JP2795665B2 - High speed tool steel and method for manufacturing the same - Google Patents

High speed tool steel and method for manufacturing the same

Info

Publication number
JP2795665B2
JP2795665B2 JP5146289A JP5146289A JP2795665B2 JP 2795665 B2 JP2795665 B2 JP 2795665B2 JP 5146289 A JP5146289 A JP 5146289A JP 5146289 A JP5146289 A JP 5146289A JP 2795665 B2 JP2795665 B2 JP 2795665B2
Authority
JP
Japan
Prior art keywords
tool steel
speed tool
less
steel
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5146289A
Other languages
Japanese (ja)
Other versions
JPH02232341A (en
Inventor
純一 西田
憲正 内田
一生 辛島
藤孝 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5146289A priority Critical patent/JP2795665B2/en
Publication of JPH02232341A publication Critical patent/JPH02232341A/en
Application granted granted Critical
Publication of JP2795665B2 publication Critical patent/JP2795665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工具の該表面に切刃を有するタップ、リー
マ、ブローチ等の切削工具に使用される高速度工具鋼お
よびその製造方法に関し、特に鋼表面組織の微細化に関
するものである。
The present invention relates to a high-speed tool steel used for a cutting tool such as a tap, a reamer, and a broach having a cutting edge on the surface of the tool, and a method for manufacturing the same. In particular, the present invention relates to miniaturization of a steel surface structure.

〔従来の技術〕 工具鋼の分野では、ミクロ組織的に微細で、偏析の少
ないことが望ましく、従来から鋳造組織の均質化、微細
化に注力されている。
[Prior Art] In the field of tool steel, it is desirable that the microstructure is fine and the segregation is small, and it has been conventionally focused on the homogenization and refinement of the cast structure.

高速度工具鋼の炭化物微細化の一手法して、特開昭63
−207455号に開示された手法がある。
Japanese Patent Application Laid-Open
There is a technique disclosed in -207455.

この方法は、ヘズレー式等の薄スラブ連鋳機を用い、
急冷凝固した鋳片を製造し、引き続いて熱間加工および
焼鈍を施して炭化物を微細な球状とすることを特徴とす
るものである。この方法によると、従来のように鋳造で
共晶炭化物を破壊するという工程を経なくとも微細な炭
化物組織の高速度工具鋼を得ることができるとしてい
る。
This method uses a thin slab continuous caster such as Hesley,
It is characterized by producing a rapidly solidified slab, followed by hot working and annealing to form carbide into fine spheres. According to this method, it is possible to obtain a high-speed tool steel having a fine carbide structure without performing a step of breaking eutectic carbide by casting as in the related art.

ところで、近年タップ等の外周部に切刃を有する切削
工具の難削材の加工への適用が進み工具の高性能化が要
求されている。
By the way, in recent years, application of a cutting tool having a cutting edge on an outer peripheral portion such as a tap to the processing of difficult-to-cut materials has progressed, and a higher performance of the tool is required.

切削工具性能の向上については、Vを多量に添加し硬
質のMC型炭化物を増量することによって対応することが
わかってきている。しかしこの場合、溶解−鋳造−鍛造
−圧延といった通常の製造方法では、MC型炭化物が粗大
化、偏析しやすいという問題があった。
It has been found that cutting tool performance can be improved by adding a large amount of V and increasing the amount of hard MC-type carbide. However, in this case, in a normal manufacturing method such as melting-casting-forging-rolling, there is a problem that the MC-type carbide is easily coarsened and segregated.

この問題を解決する方法としては、Ce、Laの希土類元
素を添加する方法(特開昭57−143468号等)、鋼塊形状
を小型化する方法、粉末冶金法の応用、あるいは前述の
連続鋳造法等が考えられる。
As a method for solving this problem, a method of adding a rare earth element of Ce or La (Japanese Patent Application Laid-Open No. 57-143468, etc.), a method of reducing the shape of a steel ingot, application of powder metallurgy, or the aforementioned continuous casting method The law can be considered.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の溶製法で外周部組織を微細にする方法としての
希土類元素を添加する方法は、希土類元素添加技術が難
しく、また希土類元素の硫化物、酸化物等の介在物の存
在、さらに熱間加熱時に鋼材隅角部に亀裂が生ずるとい
う問題点があった。
The method of adding a rare earth element as a method of refining the outer peripheral structure by the conventional melting method is difficult in the technique of adding a rare earth element, and the presence of inclusions such as sulfides and oxides of the rare earth element, and further hot heating There has been a problem that cracks sometimes occur at the corners of the steel material.

また、外周部組織を微細にするための鋼塊の小型化
は、製造コストの面で問題があり量産化に不向きであ
る。粉末冶金法による製造法では、素材全体にわたっ
て、微細均一な組織が得られるものの、製造プロセスが
溶製法より多く、製造コストが高いと言った問題点があ
る。
In addition, miniaturization of the steel ingot to make the microstructure of the outer peripheral portion fine has a problem in terms of manufacturing cost and is not suitable for mass production. The production method by the powder metallurgy method has a problem that although a fine and uniform structure can be obtained over the entire material, the production process is more than the melting method and the production cost is high.

また、特開昭63−207455号に開示された連続鋳造法に
おいては、V含有量が多い高速度工具鋼の炭化物を十分
に微細化することが困難であった。
Further, in the continuous casting method disclosed in JP-A-63-207455, it was difficult to sufficiently reduce the carbide of high-speed tool steel having a high V content.

本発明は以上の背景に鑑み、表面部組織を微細化した
高速度工具鋼を低コストで提供することを課題とする。
In view of the above background, an object of the present invention is to provide a high-speed tool steel having a fine surface structure at low cost.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は、連続鋳造法を用いて前記課題を達成する
べく種々系統を行なった結果、連続鋳造後に行なう熱間
加工の加工温度を規制すること、あるいはさらに熱間加
工前に拡散熱処理を施すことにより十分に微細な組織が
得られること、またこのようにして得られた高速度工具
鋼のMC型炭化物の平均自由行程によって工具切削寿命が
大きく左右されること、を見出し本発明を完成するに至
ったのである。
The present inventor has conducted various systems to achieve the above-mentioned object by using a continuous casting method, and as a result, regulates the working temperature of hot working performed after continuous casting, or further performs diffusion heat treatment before hot working. It has been found that a sufficiently fine structure can be obtained by this, and that the tool cutting life is greatly affected by the mean free path of the MC type carbide of the high-speed tool steel thus obtained, and the present invention has been completed. It was reached.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明高速度工具鋼のより具体的な構成は、重量比で
C 1.1〜2.0%、Si 2.0%以下、Mn 1.5%以下、Cr 2.0〜
10.0%、WおよびMoを1種または2種でW+2Mo 8.0〜2
0.0%、V 2.5〜5.5%、残部Feおよび不可避的不純物か
らなる高速度工具鋼であって、該鋼の表面から肉厚の1/
8までの部位におけるMC型炭化物の平均自由行程が15μ
m以下であることを特徴とする高速度工具鋼である。
A more specific configuration of the high-speed tool steel of the present invention is in terms of weight ratio.
C 1.1 ~ 2.0%, Si 2.0% or less, Mn 1.5% or less, Cr 2.0 ~
10.0%, one or two types of W and Mo W + 2Mo 8.0 ~ 2
A high-speed tool steel comprising 0.0%, V 2.5 to 5.5%, balance Fe and unavoidable impurities, and 1 / th of the wall thickness from the surface of the steel.
Mean free path of MC type carbide at up to 8 sites is 15μ
m or less, which is a high-speed tool steel.

本発明の高速度工具鋼は高V系のハイスに属する。こ
のような鋼に析出するVを主体としたMC型炭化物は熱的
に分解しにくく、鋳造時に晶出した巨大なMC型炭化物を
その後の熱間加工等の工程で分解するのは困難である。
したがって微細なMC型炭化物を有する高速度工具鋼を得
るためには、鋳造時に晶出するMC型炭化物を小さくする
必要がある。この要求を達成するために本発明では、特
定の鋳造寸法を有する連続鋳造法を採用する。
The high-speed tool steel of the present invention belongs to high-V-type high-speed steel. The MC carbide mainly composed of V which precipitates in such steel is hard to thermally decompose, and it is difficult to decompose the huge MC carbide crystallized at the time of casting in the subsequent steps such as hot working. .
Therefore, in order to obtain a high-speed tool steel having fine MC-type carbide, it is necessary to reduce the amount of MC-type carbide crystallized during casting. In order to achieve this requirement, the present invention employs a continuous casting method having a specific casting size.

すなわち、鋳片表面から鋳片断面における縦または横
の最小寸法の1/8までの部位の冷却速度が100℃/min未満
では、巨大なMC型炭化物が晶出するため、この部位の冷
却素度を100℃/min以上とする必要がある。また、前記
の鋳片断面の最小寸法が150mmを越えると、前記部位の
冷却速度が100℃/min未満となるため、鋳片の断面最小
寸法は150mm以下とする。
That is, if the cooling rate of the part from the slab surface to 1/8 of the minimum vertical or horizontal dimension in the slab cross section is less than 100 ° C / min, a huge MC type carbide crystallizes, so the cooling element in this part The temperature must be 100 ° C / min or more. Further, when the minimum size of the cross section of the slab exceeds 150 mm, the cooling rate of the portion becomes less than 100 ° C./min. Therefore, the minimum cross section size of the slab is 150 mm or less.

しかし、本発明の高速度工具鋼は、特定の条件の連続
鋳造法のみで得られるものではない。
However, the high-speed tool steel of the present invention cannot be obtained only by a continuous casting method under specific conditions.

連続鋳造により、晶出した微細なMC型炭化物は、その
後の熱間加工によって融合成長させないことが重要であ
る。本発明者の検討によると1180℃を越える温度域で、
熱間加工を行なうと鋼材表面層部のMC型炭化物が急速に
粗大化し始めるため、1180℃以下で熱間加工すると良い
ことがわかった。
It is important that the fine MC-type carbides crystallized by continuous casting are not grown by subsequent hot working. According to the study of the present inventors, in a temperature range exceeding 1180 ° C.,
It was found that hot working at 1180 ° C or less is good because MC-type carbides on the surface layer of steel material start to coarsen rapidly when hot working is performed.

また、熱間加工前に鋳造組織を分解し、鋳造時に生じ
るやや粗大な棒状のM2C型炭化物の固相変態を促進する
ために高温加熱保持を行なうのが望ましい。保持温度は
1180℃を越えると炭化物の粗大化が著しく進行し、1100
℃未満では長時間の保持を行なっても、ほとんど組織変
化が認められないので、1100〜1180℃とする。保持時間
は温度との兼ね合いで決定されるが、保持温度を高温に
すればするほど短時間加熱でよく、上記温度範囲では1
〜10hrから適宜選択される。
In addition, it is desirable to perform high-temperature heating and holding in order to decompose the cast structure before hot working and promote the solid-phase transformation of the somewhat coarse rod-shaped M 2 C-type carbide generated during casting. The holding temperature is
When the temperature exceeds 1180 ° C, coarsening of carbides remarkably progresses, and 1100
If the temperature is lower than 0 ° C, even if it is maintained for a long time, almost no structural change is recognized, so the temperature is set to 1100 to 1180 ° C. The holding time is determined in consideration of the temperature. The higher the holding temperature, the shorter the heating time.
To 10 hours.

以上の本発明により表面部の組織が微細な高速度工具
鋼を得ることができるが、製造工程中に行なわれる鋼材
表面除去量を少なくすることができるという効果も有す
る。
According to the present invention described above, a high-speed tool steel having a fine structure at the surface can be obtained, but it also has the effect of reducing the amount of steel surface removal performed during the manufacturing process.

すなわち、高速度工具鋼製造にあっては、鋼材表面の
スケール、脱炭の発生量に応じ鋼材表面の異常部をグラ
インディング等により除去するが、従来の鋼塊製造方法
では、鍛造工程で複数回の加熱を行なうのに対し、本発
明はビレットにするための鍛造を行なわないため、スケ
ール、脱炭の発生が少なく、従来少なくとも3mm程度の
表面異常部の除去が必要であったが、本発明では2mm以
下とすることが可能である。
In other words, in the production of high-speed tool steel, the scale on the steel surface and the abnormal parts on the steel surface are removed by grinding or the like in accordance with the amount of decarburization. While the present invention does not perform forging to form a billet while performing heating twice, there is little occurrence of scale and decarburization, and conventionally it was necessary to remove at least about 3 mm of surface abnormalities. In the present invention, it is possible to set the thickness to 2 mm or less.

ところで、工具の外表面に切刃を有する切削工具用の
高速度工具鋼に要求される特性としては、最近、特に次
の特性が必要であることがわかってきた。
By the way, it has recently been found that the following characteristics are particularly required as characteristics required for a high-speed tool steel for a cutting tool having a cutting edge on an outer surface of the tool.

(1)熱処理後の硬さがHRC65以上得られること。(1) Hardness after heat treatment must be at least HRC65.

(2)十分な量の硬質炭化物(MC型炭化物)の存在。(2) Presence of a sufficient amount of hard carbide (MC type carbide).

本発明者は、さらに工具刃先のミクロ組織を定量視、
そのMC型炭化物の平均自由行程と工具切削寿命との間に
明確な相関性があること、具体的にはMC型炭化物同志の
平均自由行程を15μm以下となるように微細で密に分散
させることにより切削寿命の向上をなし得ることを知見
した。そして、前述の本発明製造方法によってこのよう
な組織の本発明高速度工具鋼を製造することができるの
である。
The inventor further quantitatively views the microstructure of the tool edge,
There is a clear correlation between the average free path of the MC type carbide and the tool cutting life.Specifically, the average free path of the MC type carbides must be finely and densely dispersed to be 15 μm or less. It has been found that the cutting life can be improved by the method. The high-speed tool steel of the present invention having such a structure can be manufactured by the above-described manufacturing method of the present invention.

本発明高速度工具鋼において、MC型炭化物間の平均自
由行程の限定を鋼表面から該鋼の肉厚の1/8までの部位
とするのは、この部位が切削工具の刃物となり、この部
分の炭化物の性状のコントロールが極めて重要であるか
らである。
In the high-speed tool steel of the present invention, the reason for limiting the mean free path between the MC type carbides to a portion from the steel surface to 1/8 of the thickness of the steel is that this portion becomes a cutting tool blade and this portion This is because controlling the properties of the carbides is extremely important.

また、本発明高速度工具鋼の化学組成であれば、前記
要求特性(1)、(2)を満足することができるが、以
下、さらに具体的に成分限定理由を説明する。
The chemical composition of the high-speed tool steel of the present invention can satisfy the above-mentioned required characteristics (1) and (2). The reason for limiting the components will be described more specifically below.

C:1.1〜2% Cは、Cr、W、Mo、Vとともに炭化物を形成し、また
一部、マトリックスに固溶し、工具として必要な硬さ、
耐摩耗性を与える。1.1%未満では、その効果が不十分
で、2%を越えると靭性が劣化し、ミクロ組織的偏析を
増長させるので、Cは1.1〜2%とした。
C: 1.1 to 2% C forms a carbide together with Cr, W, Mo, and V, and also partially dissolves in a matrix, and has a hardness required as a tool.
Provides abrasion resistance. If it is less than 1.1%, the effect is insufficient, and if it exceeds 2%, toughness is deteriorated and microstructure segregation is increased. Therefore, C is set to 1.1 to 2%.

Si:2%以下 Siは主に脱酸剤として添加するが、さらにM2C型炭化
物の固相変態を促進し、M6CとMCからなる微細な炭化物
にする効果がある。ただし、多量に添加すると熱伝導性
の低下と、靭性の劣化が生じるので2.0%以下と限定し
た。
Si: 2% or less Si is mainly added as a deoxidizing agent, but has the effect of further promoting the solid-phase transformation of M 2 C-type carbides to form fine carbides composed of M 6 C and MC. However, if added in a large amount, the thermal conductivity decreases and the toughness deteriorates, so the content was limited to 2.0% or less.

Mn:1.5%以下 Siと同様、脱酸剤として添加される。1.5%を越えて
添加すると、Mn化合物の析出により、靭性や焼もどし軟
化抵抗が低下し、また加工硬化能が高く被削性を劣化さ
れるのでMnは1.5%以下とした。
Mn: 1.5% or less It is added as a deoxidizing agent like Si. When added in excess of 1.5%, the precipitation of Mn compounds reduces toughness and tempering softening resistance, and also has high work hardening ability and deteriorates machinability, so Mn was set to 1.5% or less.

Cr:2.0〜10.0% CrはCと結合し炭化物を形成し、耐摩耗性を向上させ
ると共に、焼入性の向上に効果がある。この効果を得る
ためには2.0%以上必要であるが、多量に添加すると、C
r系の巨大共晶炭化物を形成し易く、本発明が目的とす
る組織微細化が困難になるのでCrは2.0〜10.0%とし
た。
Cr: 2.0 to 10.0% Cr combines with C to form a carbide, which is effective in improving wear resistance and hardenability. To achieve this effect, 2.0% or more is required.
Since Cr-based giant eutectic carbides are easily formed and it is difficult to refine the structure aimed at by the present invention, the Cr content is set to 2.0 to 10.0%.

W+2Mo:8.0〜20.0% WおよびMoはCと結合して、炭化物を形成し、切削工
具として必要な耐摩耗性の向上に効果がある。ただし多
量に添加すると、巨大共晶炭化物が形成され易く、また
鍛造性および靭性が大きく劣化するため、WおよびMoの
1種または2種で、W+2Moを8.0〜20.0%の範囲とし
た。
W + 2Mo: 8.0 to 20.0% W and Mo combine with C to form carbides and are effective in improving the wear resistance required as a cutting tool. However, if a large amount is added, a giant eutectic carbide is likely to be formed, and forgeability and toughness are greatly deteriorated. Therefore, one or two of W and Mo is used, and W + 2Mo is set in the range of 8.0 to 20.0%.

V:2.5〜5.5% Vは本発明で最も重要な元素である。VはCと結合
し、非常に硬いMC型炭化物を形成し、耐摩耗性の向上に
大きな効果がある。従来の製造法では、2.5%を越えて
Vを添加すると鋼材の表層部にも巨大なMC型炭化物を形
成し、靭性および被研削性が著しく劣化した。しかし、
本発明による製造法を適用することにより、鋼材の外周
部のMC型炭化物が微細均一になる。ただし、5.5%を越
えると、本発明によっても微細な炭化物組織を得ること
ができなくなるので上限を5.5%とした。
V: 2.5-5.5% V is the most important element in the present invention. V combines with C to form a very hard MC-type carbide, which has a great effect on improving wear resistance. In the conventional production method, when V is added in excess of 2.5%, a huge MC type carbide is formed also on the surface layer of the steel material, and the toughness and grindability are remarkably deteriorated. But,
By applying the manufacturing method according to the present invention, the MC type carbide at the outer peripheral portion of the steel material becomes fine and uniform. However, if it exceeds 5.5%, a fine carbide structure cannot be obtained even by the present invention, so the upper limit was made 5.5%.

Co:1.0〜20.0% Coはマトリックス中に固溶して、高温における硬さと
耐力を著しく向上させる元素である。したがって、より
高い切削耐久性を望む場合には、1.0%以上添加する必
要がある。ただし、多量に添加すると固溶によるCo単独
相の晶出が生じることにより、靭性が低下するので20.0
%以下とした。
Co: 1.0 to 20.0% Co is an element that forms a solid solution in the matrix and significantly improves the hardness and proof stress at high temperatures. Therefore, when higher cutting durability is desired, it is necessary to add 1.0% or more. However, if a large amount is added, the crystallization of the Co single phase due to solid solution occurs, and the toughness is reduced.
% Or less.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき説明する。 Hereinafter, the present invention will be described based on examples.

実施例1 第1表に示す化学成分からなる高速度工具鋼を種々の
製造条件で製造した。
Example 1 High-speed tool steels having the chemical components shown in Table 1 were manufactured under various manufacturing conditions.

No.1〜3は、同一化学成分のものをいずれも連続鋳造
法にて110mm×110mmの断面寸法のビレットを製造し、熱
間圧延の温度を1100℃、1150℃、1190℃と変えたもので
あり、なお、連続鋳造における冷却速度はビレット表面
が約500℃/min、表面から8mm内部に入った位置が200℃/
minであった。
Nos. 1 to 3 were manufactured by manufacturing a billet of 110 mm x 110 mm in cross section using the same chemical composition by continuous casting and changing the hot rolling temperature to 1100 ° C, 1150 ° C, and 1190 ° C. The cooling rate in continuous casting was about 500 ° C / min on the billet surface, and 200 ° C /
min.

No.4〜6は、No.1〜3と同様に連続鋳造法によるもの
であるが、熱間圧延前にそれぞれ1140℃×2hr、1170℃
×2hr、1190℃×2hrの加熱保持を行なったものである。
なお、連続鋳造における冷却速度はNo.1〜3と同様であ
り、熱間圧延の温度はNo.4〜6ともに1100℃である。
Nos. 4 to 6 were obtained by continuous casting as in Nos. 1 to 3, but before hot rolling, they were 1140 ° C x 2 hours and 1170 ° C, respectively.
× 2 hours, 1190 ° C × 2 hours.
In addition, the cooling rate in continuous casting is the same as that of Nos. 1 to 3, and the temperature of hot rolling is 1100 ° C. in all of Nos. 4 to 6.

No.7はメッシュメタルを0.1wt%添加し、真空溶解炉
にて溶解した後、200kgの小型鋳型に鋳込み、1140℃で
ハンマーで分解し110mm角度となし、1100℃で熱間圧延
によって15mmφの鋼材を製造したものである。
For No.7, 0.1% by weight of mesh metal was added, melted in a vacuum melting furnace, cast into a small 200kg mold, disassembled with a hammer at 1140 ° C, made a 110mm angle, and hot-rolled at 1100 ° C to a 15mmφ. It is made of steel.

No.8は、ガスアトマイズ法により得られた粉末をキャ
ニング後、No.7と同条件で製造したものである。
No. 8 was manufactured under the same conditions as No. 7 after canning the powder obtained by the gas atomizing method.

No.9〜11はNo.1と、No.12,13はNo.5と同様の製造方法
であり、またNo.14,15はNo.4と同様の製造方法である。
Nos. 9 to 11 have the same manufacturing method as No. 1, Nos. 12 and 13 have the same manufacturing method as No. 5, and Nos. 14 and 15 have the same manufacturing method as No. 4.

以上の鋼を冷間引き抜き、研削加工して6.0mmφの棒
鋼とし、さらにこれらの素材から日本工業規格並目ねじ
用等径ハンドタップを製作した。なお、熱処理条件は12
20℃塩浴焼入れ後、560℃×1hrで2度焼もどし(ただし
No.9,14は3度)である。このタップを用い、被削材と
してS45Cを用いて切削試験を行なった。S45Cは厚さ10mm
の板に内径5.0mmの下穴を開けたものを用いた。
The above steel was cold drawn and ground to form a 6.0 mmφ steel bar, and from these materials, a hand tap of equal diameter for Japanese Industrial Standard coarse thread was manufactured. The heat treatment conditions were 12
After quenching in a 20 ° C salt bath, tempering twice at 560 ° C x 1hr (however,
Nos. 9 and 14 are 3 times). Using this tap, a cutting test was performed using S45C as a work material. S45C is 10mm thick
Was prepared by drilling a pilot hole with an inner diameter of 5.0 mm in the plate.

切削性能はNo.7のメッシュメタルな添加鋼の寿命を10
0とした寿命指数で評価した。なお、寿命指数の算出は
以下の式で行なった。
The cutting performance is 10 times longer than that of No. 7 mesh metal additive steel.
The life index was evaluated as 0. The calculation of the life index was performed by the following equation.

A:寿命に至るまでの穿孔数(3回の平均) A′:No.7鋼が寿命に至った穿孔数(3516ヶ) 一方、ミクロ組織を定量する目的で、6.0mmφ素材に
タップと同じ熱処理を施し、その縦断面のタップ刃部根
本に相当する位置、すなわちタップの表層部から素材径
の8分の1付近(第1図参照)をダイヤモンド研摩後、
10%硝酸アルコールで腐食し、かつ村上試薬でさらに腐
食を行ない、MC型炭化物を残し、ほかの炭化物および基
地を腐食した。この試料を用いて測定総視野面積94,000
μm2中のMC型炭化物の総個数、平均粒径、面積率を測定
する。平均自由行程の算出には、 94,000・{1−(面積率)}/{(平均粒径)・(総個数)} の式を用いた。
A: Number of perforations up to the end of life (average of 3 times) A ': Number of perforations for which No. 7 steel reached the end of life (3516) On the other hand, for the purpose of quantifying the microstructure, the same as a tap on a 6.0mmφ material After heat treatment, diamond polishing is performed on a position corresponding to the root of the tap blade portion in the vertical section, that is, around 1/8 of the material diameter from the surface layer of the tap (see FIG. 1).
Corroded with 10% nitric alcohol and further corroded with Murakami reagent, leaving MC-type carbides, corroding other carbides and bases. Using this sample, the total visual field area measured was 94,000.
The total number, average particle size, and area ratio of MC type carbide in μm 2 are measured. The formula of 94,000 · {1- (area ratio)} / {(average particle size) · (total number)} was used for calculating the mean free path.

第1表に寿命指数、MC型炭化物平均自由行程ならびに
硬さ(HRC)を示す。
Table 1 shows the life index, MC type carbide mean free path and hardness (HRC).

No.1〜3より熱間加工温度が1180℃を越えるとMC型炭
化物平均自由行程が大となり寿命が著しく低下すること
がわかる。
It can be seen from Nos. 1 to 3 that when the hot working temperature exceeds 1180 ° C., the MC type carbide mean free path becomes large and the life is remarkably reduced.

No.4,5より熱間加工前に拡散熱処理を施すことにより
切削寿命が向上することがわかる。ただし、No.6のよう
に拡散熱処理の温度が高いと粗大化し寿命が低下する。
なお、No.4,5のMC型炭化物平均自由行程がNo.1,2に比べ
大きいのに寿命が向上しているのは、拡散熱処理により
MC型炭化物の成長はあるものの、粗大なM2C型炭化物が
固相変態により球状化したMCおよびM6C炭化物となり、
また縞状偏析が軽減されたためである。No.7は希土類元
素を添加した鋼であり、MC型炭化物平均自由行程はほぼ
満足する値にあるものの、熱間加工時に鋼材隅角部に亀
裂が生じ、また表面除去量を3〜6mmと本発明に比べ大
きくしなければならなかった。
Nos. 4 and 5 show that the cutting life is improved by performing the diffusion heat treatment before hot working. However, when the temperature of the diffusion heat treatment is high as in No. 6, the alloy becomes coarse and the life is shortened.
Although the MC type carbide mean free path of Nos. 4 and 5 is longer than that of Nos. 1 and 2, the life is improved because of the diffusion heat treatment.
Although there is growth of MC-type carbides, coarse M 2 C-type carbides become MC and M 6 C-carbides that have become spherical by solid-phase transformation,
Also, this is because the striped segregation was reduced. No. 7 is a steel to which a rare earth element has been added, and although the MC type carbide mean free path is almost satisfactory, cracks occur at the corners of the steel material during hot working and the surface removal amount is 3 to 6 mm. It had to be larger than in the present invention.

No.9はV含有量が高く、Coも添加した材料で本実験中
最高の切削性能が得られた。No.10〜13はV含有量、製
造条件によりMC型炭化物の平均自由行程が10〜14μ程度
変化し、切削寿命も平均自由行程が大きくなるにつれや
や短くなる傾向にある。No.14はCO添加材でNo.11と比べ
て切削寿命が向上している。No.15はV量が低くMC型炭
化物の平均自由行程が大きく切削寿命が低い。
No. 9 had a high V content and was also a material to which Co was added, and the highest cutting performance was obtained in this experiment. In Nos. 10 to 13, the mean free path of the MC type carbide changes by about 10 to 14 μm depending on the V content and the manufacturing conditions, and the cutting life tends to be slightly shorter as the mean free path becomes longer. No. 14 is a CO additive and has a longer cutting life than No. 11. No. 15 has a low V content, a large mean free path of MC type carbide, and a short cutting life.

第2図にMC型炭化物の平均自由行程とタップと切削寿
命の関係を整理して示すが、平均自由行程が15μm以下
で良好な切削寿命が得られることがわかる。
FIG. 2 summarizes the relationship between the mean free path of the MC type carbide, the tap and the cutting life, and shows that a good cutting life can be obtained when the mean free path is 15 μm or less.

実施例2 重量比でC 1.31%,Si 0.45%、Mn 0.3%、Cr 3.8%、
W 5.0%、Mo 7.5%、V 3.3%を狙い成分として、真空溶
解炉にて溶解した後、熱間加工(1100℃)、冷間引抜、
研削仕上により6.0mmφの棒鋼とした(従来例)。イン
ゴットの表面からインゴット径の8分の1以下までの凝
固時の冷却速度は50〜80℃/minであった。
Example 2 C 1.31%, Si 0.45%, Mn 0.3%, Cr 3.8%,
After melting in a vacuum melting furnace with the target components of W 5.0%, Mo 7.5%, and V 3.3%, hot working (1100 ° C), cold drawing,
A 6.0mmφ steel bar was formed by grinding (conventional example). The cooling rate at the time of solidification from the surface of the ingot to 1/8 or less of the ingot diameter was 50 to 80 ° C / min.

また、上記成分と同じ成分狙いで連続鋳造法により11
0mm×110mmの寸法のビレットにした後、1140℃で4hr加
熱保持後、熱間圧延(1100℃)、冷間引抜および研削仕
上により6.0mmφの棒鋼とした(本発明)。
In addition, aiming at the same components as those described above,
After being formed into a billet having a size of 0 mm x 110 mm, it was heated and maintained at 1140 ° C for 4 hours, and then hot-rolled (1100 ° C), cold drawn and ground to obtain a 6.0 mmφ bar (the present invention).

これらの試料を1220℃の塩浴焼入を行なった後、560
℃で焼もどし、ミクロ組織観察、定量を行なった。定量
方法は、実施例1と同じ方法を用いた。
These samples were subjected to salt bath quenching at 1220 ° C.
After tempering at ℃, the microstructure was observed and quantified. The same quantification method as in Example 1 was used.

第3図(1)、(2)に従来例、(3)、(4)に本
発明の素材径の表層部から8分の1深さ付近のミクロ組
織及び熱処理後の硬さ及びMC型炭化物の平均自由行程の
測定結果を示す。従来製造法による方法では、炭化物が
粗く、平均自由行程も大きい。それに比較して、本発明
方法による連続鋳造法では、ミクロ組織が微細均一で、
平均自由行程も小さい。
3 (1) and 3 (2) show a conventional example, and (3) and (4) show microstructures near the depth of 1/8 from the surface layer of the material diameter of the present invention, hardness after heat treatment and MC type. The measurement results of the mean free path of carbide are shown. In the method according to the conventional manufacturing method, the carbide is coarse and the mean free path is large. In comparison, in the continuous casting method according to the method of the present invention, the microstructure is fine and uniform,
The mean free path is also small.

〔発明の効果〕〔The invention's effect〕

本発明によれば、外周から表層の使用部位相当位置に
かけての炭化物ミクロ組織が従来の製造プロセスでは容
易に達成できないほど、均一微細となり、外周部に切刃
を有する工具において大幅な工具寿命の向上が達成でき
る。
According to the present invention, the carbide microstructure from the outer periphery to the position corresponding to the used portion of the surface layer is so fine that it cannot be easily achieved by the conventional production process, and the tool life is greatly improved in a tool having a cutting edge on the outer periphery. Can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(1)は、実施例でミクロ組織定量を行なった部
分で(3)のA部分に相当する金属ミクロ組織写真、
(2)はタップの概略図、(3)は(2)のタップの部
分拡大図、第2図は、MC型炭化物の平均自由行程とS45C
をタップ切削した際の寿命との関係を示す図、第3図
は、従来の製造方法による素材の金属ミクロ組織写真
(1)、(2)と本発明による金属ミクロ組織写真
(3)、(4)である。
FIG. 1 (1) is a photograph of a metal microstructure corresponding to the portion A of (3) in the portion where the microstructure was quantified in the example,
(2) is a schematic view of the tap, (3) is a partially enlarged view of the tap of (2), and FIG. 2 is a mean free path of MC type carbide and S45C.
FIG. 3 is a diagram showing the relationship between the life of the material when tapping and tapping, and FIG. 4).

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 C21D 6/00,8/00 B22D 11/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00-38/60 C21D 6 / 00,8 / 00 B22D 11/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比でC 1.1〜2.0%、Si 2.0%以下、Mn
1.5%以下、Cr 2.0〜10.0%、WおよびMoを1種または
2種でW+2Mo 8.0〜20.0%、V 2.5〜5.5%、残部Feお
よび不可避的不純物からなる高速度工具鋼であって、該
鋼の表面から肉厚の1/8までの部位におけるMC型炭化物
の平均自由行程が15μm以下であることを特徴とする高
速度工具鋼。
Claims: 1. C 1.1-2.0% by weight, Si 2.0% or less, Mn
A high-speed tool steel comprising 1.5% or less, Cr 2.0 to 10.0%, W and Mo in one or two kinds, W + 2Mo 8.0 to 20.0%, V 2.5 to 5.5%, balance Fe and unavoidable impurities. A high-speed tool steel characterized in that the mean free path of MC type carbide in a region from the surface to 1/8 of the wall thickness is 15 μm or less.
【請求項2】Coを1.0〜20.0%含有する請求項1記載の
高速度工具鋼。
2. The high-speed tool steel according to claim 1, containing 1.0 to 20.0% of Co.
【請求項3】連続鋳造法により鋳片断面における縦また
は横の最小寸法が150mm以下の鋳片を表面から該寸法の1
/8までの部位を100℃/min以上の冷却速度として製造す
るとともに、後に行なわれる熱間加工温度を1180℃以下
とすることを特徴とする高速度工具鋼の製造方法。
3. A slab having a minimum vertical or horizontal dimension of 150 mm or less in a cross section of the slab by the continuous casting method, wherein the slab having a minimum dimension of 150 mm
A method for producing high-speed tool steel, comprising: producing a portion up to / 8 at a cooling rate of 100 ° C./min or more, and lowering a hot working temperature performed later to 1180 ° C. or less.
【請求項4】熱間加工前に、1100〜1180℃の温度範囲
で、1〜10hr保持する拡散熱処理を実施する請求項3項
記載の高速度工具鋼の製造方法。
4. The method for producing a high-speed tool steel according to claim 3, wherein before the hot working, a diffusion heat treatment is performed in a temperature range of 1100 to 1180 ° C. for 1 to 10 hours.
【請求項5】高速度工具鋼がVを2.5〜5.5%含有する請
求項3または4記載の高速度工具鋼の製造方法。
5. The method for producing a high-speed tool steel according to claim 3, wherein the high-speed tool steel contains 2.5 to 5.5% of V.
【請求項6】連続鋳造法によって得られた鋳片の表面除
去量が片肉2mm以下である請求項3ないし5のいずれか
に記載の高速度工具鋼の製造方法。
6. The method for producing a high-speed tool steel according to claim 3, wherein an amount of surface removal of the cast slab obtained by the continuous casting method is 2 mm or less on one side.
JP5146289A 1989-03-03 1989-03-03 High speed tool steel and method for manufacturing the same Expired - Lifetime JP2795665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146289A JP2795665B2 (en) 1989-03-03 1989-03-03 High speed tool steel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146289A JP2795665B2 (en) 1989-03-03 1989-03-03 High speed tool steel and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02232341A JPH02232341A (en) 1990-09-14
JP2795665B2 true JP2795665B2 (en) 1998-09-10

Family

ID=12887603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146289A Expired - Lifetime JP2795665B2 (en) 1989-03-03 1989-03-03 High speed tool steel and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2795665B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257649B2 (en) * 1993-05-13 2002-02-18 日立金属株式会社 High toughness high speed steel member and method of manufacturing the same
CN104789873A (en) * 2015-04-24 2015-07-22 合肥东方节能科技股份有限公司 Rolling mill segmentation wheel and regeneration manufacturing process thereof
CN114086063A (en) * 2015-06-22 2022-02-25 日立金属株式会社 Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product

Also Published As

Publication number Publication date
JPH02232341A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
JP4179024B2 (en) High speed tool steel and manufacturing method thereof
KR101126151B1 (en) Brake disk excellent in temper softening resistance and toughness
EP0630984A1 (en) High toughness high-speed steel member and manufacturing method thereof
CN102884212A (en) Case hardened steel and method for producing the same
CN108291285B (en) Steel, carburized steel part, and method for producing carburized steel part
JP2006104519A (en) High toughness hot tool steel and its production method
JP2021155808A (en) Steel material
JP4361686B2 (en) Steel material and manufacturing method thereof
JP6683075B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP2002161332A (en) Composite roll for hot rolling made with continuous hardfacing by casting
JP2795665B2 (en) High speed tool steel and method for manufacturing the same
JP3735658B2 (en) High strength ductile cast iron
JP2000239805A (en) High hardness martensitic stainless steel excellent in corrosion resistance and cold workability
JP5697218B2 (en) Metal mask
JP6683074B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP2002543290A (en) Steel cold working tools, their uses and manufacturing
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP6683073B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP2001123247A (en) Cold tool steel excellent in machinability
JP2003313642A (en) Steel for high-speed tool and manufacturing method therefor
JP2001234278A (en) Cold tool steel excellent in machinability
JP3530379B2 (en) Work roll for cold rolling
JP3417922B2 (en) Cast iron for sizing press die
JP6683072B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP3419536B2 (en) Alloy tool steel members made of ingot material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090626