JP2798886B2 - Method for producing L-aspartic acid - Google Patents

Method for producing L-aspartic acid

Info

Publication number
JP2798886B2
JP2798886B2 JP6102789A JP10278994A JP2798886B2 JP 2798886 B2 JP2798886 B2 JP 2798886B2 JP 6102789 A JP6102789 A JP 6102789A JP 10278994 A JP10278994 A JP 10278994A JP 2798886 B2 JP2798886 B2 JP 2798886B2
Authority
JP
Japan
Prior art keywords
aspartic acid
acid
reaction
alkali metal
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6102789A
Other languages
Japanese (ja)
Other versions
JPH07308195A (en
Inventor
隆哉 林
正治 向山
公一 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP6102789A priority Critical patent/JP2798886B2/en
Publication of JPH07308195A publication Critical patent/JPH07308195A/en
Application granted granted Critical
Publication of JP2798886B2 publication Critical patent/JP2798886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はフマル酸とアンモニアか
らL−アスパラギン酸を生産する際、多量のアンモニウ
ムイオンを含んだ廃水を排出しないようにする方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing the discharge of wastewater containing a large amount of ammonium ions when producing L-aspartic acid from fumaric acid and ammonia.

【0002】[0002]

【従来の技術】従来、アスパルターゼ活性を有する微生
物を用いてフマル酸アンモニウムからL−アスパラギン
酸を製造する方法としては、α−アミノ酪酸に耐性を有
する微生物を好気的に培養後反応に供する方法(特公昭
61ー29718号公報)、フマル酸添加培地で培養し
た微生物菌体を用いる方法(特開昭60ー120983
号公報)、天然物多糖由来のポリマー等に大腸菌(Esche
richia coli)を固定化した固定化微生物充填カラムを用
いる方法(特開昭53ー6483号公報)など種々の方
法が知られている。
2. Description of the Related Art Conventionally, as a method for producing L-aspartic acid from ammonium fumarate using a microorganism having aspartase activity, a microorganism having resistance to α-aminobutyric acid is aerobically cultured and then subjected to a reaction. (JP-B-61-29718), a method using microbial cells cultured in a fumaric acid-added medium (Japanese Patent Application Laid-Open No. 60-120983).
Publication), Escherichia coli (Esche
Various methods are known, such as a method using an immobilized microorganism-filled column on which R. richia coli is immobilized (JP-A-53-6483).

【0003】通常、フマル酸とアンモニアの反応液から
L−アスパラギン酸を回収するためには、硫酸などの鉱
酸を用いて、反応液のpHをL−アスパラギン酸の等電
点であるpH2.7程度に調節後、冷却することによっ
てL−アスパラギン酸の結晶を析出させ、これを濾別す
る方法がとられている。
[0003] Usually, in order to recover L-aspartic acid from a reaction solution of fumaric acid and ammonia, a mineral acid such as sulfuric acid is used to adjust the pH of the reaction solution to pH2, which is the isoelectric point of L-aspartic acid. After adjusting to about 7, a crystal of L-aspartic acid is precipitated by cooling, and the crystal is filtered off.

【0004】この方法は安価な鉱酸を用いること、生産
物であるL−アスパラギン酸の結晶としての回収率が高
いこと、得られるL−アスパラギン酸の純度が高いこと
から非常に経済的に有利な方法である。
This method is very economically advantageous because it uses an inexpensive mineral acid, has a high L-aspartic acid product recovery rate as crystals, and has a high purity of the L-aspartic acid obtained. It is a way.

【0005】しかしながら、産業廃棄物という観点から
は、高濃度の硫酸アンモニウム等のアンモニウム塩を含
有した廃水が大量に排出されるという問題点を有してい
る。水溶液中のアンモニウムイオンの除去は廃水処理の
面でも非常に困難であり、湖沼や瀬戸内海などの内湾で
はアンモニウムイオンを含む窒素濃度が上昇することに
よる水質汚染などの問題が生じてきている。また最近、
工場廃水中の窒素濃度の規制についても各省庁で検討が
行われているようである。従って、L−アスパラギン酸
の製造においても硫安などの副生成物が多量に発生しな
い系の開発が望まれている。
However, from the viewpoint of industrial waste, there is a problem that a large amount of wastewater containing a high concentration of ammonium salt such as ammonium sulfate is discharged. Removal of ammonium ions in an aqueous solution is also extremely difficult in terms of wastewater treatment, and problems such as water pollution due to an increase in the concentration of nitrogen containing ammonium ions have arisen in lakes and inland bays such as the Seto Inland Sea. Also recently
It seems that various ministries are also examining the regulation of nitrogen concentration in industrial wastewater. Therefore, it is desired to develop a system that does not generate a large amount of by-products such as ammonium sulfate even in the production of L-aspartic acid.

【0006】米国特許4560653ではL−アスパラ
ギン酸の生産の際にアスパルターゼもしくはアスパルタ
ーゼ生産菌をフマル酸とアンモニアに作用させ、生成し
たアスパラギン酸アンモニウム水溶液にマレイン酸を添
加して酸性にすることによってL−アスパラギン酸を析
出させ、濾液を異性化することによって反応液のリサイ
クルを行う方法が提案されている。この方法は、硫安な
どの副生成物が発生しない方法である。しかしこの方法
ではL−アスパラギン酸の析出に用いたマレイン酸を、
臭素イオンを含んだ触媒を用いて、アスパルターゼが作
用できるフマル酸に異性化し、異性化後、触媒を除去す
る工程が含まれており、L−アスパラギン酸の製造工程
が煩雑になる欠点を有している。
[0006] In US Pat. No. 4,560,563, during the production of L-aspartic acid, aspartase or an aspartase-producing bacterium is allowed to act on fumaric acid and ammonia, and the resulting aqueous solution of ammonium aspartate is made acidic by adding maleic acid. A method has been proposed in which L-aspartic acid is precipitated and the reaction solution is recycled by isomerizing the filtrate. This method does not generate by-products such as ammonium sulfate. However, in this method, the maleic acid used for the precipitation of L-aspartic acid is
The process includes the step of isomerizing to fumaric acid capable of acting aspartase using a catalyst containing bromine ions and removing the catalyst after the isomerization, which has the disadvantage of complicating the production process of L-aspartic acid. doing.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的はフマル
酸とアンモニアからL−アスパラギン酸を生産する際、
多量のアンモニウム塩を排出しない、L−アスパラギン
酸の製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to produce L-aspartic acid from fumaric acid and ammonia.
An object of the present invention is to provide a method for producing L-aspartic acid, which does not discharge a large amount of ammonium salt.

【0008】本発明者らはこのような高濃度のアンモニ
ウムイオンを含有した廃水が大量に排出されない、簡易
なL−アスパラギン酸の製造方法について鋭意検討を行
った結果、この反応の基質であるフマル酸を中和するの
に従来用いられていたアンモニア単独の条件にかえてア
ルカリ金属イオンをあわせて用いると反応の転化率、選
択率共に通常工業的に行われている方法と遜色ない結果
が得られることを見いだし本発明を完成させるに至っ
た。
The present inventors have conducted intensive studies on a simple method for producing L-aspartic acid in which wastewater containing such a high concentration of ammonium ions is not discharged in large amounts. If the alkali metal ion is used in combination with ammonia alone to neutralize the acid, the conversion and selectivity of the reaction are comparable to those of the conventional method. It was found that the present invention was completed.

【0009】[0009]

【課題を解決するための手段】本発明はフマル酸とアン
モニアおよびアルカリ金属イオンを含む基質媒体に、ア
スパルターゼ活性を有する酵素含有物を作用せしめるこ
とによりL−アスパラギン酸を生成せしめ、次にL−ア
スパラギン酸を含有する反応済媒体に鉱酸を加え、析出
したL−アスパラギン酸の結晶を濾別・回収すると共
に、鉱酸のアルカリ金属塩を主成分とする廃液を排出す
ることを特徴とするL−アスパラギン酸の製造方法に関
するものである。
According to the present invention, L-aspartic acid is produced by allowing an enzyme-containing substance having aspartase activity to act on a substrate medium containing fumaric acid, ammonia and an alkali metal ion. -Adding a mineral acid to the reacted medium containing aspartic acid, filtering and recovering precipitated L-aspartic acid crystals, and discharging a waste liquid containing an alkali metal salt of the mineral acid as a main component. And a method for producing L-aspartic acid.

【0010】本発明に用いるフマル酸はフマル酸あるい
はフマル酸塩から選ばれるものであって、これらの混合
物でもよい。反応の際のフマル酸濃度は通常5〜30重
量%が好ましいがフマル酸塩の溶解度と生産性の面から
特に10〜25重量%が好ましい。
The fumaric acid used in the present invention is selected from fumaric acid or a fumarate, and may be a mixture thereof. The concentration of fumaric acid at the time of the reaction is usually preferably 5 to 30% by weight, but particularly preferably 10 to 25% by weight in view of the solubility and productivity of the fumarate.

【0011】本発明に用いられるアンモニアは液体アン
モニア、アンモニア水溶液等が使用可能であるが、取扱
上、アンモニア水溶液が有利である。
As the ammonia used in the present invention, liquid ammonia, an aqueous ammonia solution and the like can be used, but an ammonia aqueous solution is advantageous in handling.

【0012】アンモニア水の濃度としては特に限定され
るものではないが、工業的には10〜35重量%が利用
するのに好ましい。
The concentration of the aqueous ammonia is not particularly limited, but is preferably 10 to 35% by weight industrially.

【0013】本発明に用いられるフマル酸を中和するに
あたって使用するアルカリ金属イオンの量はフマル酸に
対して0.5〜1.5倍モル、好ましくは0.9〜1.
3倍モル、より好ましくは1.10〜1.25倍モル用
いるのがよい。
The amount of the alkali metal ion used for neutralizing the fumaric acid used in the present invention is 0.5 to 1.5 times mol of fumaric acid, preferably 0.9 to 1.
It is good to use 3 times mole, more preferably 1.10 to 1.25 times mole.

【0014】本発明に用いるアルカリ金属イオンとして
はナトリウムイオン、カリウムイオンのほか各種のアル
カリ金属イオンが使用できるが、経済的には水酸化ナト
リウムか水酸化カリウムをアルカリ金属イオンとして用
いるのが好ましい。またこれらのアルカリ金属水酸化物
は2種以上のものを混合して用いても差し支えない。さ
らにフマル酸をアルカリ金属イオンで中和するかわりに
フマル酸のアルカリ金属塩をそのまま用いても差し支え
ない。
As the alkali metal ion used in the present invention, various alkali metal ions can be used in addition to sodium ion and potassium ion, but it is economically preferable to use sodium hydroxide or potassium hydroxide as the alkali metal ion. These alkali metal hydroxides may be used in combination of two or more. Further, instead of neutralizing fumaric acid with an alkali metal ion, an alkali metal salt of fumaric acid may be used as it is.

【0015】反応液のpHは5から10の範囲、好まし
くは7.5から9.0の範囲、さらに好ましくはアスパ
ルターゼの至適pHである8.0〜8.5程度にアルカ
リ金属イオンおよびアンモニアを添加して調整すればよ
い。
The pH of the reaction solution is in the range of 5 to 10, preferably in the range of 7.5 to 9.0, and more preferably about 8.0 to 8.5, which is the optimum pH of aspartase. It may be adjusted by adding ammonia.

【0016】本発明に用いるアスパルターゼ活性を有す
る酵素含有物は、アスパルターゼが高活性な微生物菌体
そのもの、あるいは超音波、摩砕、凍結融解、酵素処
理、界面活性剤処理などにより物理的または生化学的に
処理して破砕した菌体破砕物、さらに硫酸アンモニウム
塩析、アセトン沈殿等常法により得られる酵素のいずれ
でも使用できる。アスパルターゼ活性を有する微生物と
しては、例えばエッシェリシア(Escherichia )属に属
する微生物(エッシェリシア・コリ(Escherichia col
i)ATCC11303、ATCC9637、ATCC
27325)、ブレビバクテリウム(Brevibacterium)
属に属する微生物などフマル酸よりL−アスパラギン酸
を収率よく生成する特徴を有する微生物であれば特に限
定されない。これらのアスパルターゼ活性を有する酵素
含有物を担体に固定化して用いることもできる。固定化
の担体としては、セルロース、アルギン酸、カラギー
ナ、ナンマンゲルなどの適当な天然系高分子、あるいは
イオン交換樹脂やポリビニルアルコール、ポリアクリル
アミドなどの適当な合成高分子などを常法により用いる
ことができる。
The enzyme-containing substance having aspartase activity used in the present invention can be obtained by physically or microbial cells having high aspartase activity or by physical treatment such as ultrasonication, milling, freeze-thawing, enzymatic treatment and surfactant treatment. Any of the crushed bacterial cells obtained by biochemical treatment and crushing, and any of the enzymes obtained by conventional methods such as ammonium sulfate salting out and acetone precipitation can be used. Examples of the microorganism having aspartase activity include microorganisms belonging to the genus Escherichia (Escherichia col.
i) ATCC 11303, ATCC 9637, ATCC
27325), Brevibacterium
The microorganism is not particularly limited as long as it is a microorganism such as a microorganism belonging to the genus and has a feature of producing L-aspartic acid from fumaric acid in a high yield. These enzyme-containing substances having aspartase activity can also be used by immobilizing them on a carrier. As a carrier for immobilization, a suitable natural polymer such as cellulose, alginic acid, carrageena, or nanman gel, or a suitable synthetic polymer such as an ion exchange resin or polyvinyl alcohol or polyacrylamide can be used in a conventional manner.

【0017】また、反応に用いるアスパルターゼ活性を
有する酵素含有物中に含まれるフマラーゼ活性など該反
応の妨げになりうるアスパルターゼ活性以外の酵素を予
め失活させたものを反応に用いることも可能である。た
とえば酵素含有物を、予め、L−アスパラギン酸および
アンモニウムイオン存在下、アルカリ域で40〜60℃
に加熱処理を行い、フマラーゼ活性を予め失活させてお
くこともできる。
It is also possible to use, in the reaction, an enzyme in which an enzyme other than aspartase activity that may interfere with the reaction, such as a fumalase activity, contained in the enzyme-containing substance having aspartase activity used in the reaction is previously inactivated. It is. For example, the enzyme-containing substance is previously heated in the presence of L-aspartic acid and ammonium ions in an alkaline region at 40 to 60 ° C.
The fumarase activity can be previously inactivated by heat treatment.

【0018】フマル酸とアンモニアとの反応はそれらを
溶解した水性媒体、たとえば水または緩衝液中で行う。
反応の際の原料のフマル酸の濃度は5〜30重量%好ま
しいが、フマル酸塩の溶解性と生体触媒の反応性を考え
ると特に10〜25重量%の範囲の水溶液で反応させる
のが効果的である。
The reaction between fumaric acid and ammonia is carried out in an aqueous medium in which they are dissolved, for example water or a buffer.
The concentration of fumaric acid as a raw material at the time of the reaction is preferably 5 to 30% by weight, but considering the solubility of the fumarate and the reactivity of the biocatalyst, it is particularly effective to react with an aqueous solution in the range of 10 to 25% by weight. It is a target.

【0019】また反応液にはさらに塩化マンガン、硫酸
マンガンなどのマンガン塩、または塩化マグネシウム、
硫酸マグネシウムなどのマグネシウム塩を0.1〜50
mM、特に1〜10mMの濃度で添加することがことが
好ましい。
The reaction solution further contains a manganese salt such as manganese chloride and manganese sulfate, or magnesium chloride,
0.1 to 50 magnesium salts such as magnesium sulfate
It is preferable to add at a concentration of mM, especially 1 to 10 mM.

【0020】本発明における反応槽の態様は特に限定さ
れないが、例えば、バッチ型反応装置、カラム型反応装
置など従来から知られている反応槽で反応を行うことが
できる。反応槽は1つであってもよいし、複数あっても
差し支えない。またカラム型の反応装置の場合には、通
液速度をカラムに充填されている酵素の量によって変え
て反応することも可能である。
The mode of the reaction tank in the present invention is not particularly limited. For example, the reaction can be performed in a conventionally known reaction tank such as a batch type reaction apparatus or a column type reaction apparatus. The number of reaction vessels may be one or more. In the case of a column-type reaction device, it is also possible to carry out the reaction by changing the flow rate depending on the amount of the enzyme packed in the column.

【0021】反応の際の温度は低温では反応速度が低下
するため通常20℃程度を下限とし、高温下ではアスパ
ルターゼの失活を招くため50℃程度を上限とするのが
好ましく、より好ましくは25〜40℃の範囲で行うの
がよい。
The lower limit of the reaction temperature is usually about 20 ° C. because the reaction rate is low at a low temperature, and the upper limit is preferably about 50 ° C. at a high temperature to inactivate aspartase at a high temperature. It is good to carry out in the range of 25 to 40 ° C.

【0022】反応後の液中のL−アスパラギン酸は常法
通り等電点沈殿法等により容易に回収できる。例えば反
応液に硫酸等の鉱酸を添加しpHをL−アスパラギン酸
の等電点である2.77程度に低下させ、冷却すること
によって結晶を析出させれば良い。
L-Aspartic acid in the solution after the reaction can be easily recovered by an isoelectric point precipitation method or the like as usual. For example, a mineral acid such as sulfuric acid may be added to the reaction solution to lower the pH to about 2.77, which is the isoelectric point of L-aspartic acid, and the crystals may be precipitated by cooling.

【0023】本発明に用いる鉱酸としては硫酸、塩酸、
リン酸などが使用できる。
The mineral acid used in the present invention is sulfuric acid, hydrochloric acid,
Phosphoric acid and the like can be used.

【0024】析出したL−アスパラギン酸の結晶は通常
の方法、例えば濾過、遠心分離、デカンテーションなど
の方法で液から分離し、通常の方法にしたがって乾燥さ
れる。斯くして結晶を分離した液中のアンモニウムイオ
ンの濃度は通常の工業的に実施されている方法に比べて
数分の一から数十分の一となっており、主成分は鉱酸の
アルカリ金属塩である。
The precipitated L-aspartic acid crystals are separated from the liquid by a conventional method such as filtration, centrifugation, decantation and the like, and dried according to a conventional method. The concentration of ammonium ions in the liquid from which the crystals have been separated in this way is a few to several tenths of that in the usual industrially practiced method. It is a metal salt.

【0025】[0025]

【作用】本発明によれば、フマル酸とアンモニアからL
−アスパラギン酸の製造に際して、廃水の主成分を従来
の硫酸アンモニウムから硫酸のアルカリ金属塩にかえる
ことができ、近年の工業廃水に対する窒素規制に対応す
ることができる。
According to the present invention, from fumaric acid and ammonia, L
-In the production of aspartic acid, the main component of wastewater can be changed from conventional ammonium sulfate to alkali metal salt of sulfuric acid, and it is possible to comply with recent regulations on nitrogen in industrial wastewater.

【0026】[0026]

【実施例】次に本発明の方法を実施例をあげて説明する
が、本発明はかかる実施例のみに限定されるものではな
い。
Next, the method of the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0027】実施例1 2Lジャーファーメンターにフマル酸20g、リン酸1
カリウム1g、硫酸マグネシウム7水塩0.5g、酵母
エキス20g、コーンスティープリカー20gを水に溶
解し、pHをアンモニアで6.8に調節した培地1Lを
仕込み滅菌した後、別に500ml振盪フラスコに同上
の培地50mlをいれて培養しておいたエッシェリヒア
コリ(Escherichia coli ATCC 11303 )を接種し、37
℃で通気撹拌培養した。培地中のフマル酸が消失した時
点で、菌体培養液に酢酸を加え、pHを約5に調整し、
45℃で1時間放置した後、培養液を遠心分離にかけ、
菌体を分離した。この菌体を3等分し、−80℃で凍結
して冷蔵した。
Example 1 20 g of fumaric acid and phosphoric acid 1 were placed in a 2 L jar fermenter.
1 g of potassium, 0.5 g of magnesium sulfate heptahydrate, 20 g of yeast extract, and 20 g of corn steep liquor are dissolved in water, 1 L of a medium whose pH is adjusted to 6.8 with ammonia is charged and sterilized, and then separately placed in a 500 ml shake flask. Was inoculated with Escherichia coli ATCC 11303, which had been cultivated in 50 ml of the above medium.
The culture was carried out by aeration and stirring at ℃. At the time when the fumaric acid in the medium disappeared, acetic acid was added to the bacterial cell culture to adjust the pH to about 5,
After standing at 45 ° C. for 1 hour, the culture was centrifuged,
The cells were separated. The cells were divided into three equal parts, frozen at -80 ° C and refrigerated.

【0028】フマル酸200gおよび硫酸マグネシウム
7水塩0.25gを水600mlにいれ、水酸化ナトリ
ウムを82.8g(対フマル酸1.2倍モル)添加後、
25%アンモニア水を用いてpHを8.3に調節し、水
を追加して1Lとし、これを反応基質溶液とした。
200 g of fumaric acid and 0.25 g of magnesium sulfate heptahydrate were placed in 600 ml of water, and 82.8 g of sodium hydroxide (1.2 times mol of fumaric acid) was added.
The pH was adjusted to 8.3 with 25% aqueous ammonia, and water was added to make 1 L, which was used as a reaction substrate solution.

【0029】この基質液に先に3等分した凍結菌体の一
つを入れ、37℃で緩やかに振盪しながら5時間反応さ
せた。この反応液中のL−アスパラギン酸は221.
3.gであった。この反応液を遠心分離して菌体を除い
た後、硫酸を添加し、pHを2.77に調節した。これ
を60℃に加熱、その後冷却した。冷却後、吸引濾過器
で吸引濾過し、濾過器内の結晶を約150mlの水で吸
引しながら洗浄し、この結晶を乾燥し重量、純度を調べ
たところ、重量216.4g、純度99.6%のL−ア
スパラギン酸を得た。濾液1L中のアンモニア濃度を測
定したところ、NH3 として約1.0g/Lであった。
[0029] One of the frozen microbial cells previously divided into three equal parts was added to the substrate solution and reacted at 37 ° C for 5 hours while gently shaking. L-Aspartic acid in this reaction solution contained 221.
3. g. After the reaction solution was centrifuged to remove the cells, sulfuric acid was added to adjust the pH to 2.77. This was heated to 60 ° C. and then cooled. After cooling, the mixture was filtered by suction with a suction filter, and the crystals in the filter were washed while suctioning with about 150 ml of water. The crystals were dried and checked for weight and purity. The weight was 216.4 g and the purity was 99.6. % L-aspartic acid was obtained. When the ammonia concentration in 1 L of the filtrate was measured, it was about 1.0 g / L as NH 3 .

【0030】実施例2 実施例1において、反応基質に加える水酸化ナトリウム
の量を100g(対フマル酸1.45倍モル)とした以
外は実施例1と同様な操作を行った。反応後の反応液中
のL−アスパラギン酸は178.1gであった。実施例
1と同様な方法でL−アスパラギン酸の晶析を行い、重
量219g、純度80%のL−アスパラギン酸を得た。
濾液中のアンモニア濃度を測定したところ、NH3 とし
て約0.85g/Lであった。
Example 2 The same operation as in Example 1 was carried out except that the amount of sodium hydroxide added to the reaction substrate was changed to 100 g (1.45 mol of fumaric acid). L-aspartic acid in the reaction solution after the reaction was 178.1 g. L-aspartic acid was crystallized in the same manner as in Example 1 to obtain L-aspartic acid having a weight of 219 g and a purity of 80%.
When the ammonia concentration in the filtrate was measured, it was about 0.85 g / L as NH 3 .

【0031】実施例3 実施例1において、反応基質に水酸化ナトリウムを水酸
化カリウムにし、これを96.7g(対フマル酸1.0
倍モル)添加する以外は実施例1と同様な反応を行っ
た。反応後の反応液中のL−アスパラギン酸は225.
9gであった。実施例1と同様な方法でL−アスパラギ
ン酸の晶析を行い、重量222.0g、純度99.4%
のL−アスパラギン酸を得た。濾液中のアンモニア濃度
を測定したところ、NH3 として約5.7g/Lであっ
た。
Example 3 In Example 1, sodium hydroxide was changed to potassium hydroxide as the reaction substrate, and 96.7 g of this was added (to 1.0% of fumaric acid).
The reaction was performed in the same manner as in Example 1 except that the compound was added (double mole). L-aspartic acid in the reaction solution after the reaction was 225.
9 g. L-aspartic acid was crystallized in the same manner as in Example 1 to obtain a weight of 222.0 g and a purity of 99.4%.
Of L-aspartic acid was obtained. When the ammonia concentration in the filtrate was measured, it was about 5.7 g / L as NH 3 .

【0032】比較例1 実施例1において、反応基質に水酸化ナトリウムを添加
せずに25%アンモニア水を加え、pHを8.3に調節
した以外は実施例1と同様の操作を行なった。反応後の
反応液中のL−アスパラギン酸は227.3gであっ
た。この反応液を実施例1と同様な方法で処理し結晶と
炉液を得た。結晶を乾燥し重量、純度を調べたところ、
重量223.3g、純度99.6%のL−アスパラギン
酸を得た。濾液中のアンモニア濃度を測定したところ、
NH3 として約35.2g/Lであった。
Comparative Example 1 The same operation as in Example 1 was performed, except that 25% aqueous ammonia was added without adding sodium hydroxide to the reaction substrate, and the pH was adjusted to 8.3. L-aspartic acid in the reaction solution after the reaction was 227.3 g. This reaction solution was treated in the same manner as in Example 1 to obtain a crystal and a furnace solution. When the crystals were dried and examined for weight and purity,
L-aspartic acid having a weight of 223.3 g and a purity of 99.6% was obtained. When the ammonia concentration in the filtrate was measured,
It was about 35.2 g / L as NH 3 .

【0033】[0033]

【発明の効果】本発明によれば、高濃度の硫酸アンモニ
ウム水溶液などの環境上好ましくない副生成物を伴わず
にL−アスパラギン酸を効率よくフマル酸を原料に製造
することができる。
According to the present invention, L-aspartic acid can be efficiently produced from fumaric acid without involving environmentally undesirable by-products such as a high-concentration aqueous solution of ammonium sulfate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:13) (56)参考文献 特開 昭63−102693(JP,A) 特開 昭59−113895(JP,A) 特開 昭49−25189(JP,A) 米国特許4560653(US,A) (58)調査した分野(Int.Cl.6,DB名) C12P 13/00 - 13/24 CA(STN)────────────────────────────────────────────────── (5) Continuation of the front page (51) Int.Cl. 6 Identification code FI C12R 1:13) (56) References JP-A-63-102693 (JP, A) JP-A-59-113895 (JP, A) JP-A-49-25189 (JP, A) U.S. Pat. No. 4,606,653 (US, A) (58) Fields investigated (Int. Cl. 6 , DB name) C12P 13/00-13/24 CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フマル酸とアンモニアおよびアルカリ
金属イオンを含む基質媒体に、アスパルターゼ活性を有
する酵素含有物を作用せしめることによりL−アスパラ
ギン酸を生成せしめ、次にL−アスパラギン酸を含有す
る反応済媒体に鉱酸を加え、L−アスパラギン酸の結晶
を濾別・回収すると共に、鉱酸のアルカリ金属塩を主成
分とする廃液を排出することを特徴とするL−アスパラ
ギン酸の製造方法。
An L-aspartic acid is produced by allowing an enzyme-containing substance having aspartase activity to act on a substrate medium containing fumaric acid, ammonia and an alkali metal ion, followed by a reaction containing L-aspartic acid. A method for producing L-aspartic acid, comprising adding a mineral acid to a waste medium, filtering and recovering L-aspartic acid crystals, and discharging a waste liquid containing an alkali metal salt of the mineral acid as a main component.
【請求項2】 アスパルターゼ活性を有する酵素含有
物が、酵素活性を有する微生物菌体、菌体破砕物、部分
精製酵素もしくは精製酵素、またはこれらを含んでなる
固定化物である請求項1記載の方法。
2. The method according to claim 1, wherein the enzyme-containing substance having aspartase activity is a microbial cell having enzymatic activity, a crushed cell, a partially purified enzyme or a purified enzyme, or an immobilized substance containing these enzymes. Method.
【請求項3】 フマル酸に対して0.5〜1.5倍モ
ルのアルカリ金属イオンを含む請求項1〜2のいずれか
に記載の方法。
3. The method according to claim 1, wherein the alkali metal ion is contained in an amount of 0.5 to 1.5 times mol of fumaric acid.
【請求項4】 アルカリ金属イオンがナトリウムイオ
ンおよび/またはカリウムイオンである請求項1〜3の
いずれかに記載の方法。
4. The method according to claim 1, wherein the alkali metal ion is a sodium ion and / or a potassium ion.
JP6102789A 1994-05-17 1994-05-17 Method for producing L-aspartic acid Expired - Fee Related JP2798886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6102789A JP2798886B2 (en) 1994-05-17 1994-05-17 Method for producing L-aspartic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6102789A JP2798886B2 (en) 1994-05-17 1994-05-17 Method for producing L-aspartic acid

Publications (2)

Publication Number Publication Date
JPH07308195A JPH07308195A (en) 1995-11-28
JP2798886B2 true JP2798886B2 (en) 1998-09-17

Family

ID=14336894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6102789A Expired - Fee Related JP2798886B2 (en) 1994-05-17 1994-05-17 Method for producing L-aspartic acid

Country Status (1)

Country Link
JP (1) JP2798886B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636190A1 (en) * 1996-09-06 1998-03-12 Bayer Ag Process for the preparation of polymers with recurring succinyl units
ATE217650T1 (en) * 1996-09-20 2002-06-15 Dsm Fine Chem Austria Gmbh METHOD FOR PRODUCING Z-L-ASPARAGIC ACID DINATRIUM SALT FROM FUMARIC ACID
ATA16398A (en) * 1998-02-02 2001-06-15 Chemie Linz Gmbh METHOD FOR PRODUCING Z-L-ASPARAGIC ACID DINATRIUM SALT FROM FUMARIC ACID
EP0952225A3 (en) * 1998-02-13 2000-08-02 Nippon Shokubai Co., Ltd. Process for production of l-aspartic acid from fumaric acid with aspartase
US6821760B1 (en) 1998-09-30 2004-11-23 Nippon Shokubai Co., Ltd. Methods for producing L-aspartic acid

Also Published As

Publication number Publication date
JPH07308195A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
JP2664648B2 (en) Method for producing L-aspartic acid
JP2798886B2 (en) Method for producing L-aspartic acid
US4414331A (en) Process for producing a highly concentrated aqueous acrylamide solution by means of microorganisms
CA1215069A (en) Method of isolating l-trytophan
EP0150956B1 (en) Method for producing acrylamide using a microorganism
JPH0739385A (en) Production of l-3,4-dihydroxyphenylalanine
JP2804005B2 (en) Method for producing L-aspartic acid
EP0941358B1 (en) Improved process for the production of l-aspartic acid
JPH07313178A (en) Production of l-aspartic acid
JP2804004B2 (en) Method for producing L-aspartic acid
US4569911A (en) Method of making aspartic acid and purifying aspartase
JP2872178B2 (en) Method for producing L-aspartic acid
EP0140713A2 (en) Method for production and recovery of L-Phenylalanine
JP3704812B2 (en) Method for producing L-aspartic acid
KR800000242B1 (en) The process for the preparation of the raw material used in fermentation
JPH09322791A (en) Production of l-aspartic acid
JP4544695B2 (en) Microbial production of glycine
JP4560164B2 (en) Microbial production of glycine
JPH09322793A (en) Production of l-aspartic acid
JP4647059B2 (en) Microbiological production method that prevents coloring of glycine
JPH09163993A (en) Production of l-aspartic acid
JP3012990B2 (en) Method for producing D-aspartic acid
JP3735943B2 (en) Method for producing L-aspartic acid
JP4596593B2 (en) Microbiological production method in which coloring of glycine is prevented
JPH09322792A (en) Production of l-aspartic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees