality.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、冷却ガスブローを用い
たGJC帯と冷却チューブを用いたCC帯とによって被
冷却材を冷却する冷却制御方法において、冷却能力の小
さい前記CC帯の冷却熱量特性と被冷却材の移送速度,
密度,比熱および材質に基づいて冷却能力の大きい
記GJC帯の出側板温度を求め、前記GJC帯の出側板
温度を制御することにより、前記徐冷帯から均一冷却さ
れた被冷却材を出力する冷却制御方法である。
In order to solve the above problems, the invention corresponding to claim 1 is a cooling method for cooling a material to be cooled by a GJC band using a cooling gas blow and a CC band using a cooling tube. the control method, a small cooling capacity
Cooling heat characteristics and the transfer speed of the coolant again the CC zone,
The outlet plate temperature of the GJC band having a large cooling capacity is obtained based on the density, specific heat, and material, and the outlet plate temperature of the GJC band is controlled , whereby uniform cooling from the slow cooling zone is performed.
This is a cooling control method for outputting the cooled material .

【0010】次に、請求項2に対応する発明は、冷却ガ
スブローを用いたGJC帯と冷却チューブを用いたCC
帯とによって被冷却材を冷却する冷却制御方法におい
て、予めCC帯の最大炉床負荷が設定され、前記CC帯
を通過する被冷却材の冷却熱量が前記最大炉床負荷以下
のとき、CC帯炉床負荷にほぼ比例する関係で前記GJ
C帯の出側板温度を制御し、一方、被冷却材の種々の条
件の変更等に伴って前記CC帯を通過する被冷却材の冷
却熱量が前記最大炉床負荷を越えたとき、予め設定され
た最大炉床負荷に基づいて前記GJC帯の出側板温度を
求め、GJC帯の出側板温度を制御する冷却制御方法で
ある。なお、最大炉床負荷は、輻射伝熱冷却炉における
冷却可能熱量の制約負荷であり、単位は[Kcal/hr・m
]である。単位板巾方向の冷却熱量の制約値となる。
Next, a second aspect of the present invention relates to a GJC band using a cooling gas blow and a CC using a cooling tube.
In the cooling control method of cooling the material to be cooled by the band, the maximum hearth load of the CC band is set in advance, and when the cooling heat amount of the material to be cooled passing through the CC band is equal to or less than the maximum hearth load, the CC band The GJ is approximately proportional to the hearth load.
The temperature of the outlet side plate of the C zone is controlled. On the other hand, when the amount of cooling heat of the material to be cooled passing through the CC zone exceeds the maximum hearth load due to changes in various conditions of the material to be cooled, it is set in advance. This is a cooling control method for obtaining the outlet plate temperature of the GJC band based on the obtained maximum hearth load and controlling the outlet plate temperature of the GJC band. In addition, the maximum hearth load, in the radiant heat transfer cooling furnace
This is the constraint load of the heat that can be cooled, and the unit is [Kcal / hr · m
]. This is the restriction value of the amount of cooling heat in the unit plate width direction.

【0011】[0011]

【作用】従って、請求項1の発明は以上のような手段を
講じたことにより、冷却能力の小さいCC帯の冷却熱量
特性と被冷却材の種々の条件の変更とを考慮しつつ、G
JC帯の出側板温度を決定するので、CC帯の冷却不足
をカバーでき、板温外れを抑えることができる。
According to the first aspect of the present invention, by taking the above-described means, it is possible to take into consideration the change in the cooling calorie characteristic of the CC band having a small cooling capacity and various conditions of the material to be cooled.
Since the exit side plate temperature of the JC band is determined, insufficient cooling of the CC band can be covered, and deviation of the plate temperature can be suppressed.

【0012】次に、請求項2に対応する発明は、CC帯
を通過する被冷却材の冷却熱量が最大炉床負荷以下のと
き、CC帯炉床負荷と比例するようにGJC帯の出側板
温度を制御し、被冷却材の種々の条件の変更に伴ってC
C帯を通過する被冷却材の冷却熱量が最大炉床負荷を越
えたとき、そのCC帯で取り去れない熱量分だけGJC
帯の出側板温度を下げることにより、冷却能力の小さい
CC帯を最適な状態で安定操業を行うことができ、よっ
て板温外れを未然に回避でき、高品質の被冷却材料を得
ることができる。本発明は、特に溶融亜鉛鍍金ラインの
ように、冷却帯出側板温を精度よく制御する場合に効果
が大きい。
Next, the invention according to claim 2 is characterized in that when the amount of cooling heat of the material to be cooled passing through the CC band is less than the maximum hearth load, the outlet plate of the GJC band is proportional to the CC band hearth load. The temperature is controlled, and the C
When the amount of cooling heat of the coolant passing through the C zone exceeds the maximum hearth load, GJC is the amount of heat that cannot be removed in the CC band.
By lowering the temperature of the outlet side plate of the band, it is possible to perform a stable operation in an optimum state in the CC band having a small cooling capacity, so that it is possible to prevent the plate temperature from falling off, and to obtain a high quality material to be cooled. . The present invention is particularly effective when controlling the temperature of the sheet on the cooling outgoing side with high precision, as in a hot-dip galvanizing line.

【0013】[0013]

【実施例】以下、本発明に係わる冷却制御方法の一実施
例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cooling control method according to the present invention will be described below.

【0014】GJC帯とCC帯とを組合わせた冷却帯に
ついては、冷却能力の小さいCC帯の冷却熱量特性に十
分な注意を払いつつ冷却制御を行う必要がある。そこ
で、本発明においては、次のような制御方法および知見
に基づいて実施する。
As for the cooling zone in which the GJC band and the CC band are combined, it is necessary to perform the cooling control while paying sufficient attention to the cooling calorie characteristic of the CC band having a small cooling capacity. Therefore, the present invention is implemented based on the following control method and knowledge.

【0015】(1) 先ず、制御方法は、冷却能力の小
さいCC帯を有効に運転させるために、CC帯の冷却熱
量特性に基づいて2つに分けて考える。その1つは、C
C帯の有する冷却熱量上限(最大炉床負荷)までの有効
利用であり、さらに他の1つはCC帯の冷却熱量の制約
となる上限値,つまり最大炉床負荷を越えたときの対策
を考える必要がある。
(1) First, the control method is divided into two based on the cooling calorie characteristics of the CC band in order to effectively operate the CC band having a small cooling capacity. One of them is C
It is effective use up to the upper limit of the cooling heat capacity (maximum hearth load) of the C band, and the other one is the upper limit value that restricts the cooling heat amount of the CC band, that is, measures when the maximum hearth load is exceeded. You need to think.

【0016】そこで、GJC帯においては、CC帯の冷
却熱量上限に至るまでCC帯の炉床負荷に比例するよう
なGJC帯出側板温度に設定すること。一方、CC帯の
最大炉床負荷を越えたとき、CC帯で冷却熱量分を取り
去れないので、このときGJC帯では、CC帯で取り去
れない冷却熱量分だけ、GJC帯出側の板温度を下げる
ことにより、冷却熱量をカバーするような制御方法を実
施する。
Therefore, in the GJC band, the outlet plate temperature of the GJC band is set so as to be proportional to the hearth load of the CC band up to the upper limit of the cooling heat amount of the CC band. On the other hand, when the maximum hearth load in the CC band is exceeded, the cooling heat amount cannot be removed in the CC band. At this time, in the GJC band, the plate temperature on the GJC band outlet side is reduced by the cooling heat amount not removed in the CC band. By lowering, a control method that covers the amount of cooling heat is implemented.

【0017】(2) 次に、ストリップのサイズや移送
速度を変更したとき、CC帯出側の板温度を一定の目標
値とするため、GJC帯出側の目標板温度を変化させる
必要があるが、このとき冷却炉の冷却途中過程であるG
JC帯出側板温度が広い許容温度範囲で操業できるかが
問題となる。
(2) Next, when the strip size and the transfer speed are changed, the target plate temperature on the GJC band needs to be changed in order to set the plate temperature on the CC band side to a constant target value. At this time, G, which is in the process of cooling the cooling furnace,
It is important to be able to operate in a wide allowable temperature range of the JC band outlet side plate.

【0018】因みに、例えば溶融亜鉛鍍金ラインにおい
ては、CC帯出側の板温度が約±10°Cであるのに較
べ、GJC帯側の板温度が約±40°Cのように非常に
広い許容温度範囲をもっている。ゆえに、このようにス
トリップ移送ラインでは、GJC帯とCC帯とで1つの
冷却炉と見なし、GJC帯出側の板温度を管理してもス
トリップの材質上には何ら問題が生じない。
Incidentally, in the hot-dip galvanizing line, for example, the sheet temperature on the CC band side is about ± 10 ° C., whereas the sheet temperature on the GJC band side is about ± 40 ° C. Has a temperature range. Therefore, in the strip transfer line, the GJC band and the CC band are regarded as one cooling furnace, and there is no problem in the material of the strip even if the plate temperature on the GJC band outlet side is controlled.

【0019】そこで、本発明方法は、前記(2)の知見
を踏まえつつ、前記(1)のような冷却制御方法を実施
するが、このときGJC帯出側の板温度は、CC帯の冷
却熱量特性の他、ストリップの移送速度,密度,比熱等
を含む下記の関係式から決定する。
Therefore, the method of the present invention implements the cooling control method as described in the above (1) based on the knowledge of the above (2). At this time, the plate temperature on the exit side of the GJC band is changed to the cooling heat amount of the CC band. In addition to the characteristics, it is determined from the following relational expression including the transport speed, density, specific heat, etc. of the strip.

【0020】すなわち、このGJC帯出側の板温度の決
定に際し、ストリップの板厚,板巾および移送速度から
CC帯を通過するストリップの冷却熱量Q[k cal/h
r]を計算し、このCC帯の冷却熱量Qが最大炉床負荷
Qmax [k cal/hr・m ]以下ならば、CC帯の冷却能
力(ton /hr)にほぼ比例する冷却熱量となる板温度を
設定する。つまり、 単位巾当たりの冷却熱量Q/W[k cal/hr・m ]≦炉
床負荷Qmax [k cal/hr・m ]の時、 TGJ=TCC+(K/Cp ) …… (1) なる関係式からGJC帯出側板温度TGJ(°C)を決定
する。
That is, when determining the sheet temperature on the exit side of the GJC band, the cooling heat quantity Q [kcal / h] of the strip passing through the CC band is determined based on the sheet thickness, the sheet width, and the transfer speed of the strip.
r], and if the cooling heat amount Q of the CC band is equal to or less than the maximum hearth load Qmax [kcal / hr · m], a plate having a cooling heat amount substantially proportional to the cooling capacity (ton / hr) of the CC band. Set the temperature. That is, when cooling heat quantity per unit width Q / W [kcal / hr · m] ≦ hearth load Qmax [kcal / hr · m], TGJ = TCC + (K / Cp ) ...... 1) Determine the GJC band exit side plate temperature T GJ (° C.) from the following relational expression.

【0021】但し、TCC(°C):CC帯目標板温度、
K:定数(冷却熱量とton /hrとの比例定数)、ρ
Fe[kg/m 3 ]:ストリップの密度、Cp [k cal/kg
・k]:ストリップの比熱である。一方、CC帯の冷却
熱量Qが最大炉床負荷Qmax [k cal/hr・m ]を越え
たならば、冷却熱量をQmax とし、GJC帯出側の板温
度を決定する。つまり、 単位巾当たりの冷却熱量Q/W[k cal/hr・m ]>炉
床負荷Qmax [k cal/hr・m ]の時、 TGJ=TCC+{Qmax /(t・v・ρFe・Cp )} …… (2) なる関係式からGJC帯出側の板温度TGJ(°C)を決
定する。但し、Qmax [k cal/hr・m ]:炉床負荷、
t[m]:板厚、v[m /hr]:移送速度である。
Here, T CC (° C.): CC band target plate temperature,
K: constant (proportional constant between cooling calorific value and ton / hr), ρ
Fe [kg / m 3 ]: Strip density, C p [k cal / kg
K]: Specific heat of the strip. On the other hand, if the cooling heat amount Q in the CC band exceeds the maximum hearth load Qmax [kcal / hr · m], the cooling heat amount is set to Qmax, and the plate temperature on the exit side of the GJC band is determined. That is, when the cooling heat Q / W per unit width [k cal / hr · m] > hearth load Qmax of [k cal / hr · m] , T GJ = T CC + {Qmax / (t · v · ρ Fe · C p )} (2) The plate temperature T GJ (° C.) on the GJC outgoing side is determined from the following relational expression. However, Qmax [kcal / hr · m]: hearth load,
t [m]: plate thickness, v [m / hr]: transfer speed.

【0022】従って、以上のような冷却制御方法を採用
することにより、CC帯を通過するストリップの冷却熱
量が最大炉床負荷以下の場合にはCC帯の炉床負荷に比
例してGJC帯出側の板温度を設定するとともに、例え
ばストリップのサイズや移送速度等の条件の変更等に伴
ってCC帯のストリップの冷却熱量が最大炉床負荷を越
えたとき、CC帯で取り去る冷却熱量の上限値,つまり
最大炉床負荷とし、GJC帯出側板温度を設定するの
で、冷却能力の小さいCC帯であっても最適な条件の下
に安定操業を行うことができ、これによってストリップ
長手方向の板温外れを抑えることができ、しかも、スト
リップ巾方向の温度を均一化して高品質なストリップを
得ることができる。
Therefore, by employing the above cooling control method, when the cooling heat of the strip passing through the CC band is less than the maximum hearth load, the GJC band outlet side is proportional to the hearth load of the CC band. The upper limit of the amount of cooling heat to be removed in the CC band when the cooling heat of the strip in the CC band exceeds the maximum hearth load due to changes in conditions such as the strip size and transfer speed, etc. In other words, the maximum hearth load is set, and the GJC band exit side plate temperature is set. Therefore, even in the CC band having a small cooling capacity, stable operation can be performed under the optimum conditions. And the temperature in the strip width direction can be made uniform to obtain a high-quality strip.

【0023】次に、以上のような冷却制御方法を適用し
た装置について図1および図2を参照して説明する。な
お、図1は溶融亜鉛鍍金ラインその他のストリップ連続
移送ライン等に用いる冷却炉の構成を示す図、図2は冷
却炉を含む冷却温度制御装置の構成を示す図である。
Next, an apparatus to which the above-described cooling control method is applied will be described with reference to FIGS. FIG. 1 is a diagram showing a configuration of a cooling furnace used for a hot-dip galvanizing line and other continuous strip transfer lines, and FIG. 2 is a diagram showing a configuration of a cooling temperature control device including the cooling furnace.

【0024】すなわち、かかる冷却炉は、GJC帯とC
C帯とが適宜な形態をもって連なるように構成され、こ
れらGJC帯内およびCC帯内には所要とする位置関係
をもってガイドロール1,…を配置することにより、ス
トリップ2がガイドロール1,…を介して蛇行状を形成
するような移送ラインを構成する。そして、GJC帯お
よびCC帯の各出側にはそれぞれ温度計3,4が設置さ
れている。5は炉の形態を現す炉殻である。
That is, the cooling furnace has a GJC band and C
The guide rolls 1,... Are arranged in the GJC band and the CC band with a required positional relationship in the GJC band and the CC band. A transfer line is formed so as to form a meandering shape. Thermometers 3 and 4 are installed on the outlet sides of the GJC band and the CC band, respectively. Reference numeral 5 denotes a furnace shell representing the shape of the furnace.

【0025】次に、冷却炉を含む冷却温度制御装置は、
図2に示すようにGJC帯の入り側および出側にはそれ
ぞれガスブロー11,11が設置され、外部からそれぞ
れ圧力調節弁21,21を介して送られてくる冷却ガス
媒体を前記ガスブロー11,11を用いてストリップ2
に噴射する構成をなし、一方、CC帯側の入り側および
出側にはそれぞれ冷却チューブ12,12が配置され、
同じく外部からそれぞれ流量調節弁31,31を経由し
て送られてくる冷却媒体を冷却チューブ12,12を通
すことにより、輻射伝達冷却を行う構成となっている。
Next, a cooling temperature control device including a cooling furnace includes:
As shown in FIG. 2, gas blows 11 and 11 are installed on the entrance side and the exit side of the GJC band, respectively, and a cooling gas medium sent from the outside via pressure regulating valves 21 and 21 is supplied to the gas blows 11 and 11 respectively. Strip 2 using
In the meantime, cooling tubes 12 and 12 are arranged on the entrance side and the exit side on the CC band side, respectively.
Similarly, a cooling medium sent from the outside via the flow control valves 31 and 31 is passed through the cooling tubes 12 and 12 to perform radiation transmission cooling.

【0026】この冷却温度制御装置20は、カスケード
制御+フィードフォワード制御の組合わせ構成を有し、
具体的には外乱要素となるストリップサイズや移送速度
を取り込み、その他必要なパラメータおよび定数等を用
いて、前記(1)式および(2)式の計算その他所要と
する計算を行ってGJC帯およびCC帯の目標板温度を
求めるプロセスコンピユータ等を用いた目標板温度演算
部30と、この目標板温度演算部30によって求められ
たGJC帯側目標板温度とGJC帯出側温度計3で検出
されたGJC帯出側検出温度との偏差に基づいて例えば
PIまたはPID等の調節演算を行ってGJC帯出側目
標圧力を求める温度調節計22と、同じく目標板温度演
算部30によって求められたCC帯側目標板温度とCC
帯出側温度計4で検出されたCC帯出側検出温度との偏
差に基づいて例えばPIまたはPID等の調節演算を行
ってCC帯出側目標流量を求める流量調節計32とが設
けられている。
The cooling temperature control device 20 has a combination of cascade control and feedforward control.
More specifically, the strip size and the transfer speed, which are the disturbance elements, are taken in, and the necessary calculations such as the above equations (1) and (2) and other necessary calculations are performed using other necessary parameters and constants. A target plate temperature calculator 30 using a process computer or the like for obtaining a target plate temperature in the CC band, and a GJC band side target plate temperature obtained by the target plate temperature calculator 30 and a GJC band exit side thermometer 3 detected. A temperature controller 22 for calculating a GJC band exit side target pressure by performing an adjustment operation such as PI or PID based on a deviation from the GJC band exit side detected temperature, and a CC band side target similarly obtained by the target plate temperature calculation unit 30. Plate temperature and CC
There is provided a flow controller 32 for performing, for example, a PI or PID adjustment operation based on a deviation from the CC outlet detection temperature detected by the outlet thermometer 4 to obtain a CC outlet target flow rate.

【0027】さらに、この冷却温度制御装置は、前記目
標圧力とGJC帯入り側および出側の冷却ガス媒体供給
路に設けられた圧力検出器23,24からの吐出圧力と
に基づいて所要とする圧力操作信号を出力する圧力調節
計25,26と、前記目標流量とCC帯入り側および出
側の冷却媒体供給路に設けられた流量検出器33,34
からの検出流量とに基づいて所要とする流量操作信号を
出力する流量調節計35,36とが設けられ、前記圧力
調節計25,26からの圧力操作信号に基づいて圧力調
節弁21,21を操作し、一方、流量調節計35,36
からの流量操作信号に基づいて流量調節弁31,31を
操作する構成となっている。
Further, the cooling temperature control device is required based on the target pressure and the discharge pressure from the pressure detectors 23 and 24 provided in the cooling gas medium supply passages on the inlet and outlet sides of the GJC band. Pressure controllers 25 and 26 for outputting pressure operation signals, and flow rate detectors 33 and 34 provided in the cooling medium supply passages on the inlet and outlet sides of the target flow rate and the CC band.
Flow rate controllers 35 and 36 for outputting required flow rate operation signals based on the detected flow rates from the pressure controllers 25 and 26 are provided, and the pressure control valves 21 and 21 are controlled based on the pressure control signals from the pressure regulators 25 and 26. Operating, while the flow controllers 35, 36
The flow control valves 31, 31 are operated based on a flow control signal from the controller.

【0028】従って、以上のような本発明の冷却制御方
法および冷却温度制御装置を適用しない従来のものは、
図3(a)に示す如く時刻t1においてストリップの移
送速度が増加したとき、冷却熱量をアップせる必要が
あるにも拘らず、GJC帯目標板温度,実績温度が同じ
であるので、CC帯では冷却能力の上限値オーバーとな
って冷却できない。このため、CC帯出側において実績
温度が上昇し、板温外れが発生する。
Therefore, the prior art without the cooling control method and the cooling temperature control device of the present invention as described above,
When the transfer speed of the strip is increased at time t1 as shown in FIG. 3 (a), despite it is necessary to up the cooling heat, GJC band target plate temperature, since actual temperature is the same, CC zone In this case, the cooling capacity exceeds the upper limit and cooling cannot be performed. For this reason, the actual temperature rises on the CC outlet side, and the sheet temperature deviates.

【0029】これに対し、本発明の冷却制御方法および
冷却温度制御装置によれば、図3(b)に示すようにス
トリップの移送速度の増加によってCC帯の冷却能力の
上限を越えたとき、GJC出側の目標板温度を下げるこ
とにより、CC帯出側板温度は目標板温度に追従さ
ことができ、移送速度の変更によってストリップの品質
に影響を与えることがなくなる。これは、ストリップの
移送速度だけでなく、ストリップサイズの変更その他の
外乱要素においても同様であることはいうまでもない。
On the other hand, according to the cooling control method and the cooling temperature control device of the present invention, as shown in FIG. 3B, when the cooling speed of the CC band exceeds the upper limit of the cooling capacity due to the increase of the transfer speed of the strip. by lowering the target plate temperature of GJC exit side, CC home use side plate temperature can Rukoto to follow the target plate temperature eliminates can affect the quality of the strip by changing the transport speed. It goes without saying that the same applies not only to the strip transfer speed but also to changes in the strip size and other disturbance factors.

【0030】次に、図4はストリップの移送速度85r
pm一定とし、かつ、ストリップのサイズを、イ−板厚
0.66×板幅1280mm、ロ−板厚0.81×板幅1
213mm、ハ−板厚0.71×板幅1130mmの順序で
変更したときのGJC帯目標板温度と実績温度、CC帯
目標板温度と実績温度との関係を示す図である。
Next, FIG. 4 shows the transport speed of the strip 85r.
pm constant, and the strip size is a-plate thickness 0.66 × plate width 1280 mm, b-plate thickness 0.81 × plate width 1
It is a figure which shows the relationship between a GJC band target plate temperature and an actual temperature, and a CC band target plate temperature and an actual temperature when it changes in order of 213 mm, a board thickness 0.71, and a board width 1130 mm.

【0031】つまり、この冷却制御は、ストリップのサ
イズを変更するごとに、CC帯目標板温度を変更し、か
つ、このCC帯目標板温度を変更するごとに最適なGJ
C帯目標板温度を設定することにあり、これによってC
C帯の目標板温度が良好に追従していることが分かり、
冷却能力の小さいCC帯であっても最適な運転を確保す
ることができる。なお、本発明はその要旨を逸脱しない
範囲で種々変形して実施できる。
That is, this cooling control changes the CC band target plate temperature every time the strip size is changed, and sets the optimum GJ every time the CC band target plate temperature is changed.
Is to set the C band target plate temperature.
It can be seen that the target plate temperature in the C band is following well,
Optimal operation can be ensured even in the CC band having a small cooling capacity. The present invention can be variously modified and implemented without departing from the gist thereof.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、C
C帯の冷却熱量の制約に合わせてGJC帯出側の被冷却
材の温度を制御することにより、被冷却材の種々の条件
の変更にもかかわらず、冷却能力の小さいCC帯を有効
に生かしつつ安定な冷却熱量運転を確保でき、よって冷
却帯の板温外れを抑えることができ、製品の品質向上に
大きく寄与させうる冷却制御方法を提供できる。
As described above, according to the present invention, C
By controlling the temperature of the material to be cooled on the exit side of the GJC band in accordance with the restriction of the amount of cooling heat in the C band, the CC band having a small cooling capacity can be effectively utilized despite various changes in the conditions of the material to be cooled. It is possible to provide a cooling control method that can secure stable cooling calorie operation, suppress the deviation of the plate temperature in the cooling zone, and greatly contribute to the improvement of product quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる冷却制御方法を適用する冷却
炉の構成を示す図。
FIG. 1 is a diagram showing a configuration of a cooling furnace to which a cooling control method according to the present invention is applied.

【図2】 本発明方法を適用した冷却炉を含む冷却温度
制御装置の構成図。
FIG. 2 is a configuration diagram of a cooling temperature control device including a cooling furnace to which the method of the present invention is applied.

【図3】 本発明方法の適用の有無による板温度状態を
説明する図。
FIG. 3 is a diagram illustrating a plate temperature state depending on whether or not the method of the present invention is applied.

【図4】 ストリップのサイズ変更に伴うCC帯とGJ
C帯の目標板温度と実績値との変化状態を説明する図。
Fig. 4 CC band and GJ due to strip size change
The figure explaining the change state of the target plate temperature of C zone, and an actual value.

【符号の説明】[Explanation of symbols]

2…ストリップ(被冷却材)、3,4…温度計、11…
ガイブロー、12…冷却チューブ、20…冷却温度制御
装置、22…温度調節計、23,24…圧力検出器、2
5,26…圧力調節計、30…目標板温度演算部、32
…温度調節計、33,34…流量検出器、35,36…
流量調節計。
2 ... strip (cooled material), 3, 4 ... thermometer, 11 ...
Guy blow, 12: cooling tube, 20: cooling temperature control device, 22: temperature controller, 23, 24: pressure detector, 2
5, 26: pressure controller, 30: target plate temperature calculator, 32
... temperature controllers, 33, 34 ... flow rate detectors, 35, 36 ...
Flow controller.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 11/00 - 11/00 105 C21D 9/52 - 9/66──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C21D 11/00-11/00 105 C21D 9/52-9/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷却ガスブローを用いた急速冷却帯と冷
却チューブを用いた徐冷帯とによって被冷却材を冷却す
る冷却制御方法において、冷却能力の小さい 前記徐冷帯の冷却熱量特性と被冷却材
の移送速度,密度,比熱および材質に基づいて冷却能
力の大きい前記急速冷却帯の出側板温度を求め、前記急
速冷却帯の出側板温度を制御することにより、前記徐冷
帯から均一冷却された被冷却材を出力することを特徴と
する冷却制御方法。
In a cooling control method for cooling a material to be cooled by a rapid cooling zone using a cooling gas blow and a slow cooling zone using a cooling tube, a cooling calorie characteristic and cooling target of the slow cooling zone having a small cooling capacity are provided. Cooling capacity based on material transfer speed, density , specific heat and material
By calculating the outlet plate temperature of the rapid cooling zone having a large force and controlling the outlet plate temperature of the rapid cooling zone , the slow cooling is performed.
A cooling control method, comprising outputting a material to be cooled uniformly cooled from a zone .
【請求項2】 冷却ガスブローを用いた急速冷却帯と冷
却チューブを用いた徐冷帯とによって被冷却材を冷却す
る冷却制御方法において、 予め徐冷帯の最大炉床負荷が設定され、前記徐冷帯を通
過する被冷却材の冷却熱量が前記最大炉床負荷以下のと
き、徐冷帯炉床負荷に比例する関係をもって前記急速冷
却帯の出側板温度を制御し、一方、被冷却材の種々の条
件の変更に伴って前記徐冷帯を通過する被冷却材の冷却
熱量が前記最大炉床負荷を越えたとき、予め設定された
最大炉床負荷に基づいて前記急速冷却帯の出側板温度を
求め、前記急速冷却帯の出側板温度を制御することを特
徴とする冷却制御方法。
2. A cooling control method for cooling a material to be cooled by a rapid cooling zone using a cooling gas blow and a slow cooling zone using a cooling tube, wherein a maximum hearth load of the slow cooling zone is set in advance. when the cooling heat of the coolant that passes through the cold zone is less than said maximum hearth load, to control the delivery side temperature of the quenching zone with a relationship that proportional to Johiyatai hearth load, whereas, the coolant when the cooling heat of the coolant that passes through the slow cooling zone by varying further with the various conditions exceeds the maximum hearth load, out of the quenching zone based on the maximum hearth load preset A cooling control method comprising: obtaining a side plate temperature; and controlling an outlet side plate temperature of the rapid cooling zone.
JP4256909A 1992-09-25 1992-09-25 Cooling control method Expired - Fee Related JP2803490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256909A JP2803490B2 (en) 1992-09-25 1992-09-25 Cooling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256909A JP2803490B2 (en) 1992-09-25 1992-09-25 Cooling control method

Publications (2)

Publication Number Publication Date
JPH06108166A JPH06108166A (en) 1994-04-19
JP2803490B2 true JP2803490B2 (en) 1998-09-24

Family

ID=17299074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256909A Expired - Fee Related JP2803490B2 (en) 1992-09-25 1992-09-25 Cooling control method

Country Status (1)

Country Link
JP (1) JP2803490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226965B2 (en) * 2007-04-04 2013-07-03 新日鉄住金エンジニアリング株式会社 Steel plate cooling method and steel plate continuous heat treatment equipment
RU2605883C1 (en) * 2015-06-24 2016-12-27 Общество с ограниченной ответственностью ХОЗРАСЧЕТНЫЙ ТВОРЧЕСКИЙ ЦЕНТР УФИМСКОГО АВИАЦИОННОГО ИНСТИТУТА Hardening medium cooling ability determining device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317895A (en) * 1986-07-11 1988-01-25 Wako Pure Chem Ind Ltd Novel oligosaccharide derivative and determination of alpha-amylase activity using same

Also Published As

Publication number Publication date
JPH06108166A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
US4440583A (en) Method of controlled cooling for steel strip
US4836774A (en) Method and apparatus for heating a strip of metallic material in a continuous annealing furnace
JPS6314052B2 (en)
JP2803490B2 (en) Cooling control method
JPH0534093B2 (en)
JPH03207821A (en) Controlling method for cooling strip in cooling zone of continuous annealing
US4725321A (en) Method for cooling a steel strip in a continuous annealing furnace
US4724014A (en) Method for cooling a steel strip in a continuous annealing furnace
EP0128734B1 (en) Method for cooling a steel strip in a continuous-annealing furnace
KR900001092B1 (en) Apparatus for colling strip of metals
JP3458758B2 (en) Method and apparatus for cooling steel sheet
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JP2988330B2 (en) Control method of winding temperature of hot rolled steel sheet
JPS6345454B2 (en)
JP2019155372A (en) Thick steel plate cooling method
JPS639569B2 (en)
JPH07116580B2 (en) Alloying furnace with holding zone with cooling function
JP2005298941A (en) Sheet temperature control method in continuous still sheet annealing
JP4088115B2 (en) Steel strip cooling control method
JP2979908B2 (en) Metal strip cooling device
JPS6160901B2 (en)
JP2001073041A (en) Method for controlling temperature of steel sheet and temperature controlling device
JPS61219412A (en) Uniform cooling method of hot steel plate and its apparatus
JPS5846403A (en) Feed-forward controller
JPH01287224A (en) In-furnace temperature control method for continuous heat treatment furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees