JP2797592B2 - Sound absorbing material - Google Patents

Sound absorbing material

Info

Publication number
JP2797592B2
JP2797592B2 JP2017527A JP1752790A JP2797592B2 JP 2797592 B2 JP2797592 B2 JP 2797592B2 JP 2017527 A JP2017527 A JP 2017527A JP 1752790 A JP1752790 A JP 1752790A JP 2797592 B2 JP2797592 B2 JP 2797592B2
Authority
JP
Japan
Prior art keywords
sound
sound absorbing
powder
absorbing material
glass wool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017527A
Other languages
Japanese (ja)
Other versions
JPH03223186A (en
Inventor
和喜男 山田
有三 奥平
一哲 梅岡
善隆 栗原
隆 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2017527A priority Critical patent/JP2797592B2/en
Publication of JPH03223186A publication Critical patent/JPH03223186A/en
Application granted granted Critical
Publication of JP2797592B2 publication Critical patent/JP2797592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明の吸音材は次のような場合に用いられる。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The sound absorbing material of the present invention is used in the following cases.

(1) リスニングルーム、楽器練習室等の内装材とし
て用いる。室内の音響特性が問題となる部屋で、室内残
響時間特性、反射特性などを制御するために仕上げ用の
内装材として用いる。
(1) Used as interior material for listening rooms, musical instrument practice rooms, etc. It is used as a finishing interior material to control indoor reverberation time characteristics, reflection characteristics, and the like in a room where acoustic characteristics in the room are problematic.

(2) 壁・天井の充填材として用いる。(2) Used as a filler for walls and ceilings.

遮音性能が要求される部屋では、壁、天井の遮音性能
を向上させるために、2重壁構造を取る場合が多いが、
更に性能を上げるために、2重壁間に吸音材を充填する
場合が多い。そのような目的のために用いる。
In rooms where sound insulation performance is required, in order to improve the sound insulation performance of walls and ceilings, a double wall structure is often adopted,
In order to further improve the performance, a sound absorbing material is often filled between the double walls. Used for such purposes.

(3) その他、吸音ダクトの内貼り用、騒音を発生す
る機械、機器の防音カバーの内貼りなどにも用いる。
(3) In addition, it is also used for sticking sound absorbing ducts inside, sound sticking covers for machines and equipment that generate noise.

〔従来の技術〕[Conventional technology]

従来の吸音材である発泡ウレタン、グラスウールなど
は、第2図および第3図に示すように素材の多孔性を利
用している。すなわち、第2図および第3図に示すよう
な、発泡ウレタン4やグラスウール5の連通した気泡
(3)または孔(4)の中に音波が入射すると、それが
複雑な断面形状をした連続気泡であるために、音波が伝
搬していく途中で気泡壁面との粘性摩擦などによって音
圧が減少し、その結果、音波エネルギが材料の中で吸収
されるのである。
Conventional sound absorbing materials such as urethane foam and glass wool utilize the porosity of the material as shown in FIGS. That is, as shown in FIG. 2 and FIG. 3, when a sound wave enters the communicating bubble (3) or hole (4) of the urethane foam 4 or the glass wool 5, it is an open cell having a complicated cross-sectional shape. Therefore, the sound pressure is reduced by viscous friction with the bubble wall surface while the sound wave is propagating, and as a result, the sound wave energy is absorbed in the material.

発泡ウレタン(密度20kg/m3、厚さ24mm)とグラスウ
ール(密度32kg/m3、厚さ24mm)の垂直入射吸音率を第
4図(a)、(b)に示す。
FIGS. 4 (a) and 4 (b) show the normal incidence sound absorption coefficient of urethane foam (density 20 kg / m 3 , thickness 24 mm) and glass wool (density 32 kg / m 3 , thickness 24 mm).

多孔質材料の吸音率は、音波の単位時間当りの圧力変
動の回数が多い程、また波長に比べて音波の伝搬距離が
長い程大きくなる。すなわち、音波の周波数が高くなる
程、また吸音材の厚さが厚くなる程、吸音率が大きくな
る。換言すれば、低周波数の音波に対しては小さい吸音
率しかもたない。
The sound absorption coefficient of the porous material increases as the number of pressure fluctuations per unit time of the sound wave increases and as the propagation distance of the sound wave increases as compared with the wavelength. That is, as the frequency of the sound wave increases and as the thickness of the sound absorbing material increases, the sound absorption coefficient increases. In other words, it has only a small sound absorption coefficient for low frequency sound waves.

低周波数の吸音率を上げようとすれば、従来の吸音材
では、材厚を厚くしなければならないが、厚くすれば部
屋の内装材として使用した場合、部屋が狭くなったり、
また、ダクトの内張りとして使用した時には、空気の通
路が狭くなってしまうという問題が生じる。低周波数の
吸音は、リスニングルームの室内音響、壁・天井等の遮
音、機械騒音の抑制、いずれの場合にも重要な位置を占
める。
In order to increase the low frequency sound absorption coefficient, the conventional sound absorbing material must be thicker, but if it is used as a room interior material, the room becomes narrower,
Further, when used as a lining of a duct, there is a problem that the air passage becomes narrow. Low-frequency sound absorption occupies an important position in all cases, including room acoustics in a listening room, sound insulation of walls and ceilings, and suppression of mechanical noise.

〔発明が解決しようとする課題〕 本発明が解決しようとする課題は、材厚が薄くても低
周波数の吸音率の高い吸音材を提供することである。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is to provide a sound absorbing material having a low sound absorption coefficient at a low frequency even though the material thickness is small.

〔課題を解決する為の手段〕[Means for solving the problem]

本発明の要旨とするところは、グラスウール、ロック
ウールなどの繊維質多孔材に粉体を含ませた吸音材であ
って、低周波の吸音特性を有する粉体を繊維質多孔材か
ら拘束されることなく振動可能となるように含ませてな
る、高周波域のみならず、低周波域でも吸音率の高い吸
音材である。
The gist of the present invention is a sound absorbing material in which powder is contained in a fibrous porous material such as glass wool and rock wool, and the powder having a low-frequency sound absorbing property is restrained from the fibrous porous material. It is a sound absorbing material that has a high sound absorption coefficient not only in a high frequency range but also in a low frequency range, which is included so as to be vibrable without vibration.

この粉体の吸音性能は、粉体粒子の大きさ、形状(例
えば、フレーク状粉体であればアスペクト比)、粉体集
合体としての密度、凝集状態などにより、その吸音特性
が変化する。第5図乃至第9図に粒子径の異なるフレー
ク状粉体の垂直入射の吸音率特性を示す。ここで示した
粉体はマイカで、その粒子径などの物性は次記する表−
1に示す。
The sound absorbing properties of the powder vary depending on the size and shape of the powder particles (for example, aspect ratio in the case of flake-like powder), the density of the powder aggregate, the state of aggregation, and the like. FIG. 5 to FIG. 9 show the sound absorption coefficient characteristics of flake-like powders having different particle diameters at normal incidence. The powder shown here is mica, and its physical properties such as particle size are shown in the table below.
It is shown in FIG.

粒子径によって粉体の吸音率特性は異なるものとなっ
ているが、全般に高い吸音率を有していることがわか
る。特に、粒子径の小さい場合、第10図に示す、同厚の
グラスウールの吸音特性に比べて低周波域の吸音性能が
良好である。
Although the sound absorption characteristics of the powder differ depending on the particle diameter, it is understood that the powder has a high sound absorption coefficient as a whole. In particular, when the particle size is small, the sound absorbing performance in the low frequency region is better than the sound absorbing characteristics of glass wool having the same thickness as shown in FIG.

このような粉体を吸音材として用いる場合、これを成
形しなければ実用に適さない。しかし、成形のために、
粉体の振動を拘束してしまった場合は第4図乃至第9図
に示すような高い吸音率を持たせることができない。
When such a powder is used as a sound absorbing material, it is not suitable for practical use unless it is molded. However, for molding,
If the vibration of the powder is restricted, a high sound absorption coefficient as shown in FIGS. 4 to 9 cannot be obtained.

そのため、粉体の振動が可能な状態を保持したまま吸
音材として実用に適したものとなるように低密度のグラ
スウール、ロックウールなどの繊維質多孔材の中に混入
(例えば、機械的に混入)すれば、粉体の振動は拘束さ
れないため、粉体自体が有していた吸音特性を低下させ
ることがなく、低周波域で吸音率の高い吸音材となりう
る。
Therefore, it is mixed into a low-density fibrous porous material such as glass wool or rock wool so as to be suitable for practical use as a sound absorbing material while maintaining the state in which the powder can vibrate (for example, mechanically mixed) In this case, since the vibration of the powder is not restricted, the sound absorbing material having a high sound absorbing coefficient in a low frequency range can be obtained without deteriorating the sound absorbing characteristics of the powder itself.

繊維質多孔材としては、グラスウール、ロックウール
に限るものでなく、また粉体としては、マイカ(金雲
母、黒雲母、白雲母)に限らず、パイロフィライト、タ
ルク、緑泥石、モンモリロナイト、カオリン、蛇絞石、
ハロサイト、バーミキュライト、ヒル石などであっても
よい。
The fibrous porous material is not limited to glass wool and rock wool, and the powder is not limited to mica (phlogopite, biotite, muscovite), but also pyrophyllite, talc, chlorite, montmorillonite, kaolin , Snake squeezing stone,
Hallosite, vermiculite, hill stone, and the like may be used.

〔作用〕[Action]

多孔質材は上述したように、その吸音の原理から薄型
のままでは低周波音の吸音性能に限界がある。これに対
し、振動可能な吸音特性を有する粉体は、入射音波の音
圧に対してそれ自体が振動し音響エネルギーを振動エネ
ルギーに変換させる、音波を吸音する作用を有してい
る。
As described above, the porous material has a limit in the sound absorbing performance of low-frequency sound if it is thin because of its sound absorbing principle. On the other hand, the powder having the vibration-absorbing sound-absorbing property has a function of absorbing sound waves by vibrating itself in response to the sound pressure of incident sound waves and converting acoustic energy into vibration energy.

〔実施例〕〔Example〕

本発明に基づく実施例を第1図に示す。グラスウール
(密度12kg/m3)の繊維(2)間に重量平均フレーク径9
0μm、アスペクト比50のマイカ(金雲母)粉体(1)
を配合したものである。粉体(1)とグラスウール繊維
(2)との重量比は1:1であり、粉体のフレーク径の分
布は重量で62μm以下が45%、105μm〜62μmが20
%、211μm〜105μmが33%、594μm〜211μmが2
%、594μm以上は微量である。この実施例の吸音材
は、第8図に近い吸音性を示す。
An embodiment according to the invention is shown in FIG. Weight average flake diameter 9 between fibers (2) of glass wool (density 12 kg / m 3 )
0μm, mica (phlogopite) powder with aspect ratio 50 (1)
Is blended. The weight ratio of the powder (1) to the glass wool fiber (2) is 1: 1.
%, 211 μm to 105 μm is 33%, 594 μm to 211 μm is 2
%, 594 μm or more is trace. The sound absorbing material of this embodiment has sound absorbing properties close to those of FIG.

〔発明の効果〕〔The invention's effect〕

本発明による吸音材は、振動による低周波の吸音特性
を有する粉体を、繊維質多孔材から拘束されることなく
振動可能な状態でその繊維質多孔材の中に配合している
ため、繊維質多孔材による高周波音波の吸音効果のみな
らず、粉体が本来有する振動による低周波音波の吸音効
果も得られ、実用に適する吸音材となっている。これに
よって薄型でも低周波域で吸音性の優れた吸音材を得る
ことができる。
The sound-absorbing material according to the present invention comprises a powder having a low-frequency sound-absorbing property due to vibration, which is compounded in the fibrous porous material in a viable state without being restricted by the fibrous porous material. In addition to the sound absorbing effect of the high-frequency sound wave by the porous material, the sound absorbing effect of the low-frequency sound wave due to the inherent vibration of the powder is obtained, and the sound absorbing material is suitable for practical use. As a result, it is possible to obtain a sound absorbing material having excellent sound absorbing properties in a low frequency range even if it is thin.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す断面図、第2図は発泡
ウレタンの断面概略図、第3図はグラスウールの断面概
略図、第4図(a)は発泡ウレタンの吸音率特性、第4
図(b)はグラスウールの吸音率特性、第5図乃至第9
図はマイカ粉体の吸音率特性、第10図は第5図乃至第9
図に示したマイカ粉体と同厚の時のグラスウール吸音率
特性を表す図である。
1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a schematic sectional view of urethane foam, FIG. 3 is a schematic sectional view of glass wool, FIG. 4 (a) is a sound absorption characteristic of urethane foam, 4th
FIG. 5 (b) shows the sound absorption characteristics of glass wool, and FIGS.
Fig. 10 shows the sound absorption coefficient characteristics of mica powder. Fig. 10 shows Figs.
It is a figure showing the glass wool sound absorption coefficient characteristic at the time of the same thickness as the mica powder shown in the figure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗原 善隆 大阪府門真市大字門真1048番地 松下電 工株式会社特許課内 (72)発明者 中井 隆 大阪府門真市大字門真1048番地 松下電 工株式会社特許課内 (56)参考文献 特開 昭61−101476(JP,A) 特開 昭50−15812(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 38/08──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshitaka Kurihara 1048 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Works Co., Ltd. (56) References JP-A-61-101476 (JP, A) JP-A-50-15812 (JP, A) (58) Fields studied (Int. Cl. 6 , DB name) C04B 38/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】グラスウール、ロックウールなどの繊維質
多孔材に粉体を含ませた吸音材であって、低周波の吸音
特性を有する粉体を繊維質多孔材から拘束されることな
く振動可能となるように含ませてなる吸音材。
1. A sound-absorbing material in which powder is contained in a fibrous porous material such as glass wool or rock wool, wherein the powder having a low-frequency sound absorbing property can be vibrated without being restrained by the fibrous porous material. A sound absorbing material that is included so that
JP2017527A 1990-01-26 1990-01-26 Sound absorbing material Expired - Fee Related JP2797592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017527A JP2797592B2 (en) 1990-01-26 1990-01-26 Sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017527A JP2797592B2 (en) 1990-01-26 1990-01-26 Sound absorbing material

Publications (2)

Publication Number Publication Date
JPH03223186A JPH03223186A (en) 1991-10-02
JP2797592B2 true JP2797592B2 (en) 1998-09-17

Family

ID=11946398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017527A Expired - Fee Related JP2797592B2 (en) 1990-01-26 1990-01-26 Sound absorbing material

Country Status (1)

Country Link
JP (1) JP2797592B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015812A (en) * 1973-06-12 1975-02-19
JPS61101476A (en) * 1984-10-24 1986-05-20 大建工業株式会社 Mineral fiber board

Also Published As

Publication number Publication date
JPH03223186A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
Seddeq Factors influencing acoustic performance of sound absorptive materials
JP5683044B2 (en) Production method of sound transmitting material
CN108457393B (en) Sound absorbing structure for anechoic chamber and anechoic chamber comprising same
JPS63153592A (en) Silencer
JP3931426B2 (en) Sound absorbing material, method for producing the same, and soundproof structure
JP2797592B2 (en) Sound absorbing material
JP5262800B2 (en) Sound absorbing structure
JP3158808B2 (en) Sound absorbing material
JPH04194244A (en) Sound absorption material
JP2784294B2 (en) Sound absorbing material and method of manufacturing sound absorbing material
JP2011058188A (en) Sound room
JP2874352B2 (en) Sound insulation panel
JP5940634B2 (en) Sound transmissive material, and sound adjustment surface structure including architectural use using the material, microphone windshield, protective grill, sound transmissive projection screen and speaker
Hall et al. Mass-Air-Mass resonance cavity suppression using Helmholtz Resonators
JPH11133980A (en) Sound absorbing material and manufacture thereof
JP3124823B2 (en) Sound absorbing material
JPH03273296A (en) Sound absorbing material
JP3181931B2 (en) Sound absorbing material
Oh et al. Interior and exterior noise reduction of a rectangular enclosure according to the determination of suitable thickness of the foamed aluminum sheet absorber
JPH08123431A (en) Sound absorbing material and its installation method
JPH03161603A (en) Sound attenuation wall
JPH08109687A (en) Sound-insulating triple wall body structure
Tang Low frequency acoustic performance in ducts using honeycomb layer systems
JPH04106243A (en) Sound insulating panel
JPH02187799A (en) Acoustical material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070703

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees