JP2797856B2 - Method and apparatus for measuring flow rate of high-concentration powder conveyed by a conveyance medium in a pipe - Google Patents

Method and apparatus for measuring flow rate of high-concentration powder conveyed by a conveyance medium in a pipe

Info

Publication number
JP2797856B2
JP2797856B2 JP23472192A JP23472192A JP2797856B2 JP 2797856 B2 JP2797856 B2 JP 2797856B2 JP 23472192 A JP23472192 A JP 23472192A JP 23472192 A JP23472192 A JP 23472192A JP 2797856 B2 JP2797856 B2 JP 2797856B2
Authority
JP
Japan
Prior art keywords
powder
tube
pipe
light
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23472192A
Other languages
Japanese (ja)
Other versions
JPH0682288A (en
Inventor
進市 磯崎
聰 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP23472192A priority Critical patent/JP2797856B2/en
Publication of JPH0682288A publication Critical patent/JPH0682288A/en
Application granted granted Critical
Publication of JP2797856B2 publication Critical patent/JP2797856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は管内を搬送媒体により搬
送される高濃度粉体の流量測定方法及びその測定装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the flow rate of a high-concentration powder conveyed in a tube by a conveying medium.

【0002】[0002]

【従来の技術】従来粉体の流量測定方法及びその測定装
置については、光透過方式の粉体濃度計を利用したもの
が知られている。図7に一例を示す。図7において、粉
体搬送管1に相対する二つの観察窓2を設置する。一方
の観察窓2から光源体3から発する平行光束4を入射
し、粉体移送管1内に入射する。入射した光は粉体7に
よって減衰し、残りの透過光を他方の観察窓2から取出
し、光検出器5に導入して、透過光量を検出する。ここ
で、入射光強度Io が粒子群を通過し、透過光強度Iに
減衰する場合、透過率I/Io は数式1のランベルトベ
ア則によって表される。
2. Description of the Related Art Conventionally, as a method and apparatus for measuring the flow rate of powder, a method using a light transmission type powder densitometer is known. FIG. 7 shows an example. In FIG. 7, two observation windows 2 facing the powder transport tube 1 are provided. A parallel light flux 4 emitted from the light source 3 is incident on one observation window 2 and is incident on the powder transfer tube 1. The incident light is attenuated by the powder 7 and the remaining transmitted light is taken out from the other observation window 2 and introduced into the photodetector 5 to detect the amount of transmitted light. Here, when the incident light intensity Io passes through the particle group and attenuates to the transmitted light intensity I, the transmittance I / Io is expressed by the Lambert-Beer's rule of Formula 1.

【0003】[0003]

【数1】 (Equation 1)

【0004】透過率(I/Io )を測定することによ
り、粒子濃度(φm )が求まり、更に粒子の移動速度が
搬送媒体(ガス)流速に等しいと仮定して、粒子濃度値
と搬送媒体平均流速値の積から粉体流量値を算出する。
By measuring the transmittance (I / Io), the particle concentration (φ m ) is determined. Further, assuming that the moving speed of the particles is equal to the flow speed of the carrier medium (gas), the particle concentration value and the carrier medium are determined. The powder flow rate value is calculated from the product of the average flow rate values.

【0005】[0005]

【発明が解決しようとする課題】然しながら、上述した
光透過方式による粉体濃度計による測定においては、測
定可能粉体最大濃度が制約されるため、高濃度粉体測定
に適用する場合には、粉体移送管から搬送媒体(ガス)
を等速吸引したり、あるいは分岐管を設けたりして、一
部分の粒子をサンプリングして、測定する必要がある。
この様な改良した方式によっても、実用化されているダ
スト濃度計の最大粉体濃度は200gr/m3程度であり、
それ以上の高濃度粒子群に対しては光が減衰してしまう
ために、光透過式を適用して高濃度粉体流量を測定する
ことは困難であった。
However, in the measurement using the powder densitometer based on the light transmission method described above, the maximum measurable powder concentration is restricted. Transfer medium (gas) from powder transfer tube
It is necessary to sample a part of the particles by suction at a constant velocity or to provide a branch pipe for measurement.
Even with such an improved method, the maximum powder concentration of a practically used dust concentration meter is about 200 gr / m 3 ,
Since the light is attenuated for the high-concentration particles more than that, it has been difficult to measure the flow rate of the high-concentration powder by applying the light transmission method.

【0006】本発明は上記のような問題点を解決するた
めに成されたものであり、高濃度領域の粉体濃度測定を
可能にし、粉体流量をオンラインで測定出来る方法及び
その装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and provides a method and apparatus capable of measuring powder concentration in a high-concentration region and measuring powder flow rate on-line. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は粉体が搬送媒体により搬送される管内
に、一定の長さで軸芯が該管と平行する内管を設け、そ
の内管の軸芯に直交する線上に対向する内管壁の開口部
に固定しで対向するように配設された光透過用測定管を
介して、光を透過させ、その透過率を測定し、それから
粉体平均濃度値を算出し、その算出値と前記搬送媒体の
流速値との乗算値から粉体流量値を算出することを特徴
とする管内を搬送媒体により搬送される高濃度粉体の流
量測定方法である。
In order to achieve the above object, the present invention provides an inner tube having a fixed length and an axis parallel to the tube in a tube in which powder is conveyed by a conveying medium. The light is transmitted through a light transmission measurement tube that is fixed to the opening of the inner tube wall facing the line perpendicular to the axis of the inner tube, and is disposed so as to face the inner tube. Measuring, calculating a powder average concentration value therefrom, and calculating a powder flow value from a multiplied value of the calculated value and the flow velocity value of the conveyance medium, wherein the high concentration conveyed by the conveyance medium in the pipe is characterized by: This is a powder flow measurement method.

【0008】上記本発明方法に適した測定装置として、
軸芯に直交する線上に位置して対向させた開口部を有す
る管と、その管内に、一定の長さで軸芯が該管と平行す
るように設けられた内管と、前記開口部に挿入され、該
内管の軸芯に直交する線上に対向する内管壁の開口部に
固定して対向するように配設された光透過用測定管と、
光透過用測定管に付設した先端間隔調節装置と、一方の
測定管の後端部に配置された光束入射用の光源体と、他
方の測定管の後端部に配置された光量検出端を具備した
光透過率検出部と、搬送媒体の流速を測定する検出端
と、それらの出力信号から粉体平均濃度値と媒体平均流
速値とを各々算出し、これらを乗算し、粉体流量値を演
算する装置を組合わせてなる管内を搬送媒体により搬送
される高濃度粉体の流量測定装置とするものである。
[0008] As a measuring apparatus suitable for the method of the present invention,
A pipe having an opening positioned on a line perpendicular to the axis and opposed to the pipe, an inner pipe provided in the pipe so that the axis is parallel to the pipe with a fixed length, and A light transmission measurement tube that is inserted and fixed to and opposed to the opening of the inner tube wall facing a line orthogonal to the axis of the inner tube,
A tip spacing adjustment device attached to the light transmission measurement tube, a light beam incident light source disposed at the rear end of one measurement tube, and a light amount detection end disposed at the rear end of the other measurement tube. The light transmittance detection unit provided, the detection end for measuring the flow velocity of the transport medium, and the powder average concentration value and the medium average flow velocity value are respectively calculated from the output signals thereof, and these are multiplied to obtain the powder flow rate value. Is a flow rate measuring device for high-concentration powder conveyed by a conveyance medium in a pipe formed by combining the devices for calculating the flow rate.

【0009】この場合、測定部での管は垂直管を使用
し、同芯同軸の連続した断面で、その直径の6倍以上の
長さのものとし、該管の粉体入側端から長さ方向の70
〜80%の位置に開口部を設け、更に図4に示す内管径
と長さの関係から内管寸法を決定し、透過用測定管を設
置することが測定部での粉体の流れの均一性を保つ上で
好ましい。
In this case, a vertical tube is used as a tube in the measuring section, and has a concentric continuous coaxial section having a length of at least 6 times its diameter, and a length from the powder entry side end of the tube. 70 in the vertical direction
An opening is provided at a position of about 80%, and the inner pipe size is determined from the relationship between the inner pipe diameter and the length shown in FIG. It is preferable to maintain uniformity.

【0010】[0010]

【作用】本発明は上記した構成で、管内に内管を設け、
この内管の軸芯に直交する線上に位置する内管壁の開口
部に固定した対向する光透過用測定管を介して、粉体に
光を透過させるものであり、開口部から光透過用測定管
を相対して挿入させて、測定部光路長を実際の粉体移送
管径より小さくして、光透過量の減衰量を抑制する。
叉、本発明の光源体としては、光強度の大きい平行光束
が容易に実現可能なように、レーザ光のような連続光源
体を用いることが出来る。
According to the present invention, an inner pipe is provided in a pipe having the above-described structure.
Light is transmitted through the powder through an opposing measurement tube for light transmission fixed to the opening of the inner tube wall located on a line perpendicular to the axis of the inner tube. The measuring tube is inserted opposite to make the optical path length of the measuring section smaller than the actual diameter of the powder transfer tube to suppress the attenuation of the light transmission amount.
In addition, as the light source of the present invention, a continuous light source such as a laser beam can be used so that a parallel light beam having a large light intensity can be easily realized.

【0011】即ち、本発明者等は高粉体濃度の場合、透
過光強度が上述した数式1から、小さくなるために、透
過長さ(光路長)を小さくすることに着目して検討を行
い、図3に示すような粉体平均濃度値と透過率(I/I
o )の関係を得て、上記発明に到達したものである。
In other words, the present inventors have made a study focusing on reducing the transmission length (optical path length) in the case of a high powder concentration, since the transmitted light intensity is reduced from the above-described formula (1). , The average powder concentration value and the transmittance (I / I
o) The above-mentioned invention has been attained by obtaining the relationship of o).

【0012】図3では硅砂5号(調和平均径(dp32)が0.
34mm、粒子の真比重 (ρ) が2.58)の粉体を空気を搬送
媒体として較正試験により求めた光透過率と粉体平均濃
度値の関係を示す実施例の図である。
In FIG. 3, silica sand No. 5 (having a harmonic mean diameter (dp32) of 0.
FIG. 7 is a diagram of an example showing a relationship between light transmittance and powder average density value obtained by a calibration test using powder having a true specific gravity (ρ) of 2.58) of 34 mm as a carrier medium.

【0013】ここでは垂直管の内径をDとし、内管に固
定した光透過用測定管の先端間隔即ち透過長さ(測定部
光路長)をLとし、D>Lの範囲で、Lを種々に変化さ
せてプロットし、粉体平均濃度値と透過率(I/Io )
の関係を得たものである。Lが小さい程、透過光強度
(I)が増大している。ここでは3kg/m3 程度までの測
定が可能であることを示している。比較として、図7に
示すような測定装置を用いた場合、点線で示すように
0.2kg/m3 程度までしか測定できなかった。
Here, the inside diameter of the vertical tube is D, the distance between the tips of the light transmission measurement tube fixed to the inner tube, ie, the transmission length (measurement section optical path length) is L, and L is variously set in the range of D> L. And averaged powder value and transmittance (I / Io)
The relationship was obtained. As L is smaller, the transmitted light intensity (I) increases. Here, it is shown that measurement up to about 3 kg / m 3 is possible. As a comparison, when a measuring device as shown in FIG. 7 was used, it was possible to measure only up to about 0.2 kg / m 3 as shown by the dotted line.

【0014】この場合、光透過用測定管を取付ける内管
は搬送管内に挿入した光透過用測定管によって、管内の
粉体流れに乱れが生じることを防止するために、設けら
れたものである。上記の作用によって、内管内部の媒体
の流速及び粉体濃度は搬送管全断面積における媒体の流
速及び粉体濃度を正しく代表することが出来るので、内
管内の粉体濃度を測定することによって、搬送管の断面
全体の粉体濃度を精度良く把握することが出来る。
In this case, the inner tube to which the light transmission measurement tube is attached is provided in order to prevent the powder flow in the tube from being disturbed by the light transmission measurement tube inserted into the transport tube. . By the above action, the flow velocity and the powder concentration of the medium inside the inner pipe can accurately represent the flow velocity and the powder concentration of the medium in the entire cross-sectional area of the transport pipe. In addition, the powder concentration in the entire cross section of the transfer pipe can be accurately grasped.

【0015】更にこの内管の粉体濃度値に搬送管内の媒
体平均流速値を乗算して、搬送粉体流量値を求めること
が出来る。今回の実験で使用したレーザーの光源体で
は、透過率0.15以上にすることが、粉体密度の測定精度
を向上させるために必要であった。しかし、光量検出端
の性能を向上させることによって、透過率を更に小さく
出来る。
Further, the flow rate value of the conveyed powder can be obtained by multiplying the powder concentration value of the inner pipe by the average flow velocity value of the medium in the conveyer pipe. In the laser light source used in this experiment, it was necessary for the transmittance to be 0.15 or more to improve the measurement accuracy of the powder density. However, the transmittance can be further reduced by improving the performance of the light amount detection end.

【0016】本発明では実際の粉体流量測定において、
粉体が粒子径が異なり、粒子の種類が異なる所謂混粒状
態にあるので、図3を基にして、図5に示すような透過
率と測定条件の関係式を用いて、光量検出端の出力信号
から本発明の演算装置により算出して粉体平均濃度値を
求める。
In the present invention, in actual powder flow rate measurement,
Since the powders have different particle diameters and different types of particles in a so-called mixed particle state, based on FIG. 3, the relation between the transmittance and the measurement conditions as shown in FIG. The arithmetic unit of the present invention calculates the average powder concentration value from the output signal.

【0017】図5は図1、図2の測定装置を用いた場合
の透過率(I/Io )と測定条件の関係を示す図で粉体
として硅砂2種と、鉄鉱石を用いた較正試験により得ら
れたものである。図5から明らかなように、粉体粒径が
異なっても、粒子真比重(ρ)を考慮することによっ
て、透過率(I/Io )が一つの較正直線上に一致して
測定することが出来た。このことから本発明では粉体粒
径、粉体種類が混粒していても測定が可能であることを
得た。
FIG. 5 is a graph showing the relationship between the transmittance (I / Io) and the measurement conditions when the measuring apparatus of FIGS. 1 and 2 is used, and a calibration test using two types of silica sand and iron ore as powder. It was obtained by As is apparent from FIG. 5, even when the powder particle diameters are different, the transmittance (I / Io) can be measured in accordance with one calibration line by taking the true specific gravity (ρ) into consideration. done. From this, it has been found that measurement is possible in the present invention even if the powder particle size and powder type are mixed.

【0018】即ち、測定装置としてのLを特定し、被測
定物の粉体の真比重(ρ)及び調和平均径(dp32) が取
扱いプロセスの固有値として自明であることから、透過
率(I/Io)を測定して、図5の直線から粉体平均濃度
値(kg/m3 )を一義的に求める。一方、搬送媒体の流速
を測定する検出端と、その出力信号から本発明の演算装
置により媒体平均流速値を算出する。
That is, L as a measuring device is specified, and since the true specific gravity (ρ) and the harmonic mean diameter (dp32) of the powder of the object to be measured are obvious as eigenvalues of the handling process, the transmittance (I / Io) is measured, and the average powder concentration value (kg / m 3 ) is uniquely determined from the straight line in FIG. On the other hand, a medium average flow velocity value is calculated by the arithmetic unit of the present invention from the detection end for measuring the flow velocity of the transport medium and its output signal.

【0019】即ち、既存のピトー管による圧力の検出信
号、又は熱線式流速検出端による温度の検出信号と媒体
平均流速の一般的関係式を用いることにより、上記媒体
平均流速値の算出が行われる。更に上記粉体平均濃度値
と媒体平均流速値とを本発明の演算装置により乗算する
ことによって、粉体流量値を算出することが出来る。
That is, the above-described medium average flow velocity value is calculated by using a pressure detection signal from an existing pitot tube or a temperature detection signal from a hot wire flow velocity detection end and a general relational expression between the medium average flow velocity. . Furthermore, the powder flow rate value can be calculated by multiplying the powder average concentration value and the medium average flow velocity value by the arithmetic unit of the present invention.

【0020】[0020]

【実施例】以下に本発明の実施例を図によって説明す
る。図1、図2は本発明の一実施例を示す図であり、図
1は本発明装置を設置した状態を示す図であり、図2は
本発明の装置の光透過率検出部の要部を示す図である。
図において、10は粉体流量計の光透過率検出部、11
a、11bは光透過用測定管、12は先端間隔調節装
置、13は流速検出端、21は内管である。7は粉体の
粒子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are views showing an embodiment of the present invention, FIG. 1 is a view showing a state in which the apparatus of the present invention is installed, and FIG. 2 is a main part of a light transmittance detecting section of the apparatus of the present invention. FIG.
In the figure, reference numeral 10 denotes a light transmittance detector of the powder flow meter,
Reference numerals a and 11b denote measurement tubes for light transmission, reference numeral 12 denotes a tip interval adjusting device, reference numeral 13 denotes a flow velocity detecting end, and reference numeral 21 denotes an inner tube. Reference numeral 7 denotes powder particles.

【0021】本発明の粉体流量の測定装置は、粉体が搬
送媒体により搬送される配管系9内に設けた、軸芯に直
交する線上に対向する管壁の開口部8a、8bを有する
垂直管1と、その垂直管1内に設けた軸芯に直交する線
上に対向する内管壁の開口部8c、8dを有する内管2
1と、前記開口部8a、8bに挿入して、内管21の開
口部8c、8dに固定した光透過用測定管11a、11
bと、光透過用測定管11a、11bに付設した先端間
隔調節装置12と、一方の測定管11aの後端部に配置
した光束入射用の光源体3と、他方の測定管11bの後
端部に配置した光量検出端5からなる光透過率検出部検
出部10と、搬送媒体の流速を測定する流速検出端1
3、及びそれらの検出端の出力信号から粉体平均濃度値
と媒体平均流速値とを各々算出し、これらを乗算し、粉
体流量値を演算する装置を組合わせてなるものである。
The powder flow rate measuring apparatus of the present invention has pipe wall openings 8a and 8b provided in a pipe system 9 in which powder is conveyed by a conveying medium and opposed on a line perpendicular to the axis. A vertical pipe 1 and an inner pipe 2 having openings 8c and 8d of inner pipe walls opposed to each other on a line perpendicular to an axis provided in the vertical pipe 1
And light transmission measurement tubes 11a, 11 inserted into the openings 8a, 8b and fixed to the openings 8c, 8d of the inner tube 21.
b, a tip spacing adjusting device 12 attached to the light transmission measurement tubes 11a, 11b, a light beam incident light source 3 disposed at a rear end of one measurement tube 11a, and a rear end of the other measurement tube 11b A light transmittance detecting section detecting section 10 comprising a light quantity detecting end 5 disposed in the section, and a flow rate detecting end 1 for measuring the flow rate of the transport medium.
3, and a device for calculating a powder average concentration value and a medium average flow velocity value from output signals from their detection terminals, multiplying them, and calculating a powder flow rate value.

【0022】演算装置では光量検出端5と流速検出端1
3から各々測定値を信号に変換して演算装置14に送信
し、演算部15で演算し、表示部16に粉体7の流量を
表示させる。17は記憶部である。粉体の流量は指令部
18から、図示しない搬送媒体の流速調整機構、粉体供
給機構等へ指示することによって、調節することが出来
る。上記では垂直管を配管直径の6倍の長さのものと
し、粉体入側端から75%の位置に開口部を設けて、光
透過用測定管を設置した。
In the arithmetic unit, the light amount detecting end 5 and the flow velocity detecting end 1
Each of the measured values is converted into a signal from 3 and transmitted to the arithmetic unit 14, the arithmetic unit 15 calculates the signal, and the display unit 16 displays the flow rate of the powder 7. 17 is a storage unit. The flow rate of the powder can be adjusted by giving an instruction from the command unit 18 to a not-shown transport medium flow rate adjusting mechanism, a powder supply mechanism, and the like. In the above description, the length of the vertical pipe was six times the pipe diameter, an opening was provided at a position 75% from the powder entry end, and the light transmission measurement pipe was installed.

【0023】叉、内管の長さl及び内直径dについては
Lに基づきdを決定し、図4から定まるlの値を内管の
長さとした。ここでは光源体3と、光量検出端5とに
は、光束を拡大、縮小するためにレンズ20を設けてい
る。光透過用測定管11a、11bは同一径のものを用
い、同一軸芯になるように設置することが必要である。
光束を正確に検出するためである。叉、光束を正確に検
出するために、観察窓( 透明ガラス)2、Oリング6等
の気密機構が用いられている。更に光源体3と、光量検
出端5等は外乱を防止するために、カバー19を設けて
いる。
The length l and the inner diameter d of the inner tube were determined based on L, and the value of l determined from FIG. 4 was taken as the length of the inner tube. Here, a lens 20 is provided between the light source body 3 and the light amount detection end 5 in order to enlarge or reduce the light flux. It is necessary to use the light transmission measurement tubes 11a and 11b having the same diameter and to install them so that they have the same axis.
This is for accurately detecting the light flux. An airtight mechanism such as an observation window (transparent glass) 2 and an O-ring 6 is used to accurately detect the light flux. Further, the light source body 3 and the light amount detection end 5 are provided with a cover 19 for preventing disturbance.

【0024】本発明の装置を用いて、本発明方法を行う
場合について説明する。粉体を搬送する配管系9内に設
けた垂直管1に粉体を搬送媒体によって通過させる。こ
こでは垂直管1が配管系9内の配管と同心等断面積なの
で、測定部での流れの均一性が保たれているために、そ
の中を通過する粉体濃度は配管系9内の粒子7の粉体濃
度と同じである。
The case where the method of the present invention is performed using the apparatus of the present invention will be described. The powder is passed by a transport medium through a vertical pipe 1 provided in a piping system 9 for transporting the powder. Here, since the vertical pipe 1 has the same cross-sectional area as the pipe in the pipe system 9, the uniformity of the flow in the measuring section is maintained. 7 is the same as the powder concentration.

【0025】光透過用測定管11a、11bは垂直管1
の軸芯Cに直交する線E上に位置して対向させた開口部
8a、8b及び内管21に直交して同一線上に位置して
対向させた開口部8c、8dから挿入し、配設している
ので、光透過用測定管11a、11bは同一径であり、
その軸芯が一致する。これによって、測定管11aの端
部に接続した光束入射用の光源体3から入射された光束
は平行光束4として、垂直管1内の粉体を直角に横切
り、測定管11bを通過して光量検出端5で検出され
る。
The light transmission measuring tubes 11a and 11b are vertical tubes 1
The openings 8a and 8b are located on a line E orthogonal to the axis C of the inner tube 21 and are opposed to the openings 8c and 8d are located on the same line and are orthogonal to the inner tube 21 and are disposed. Therefore, the light transmission measurement tubes 11a and 11b have the same diameter,
The axes match. Accordingly, the light beam incident from the light source 3 for light beam incidence connected to the end of the measuring tube 11a crosses the powder in the vertical tube 1 at a right angle as a parallel light beam 4, passes through the measuring tube 11b, and emits light. It is detected at the detection end 5.

【0026】上記本発明の装置により一定の先端間隔
(L)を設けた対向する測定管の一方から他方へ光を透
過し、その透過光量の減衰を元の光の投光強度と比較し
て求め、内管内の粉体平均濃度値を算出する。この場
合、測定部の光路長(L)を実際の粉体搬送管径より小
さくしているので、図5の粉体平均濃度と透過率から先
端間隔を選定して、光透過量の減衰量を抑制することが
出来る。その結果、粉体の高濃度粒子群の粉体平均濃度
値を正確に測定することが出来る。
Light is transmitted from one of the opposed measuring tubes provided with a constant tip distance (L) to the other by the apparatus of the present invention, and the attenuation of the transmitted light amount is compared with the intensity of the original light. Then, the average powder concentration value in the inner tube is calculated. In this case, since the optical path length (L) of the measuring section is smaller than the actual powder conveying pipe diameter, the tip distance is selected from the average powder concentration and the transmittance in FIG. Can be suppressed. As a result, the powder average concentration value of the high-concentration particles of the powder can be accurately measured.

【0027】本発明では実際の粉体流量測定において、
粉体が粒子径が異なり、粒子の種類が異なる所謂混粒状
態にあるので、図3を基にして、図5に示すような透過
率と測定条件の関係式を演算装置の記憶部17にあらか
じめ記憶させ、演算部15で測定された光量検出端5の
出力信号から粉体平均濃度値を算出する。
In the present invention, in actual powder flow rate measurement,
Since the powder is in a so-called mixed particle state having different particle diameters and different types of particles, the relational expression between the transmittance and the measurement conditions as shown in FIG. 5 is stored in the storage unit 17 of the arithmetic unit based on FIG. The average density value of the powder is stored in advance and calculated from the output signal of the light amount detection end 5 measured by the calculation unit 15.

【0028】一方、流速検出端13の出力信号から演算
部15により媒体平均流速値を算出する。ここではピト
ー管による圧力の検出信号と媒体平均流速値の一般的関
係式を用いることにより、上記媒体平均流速値を算出す
る。更に上記粉体平均濃度値と媒体平均流速値とを演算
部15により乗算することによって、粉体流量値を算出
する。これらの値は表示部16によって表示される。
On the other hand, from the output signal of the flow velocity detecting end 13, the arithmetic section 15 calculates an average flow velocity value of the medium. Here, the medium average flow velocity value is calculated by using a general relational expression between the detection signal of the pressure by the pitot tube and the medium average flow velocity value. Further, the arithmetic unit 15 multiplies the average powder concentration value and the average medium flow velocity value to calculate a powder flow value. These values are displayed by the display unit 16.

【0029】本発明では内管を用いているが、垂直管の
直径と測定管の直径の最適関係範囲としては次の数式2
によって決めることが出来る。これは次の理由によるも
のである。 測定管の直径が太いと該垂直管内流の外乱になり測定
に疑義がでる。 測定管の直径と粉体粒径の関係は測定管の直径が太い
と検出値が安定する。
In the present invention, the inner pipe is used. The optimum relationship between the diameter of the vertical pipe and the diameter of the measuring pipe is expressed by the following equation (2).
Can be determined by This is for the following reason. If the diameter of the measuring tube is large, the flow in the vertical tube is disturbed, and the measurement is questionable. Regarding the relationship between the diameter of the measuring tube and the particle diameter of the powder, the detected value is stable when the diameter of the measuring tube is large.

【0030】[0030]

【数2】 (Equation 2)

【0031】本発明では光透過用測定管の先端間隔の最
適範囲、即ち内管の内直径は次の理由によって決めるこ
とが出来る。下限値については間隔が狭すぎると間の測
定区間の流速分布が阻害されるので、その影響を受けな
い最小の間隔とする。一般には搬送管は1/10程度で
ある。上限値については間隔が広いと光透過量減衰が大
きくなるので、光透過量減衰の許容出来る間隔とする。
In the present invention, the optimum range of the interval between the tips of the light transmission measurement tubes, ie, the inner diameter of the inner tube, can be determined for the following reasons. As for the lower limit, if the interval is too narrow, the flow velocity distribution in the measurement section between the intervals is hindered. Generally, the transfer pipe is about 1/10. The upper limit is set to an allowable interval for the attenuation of the light transmission amount since the light transmission amount attenuation increases when the interval is wide.

【0032】本発明による内管の長さは光透過用測定管
による粉体の流れの外乱を防止し、粉体流量を精度良く
推定する見地から、内管の断面形状については垂直管の
断面形状と相似でも、また円管状いずれでも良い。
The length of the inner tube according to the present invention is determined from the viewpoint of preventing disturbance of the powder flow by the light transmission measuring tube and accurately estimating the powder flow rate. It may be similar to the shape, or may be a circular tube.

【0033】本発明のように内管にこれらの光透過用測
定管を対向して固定することによって、配管の振動、熱
膨張等に起因する二つの光透過用測定管の芯ずれによる
光路の遮断等の事態も回避できるという利点も有する。
By fixing these light transmission measurement tubes to the inner tube as opposed to each other as in the present invention, the optical path of the two light transmission measurement tubes due to misalignment due to vibration, thermal expansion, etc. of the pipes is reduced. There is also an advantage that a situation such as interruption can be avoided.

【0034】本発明方法によれば、条件として管長2.0
m、管径0.2 mの垂直管を配管系に配置し、垂直管の入
側から75%の位置に設けた開口部から光透過用測定管
を挿入して突出させ、内径0.1 m、長さ0.5 mの内管に
固定して、粉体として硅砂5号(dp32=0.34mm,ρ=2.58)
を空気を媒体として流速20m/秒で搬送した場合、図6
に示すような結果を得ることが出来た。図6は粉体流量
(トン/時間)と測定経過時間との関係を示す図であ
る。
According to the method of the present invention, a pipe length of 2.0
m, a vertical pipe having a diameter of 0.2 m is arranged in the piping system, and a light transmission measuring pipe is inserted and protruded from an opening provided at a position 75% from the entrance side of the vertical pipe to have an inner diameter of 0.1 m and a length of 0.1 m. It is fixed to the inner pipe of 0.5m, and silica sand No.5 (dp32 = 0.34mm, ρ = 2.58) as powder
Is transported at a flow rate of 20 m / sec using air as a medium.
The result as shown in was able to be obtained. FIG. 6 is a diagram showing the relationship between the powder flow rate (ton / hour) and the elapsed measurement time.

【0035】ここでは粉体濃度のサンプリング間隔を0.
6 秒とし、粉体平均濃度値とガス流速値との乗算から、
粉体流量値を算出しプロットしたものである。上記結果
から明らかなように、高濃度領域の粉体濃度測定によっ
て、粉体流量をオンラインで測定することが出来る。
Here, the sampling interval of the powder concentration is set to 0.
6 seconds, from the multiplication of the average powder concentration value and the gas flow rate value,
The powder flow rate is calculated and plotted. As is clear from the above results, the powder flow rate can be measured online by measuring the powder concentration in the high concentration region.

【0036】[0036]

【発明の効果】本発明によれば、以下の効果が得られ
る。 光透過用測定管を取付けた内管は搬送管内の粉体の流
れの外乱を防止し、粉体濃度の検出、及び粉体流量値の
測定精度を向上する。 粉体濃度3kg/m3 迄の高濃度の測定が可能である。 高濃度粉体の多量搬送量の測定が可能である。 内管にこれらの光透過用測定管を対向して固定するこ
とによって、配管の振動、熱膨張等に起因する二つの光
透過用測定管の芯ずれによる光路の遮断等の事態も回避
できる。
According to the present invention, the following effects can be obtained. The inner tube provided with the light transmission measurement tube prevents disturbance of the flow of the powder in the transport tube, and improves the detection of the powder concentration and the measurement accuracy of the powder flow value. High concentration measurement up to 3 kg / m 3 powder concentration is possible. It is possible to measure a large amount of transported high-concentration powder. By fixing these light transmission measurement tubes to the inner tube so as to face each other, it is possible to avoid a situation such as interruption of the optical path due to misalignment of the two light transmission measurement tubes due to vibration of the piping, thermal expansion and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置を配管系に設置した状態を示す図で
ある。
FIG. 1 is a diagram showing a state where the device of the present invention is installed in a piping system.

【図2】本発明の装置の光透過率検出部の要部を示す図
である。
FIG. 2 is a diagram showing a main part of a light transmittance detection unit of the device of the present invention.

【図3】本発明の先端間隔を変化した場合の粉体平均濃
度と透過率との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the average powder concentration and the transmittance when the tip interval is changed according to the present invention.

【図4】本発明の内管の長さと測定条件の関係を示す図
である。
FIG. 4 is a diagram showing the relationship between the length of an inner tube and measurement conditions according to the present invention.

【図5】本発明の一実施例による透過率と測定条件の関
係を示す図である。
FIG. 5 is a diagram showing a relationship between transmittance and measurement conditions according to one embodiment of the present invention.

【図6】本発明の一実施例による粉体流量と測定経過時
間との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a powder flow rate and a measurement elapsed time according to an embodiment of the present invention.

【図7】従来の光透過方式粉体濃度計の一例を示す図で
ある。
FIG. 7 is a diagram showing an example of a conventional light transmission type powder densitometer.

【符号の説明】[Explanation of symbols]

10 粉体流量計の光透過率検出部 11a,11b 光透過用測定管 12 先端間隔調節装置 13 流速検出端 14 粉体流量計の演算装置 21 内管 DESCRIPTION OF SYMBOLS 10 Light transmittance detection part of powder flow meter 11a, 11b Light transmission measurement tube 12 Tip spacing adjustment device 13 Flow velocity detection end 14 Calculation device of powder flow meter 21 Inner tube

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01F 1/74──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G01F 1/74

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉体が搬送媒体により搬送される管内
に、一定の長さで軸芯が該管と平行する内管を設け、そ
の内管に固定して対向するように配設された光透過用測
定管を介して、光を透過させ、その透過率を測定し、そ
れから粉体平均濃度を算出し、その算出値と前記搬送媒
体の流速値とから粉体流量を算出することを特徴とする
管内を搬送媒体により搬送される高濃度粉体の流量測定
方法。
1. An inner pipe having a fixed length and an axis parallel to the pipe is provided in a pipe in which the powder is transported by a transport medium, and is fixed to the inner pipe so as to face the inner pipe. Through a light transmission measuring tube, light is transmitted, its transmittance is measured, the powder average concentration is calculated from the light transmission tube, and the powder flow rate is calculated from the calculated value and the flow velocity value of the transport medium. A method for measuring a flow rate of a high-concentration powder conveyed by a conveyance medium in a pipe.
【請求項2】 軸芯に直交する線上に位置して対向させ
た管壁の開口部を有する管と、その管内に、一定の長さ
で軸芯が該管と平行するように設けられた内管と、前記
開口部に挿入され、該内管の軸芯に直交する線上に対向
する内管壁の開口部に固定して対向するように配設され
た光透過用測定管と、光透過用測定管に付設した先端間
隔調節装置と、一方の測定管の後端部に配置された光束
入射用の光源体と、他方の測定管の後端部に配置された
光量検出端を具備した光透過率検出部と、搬送媒体の流
速を測定する検出端と、それらの出力信号から粉体平均
濃度と媒体平均流速とを各々算出し、これらを乗算し、
粉体流量を演算する装置を組合わせてなる管内を搬送媒
体により搬送される高濃度粉体の流量測定装置。
2. A tube having an opening in a tube wall facing and located on a line orthogonal to the axis, and a shaft having a fixed length provided in the tube so as to be parallel to the tube. An inner tube, a light transmission measurement tube inserted into the opening and fixed to and opposed to the opening of the inner tube wall facing a line perpendicular to the axis of the inner tube; Equipped with a tip spacing adjusting device attached to the transmission measuring tube, a light source for light beam incidence arranged at the rear end of one measuring tube, and a light amount detection end arranged at the rear end of the other measuring tube. The light transmittance detection unit and the detection end for measuring the flow velocity of the transport medium, the average powder concentration and the average flow velocity of the medium are respectively calculated from the output signals thereof, and these are multiplied.
An apparatus for measuring the flow rate of a high-concentration powder conveyed by a conveyance medium in a pipe formed by combining a device for calculating a powder flow rate.
JP23472192A 1992-09-02 1992-09-02 Method and apparatus for measuring flow rate of high-concentration powder conveyed by a conveyance medium in a pipe Expired - Fee Related JP2797856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23472192A JP2797856B2 (en) 1992-09-02 1992-09-02 Method and apparatus for measuring flow rate of high-concentration powder conveyed by a conveyance medium in a pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23472192A JP2797856B2 (en) 1992-09-02 1992-09-02 Method and apparatus for measuring flow rate of high-concentration powder conveyed by a conveyance medium in a pipe

Publications (2)

Publication Number Publication Date
JPH0682288A JPH0682288A (en) 1994-03-22
JP2797856B2 true JP2797856B2 (en) 1998-09-17

Family

ID=16975337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23472192A Expired - Fee Related JP2797856B2 (en) 1992-09-02 1992-09-02 Method and apparatus for measuring flow rate of high-concentration powder conveyed by a conveyance medium in a pipe

Country Status (1)

Country Link
JP (1) JP2797856B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6837098B2 (en) 2003-03-19 2005-01-04 Weatherford/Lamb, Inc. Sand monitoring within wells using acoustic arrays
US8767214B2 (en) * 2011-10-06 2014-07-01 Nordson Corporation Powder flow detection
DE102021208971A1 (en) 2021-08-16 2023-02-16 HPL Technologies GmbH Powder feed device for a coating device

Also Published As

Publication number Publication date
JPH0682288A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
EP0074365A1 (en) Measurement of bulk density of particulate materials
EP0952431B1 (en) Optical flow meter
KR20070043690A (en) Non-contact exhaust gas measurement by means of ftir spectroscopy on metallurgical plants
JP2797856B2 (en) Method and apparatus for measuring flow rate of high-concentration powder conveyed by a conveyance medium in a pipe
AU607310B2 (en) Method and apparatus for measuring particle concentration in a suspension
US4519257A (en) Electronic flow meter for measuring flow of bulk solids pneumatically conveyed through a hose
JP2861664B2 (en) Flow measurement method for high concentration powder conveyed in pipe
JPH1090028A (en) Ultrasonic wave mass flowmeter
US5247188A (en) Concentrator funnel for vacuum line particle monitors
JPS6114542A (en) Particle size measuring instrument
JPH09189587A (en) Powder flowmeter
JPS6197552A (en) Measurement of concentration level for uranium
Parker Some factors governing the design of probes for sampling in particle-and drop-laden streams
SU1280478A2 (en) Probe for isokinetic sampling
CN214472576U (en) Probing type receiving and transmitting integrated optical fiber dust concentration measuring device
JP2698399B2 (en) Acoustic combustion gas temperature measurement device
JPS5944581B2 (en) Magnetic pressure oxygen analyzer
CN214703224U (en) High-precision dust monitor
JPH05126738A (en) Density measurement method for powder and its device
JPH08261838A (en) Turbine blade temperature measuring apparatus
JP3095839B2 (en) Powder detector
JP2813293B2 (en) Dust collector abnormality detection method and abnormality detection device
JPS6337889B2 (en)
JPS593205A (en) Method for measuring speed of corrosion
JPS63243722A (en) Monitor for liquid level in crucible

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees