JP2793847B2 - Thin film magnetic head and method of manufacturing the same - Google Patents

Thin film magnetic head and method of manufacturing the same

Info

Publication number
JP2793847B2
JP2793847B2 JP1194194A JP19419489A JP2793847B2 JP 2793847 B2 JP2793847 B2 JP 2793847B2 JP 1194194 A JP1194194 A JP 1194194A JP 19419489 A JP19419489 A JP 19419489A JP 2793847 B2 JP2793847 B2 JP 2793847B2
Authority
JP
Japan
Prior art keywords
insulating film
magnetic head
forming
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1194194A
Other languages
Japanese (ja)
Other versions
JPH0359811A (en
Inventor
隆弘 加藤
幸二 竹下
芳樹 萩原
義一 辻
昭雄 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1194194A priority Critical patent/JP2793847B2/en
Publication of JPH0359811A publication Critical patent/JPH0359811A/en
Application granted granted Critical
Publication of JP2793847B2 publication Critical patent/JP2793847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜磁気ヘツド及びその製造方法に関し、
特に浮動型磁気ヘツドの製造方法を改良し高精度な浮上
面を形成することを可能とした薄膜磁気ヘツド及びその
製造方法に関する。
The present invention relates to a thin-film magnetic head and a method for manufacturing the same.
In particular, the present invention relates to a thin-film magnetic head capable of forming a high-precision floating surface by improving a method of manufacturing a floating magnetic head and a method of manufacturing the same.

[従来の技術] 近年、蒸着,スパツタリング等の薄膜形成技術及びエ
ツチングによるパターン形成技術を用いて磁気回路及び
記録再生用コイルを形成する、いわゆる薄膜磁気ヘツド
においては、低コスト化及び高性能化が要求されてい
る。この磁気ヘツドを浮動型磁気ヘツドとして磁気デイ
スク装置等に適用し、高密度記録及び低コスト化を実現
するためには、例えば、基板に複数の変換素子を一括形
成し、それを各変換素子毎に切断して1枚の基板より複
数の薄膜磁気ヘツドチツプを得るような製造方法が採ら
れている。このとき、変換素子形成工程からチツプ形成
工程において随所に高精度な仕様が要求される。従つ
て、その製造技術及び製造工程を確立することが非常に
重要である。
[Prior Art] In recent years, so-called thin-film magnetic heads, in which a magnetic circuit and a recording / reproducing coil are formed by using a thin-film forming technique such as vapor deposition and sputtering and a pattern forming technique by etching, have been reduced in cost and improved in performance. Has been requested. In order to apply this magnetic head to a magnetic disk device or the like as a floating magnetic head, and to realize high-density recording and low cost, for example, a plurality of conversion elements are collectively formed on a substrate, and each conversion element is formed for each conversion element. And a plurality of thin-film magnetic head chips are obtained from one substrate. At this time, high-precision specifications are required everywhere from the conversion element forming step to the chip forming step. Therefore, it is very important to establish the manufacturing technology and manufacturing process.

そこで、低コスト化,精度安定化を図つた技術とし
て、例えば、特開昭62−95716号公報に、薄膜磁気ヘツ
ドの製造方法が開示されている。この製造方法を第11図
と第12図で説明する。第11図は基板1上に配列形成され
た変換素子2の配置状態を示す平面図である。ここで、
変換素子2は、薄膜形成技術とパターン形成技術とを用
いて、シリコン,セラミツク等の基板1上に行列状に整
列して一括形成されている。次に、前記の如く行列状に
変換素子群を形成して成る基板1における列方向に配置
された変換素子群を単位列20とし、各単位列20毎にカツ
ターブレード等を用いて図の破線に沿つて切断し、ヘツ
ドブロツク11を得る。第12図は、切断後のヘツドブロツ
ク11の斜視図を示す。このヘツドブロツク11の状態か
ら、ヘツド支持機構部との結合のための溝部21を加工
し、浮上面13を精密研磨する。ここで、前記溝21と浮上
面13は一括して加工及び研磨を行い、高精度にギヤツプ
深さ10が形成される。その後、必要単位(チツプ)毎に
第12図点線に沿つて分割して薄膜磁気ヘツド14を得るよ
うな薄膜磁気ヘツドの製造方法となつていた。
Therefore, as a technique for reducing the cost and stabilizing the accuracy, for example, a method for manufacturing a thin-film magnetic head is disclosed in Japanese Patent Application Laid-Open No. 62-95716. This manufacturing method will be described with reference to FIGS. 11 and 12. FIG. 11 is a plan view showing an arrangement state of the conversion elements 2 arranged and formed on the substrate 1. FIG. here,
The conversion elements 2 are collectively formed in a matrix on a substrate 1 made of silicon, ceramic, or the like, using a thin film forming technique and a pattern forming technique. Next, the conversion element groups arranged in the column direction on the substrate 1 in which the conversion element groups are formed in a matrix as described above are defined as unit rows 20, and a cutter blade or the like is used for each unit row 20 in FIG. Cut along the broken line to obtain a head block 11. FIG. 12 shows a perspective view of the head block 11 after cutting. From the state of the head block 11, a groove 21 for coupling with the head support mechanism is machined, and the flying surface 13 is precisely polished. Here, the groove 21 and the floating surface 13 are collectively processed and polished to form the gap depth 10 with high precision. Thereafter, the thin-film magnetic head is manufactured in such a manner that the thin-film magnetic head 14 is obtained by dividing the necessary units (chips) along the dotted line in FIG.

又、他の製造工程により、特に浮上面の平面度の高精
度化を図つた技術として、例えば、特開昭63−191309号
公報に開示されている磁気ヘツドの製造方法がある。こ
の製造方法を第13図から第15図を参照して説明する。第
13図は磁気ヘツドの製造工程を示し、第14図と第15図は
その製造工程における途中工程の状態を示している。こ
れより、基板から切り出したヘツドブロツク11(変換素
子は図示を省く)を、まず浮上面となる面(表面)で加
工治具22に接着し(131,132)、ヘツドブロツク11の裏
面23を加工する(133)。次に、ヘツドブロツク11を加
工治具22(砥石逃げ溝22aを有する)から剥離して反転
させ(134)、加工治具22に再度接着し(135)、浮上面
13を研削すると共に、溝24を加工する(136)。その
後、各磁気ヘツド14毎に逃げ溝22aに対応する位置で複
数個に切断する(137)。この切断により、上記溝加工
工程136で生じた加工歪がある程度解放される。次に、
切断されて、且つ、加工治具22に接着されている状態で
約50℃〜65℃で2〜10時間程度エージングすることによ
り、上記工程136で発生した加工歪を除去する(138)。
その後、浮上面13を研磨し(139)、高精度な平面度に
仕上げた後、加工治具22から剥離し(140)、磁気ヘツ
ド14を得る(141)ような磁気ヘツドの製造方法となつ
ていた。
Further, as a technique for improving the flatness of the air bearing surface particularly by another manufacturing process, there is a magnetic head manufacturing method disclosed in Japanese Patent Application Laid-Open No. 63-191309, for example. This manufacturing method will be described with reference to FIGS. No.
FIG. 13 shows a manufacturing process of the magnetic head, and FIGS. 14 and 15 show a state of an intermediate process in the manufacturing process. Thus, the head block 11 cut out from the substrate (the conversion element is not shown) is first adhered to the processing jig 22 on the surface (front surface) serving as the floating surface (131, 132), and the back surface 23 of the head block 11 is processed (133). ). Next, the head block 11 is peeled off from the processing jig 22 (having the whetstone escape groove 22a), turned upside down (134), adhered again to the processing jig 22 (135), and
13 is ground and the groove 24 is processed (136). Thereafter, each magnetic head 14 is cut into a plurality of pieces at positions corresponding to the escape grooves 22a (137). By this cutting, the processing distortion generated in the groove processing step 136 is released to some extent. next,
The workpiece is aged at about 50 ° C. to 65 ° C. for about 2 to 10 hours while being cut and adhered to the processing jig 22 to remove the processing strain generated in the step 136 (138).
Thereafter, the air bearing surface 13 is polished (139), finished to a high degree of flatness, and then separated from the processing jig 22 (140) to obtain a magnetic head 14 (141). I was

[発明が解決しようとする課題] 上記各従来技術は、以下に述べる問題があつた。[Problems to be Solved by the Invention] Each of the above-described conventional technologies has the following problems.

まず、先に記述した特開昭62−95716号公報の薄膜磁
気ヘツドの製造方法では、例えば、基板1に複数の変換
素子2を形成した後、引き続いて、変換素子2を保護す
る等のために、300〜400℃程度の熱処理温度で、絶縁膜
等(図示せず)を、変換素子を含む基板面全域に均等な
厚さで形成してから、ブロツク単位の切断、浮上面研
磨、ヘツド単位毎の切断を行うような薄膜磁気ヘツドで
ある場合、複数の変換素子が整列されたヘツドブロツク
の状態で浮上面を研磨し、高精度にギヤツプ深さや平面
度を形成した後、各磁気ヘツド単位(1または2変換素
子)毎に切断するような工程である。このため、上記絶
縁膜形成時に基板と絶縁膜の熱膨張係数の差によつて生
じた応力歪が前記切断後解放され、高精度に仕上げられ
た浮上面の平面度は、基板部と絶縁膜間で局部的に0.05
〜0.1μm程度の変形を起こす。この変形は、浮動型磁
気ヘツドの浮上量がサブミクロンで高精度に制御される
ような場合、磁気ヘツドとしての性能を大きく損なうば
かりか、記録媒体との機械的接触(ヘツドクラツシユ)
を生じやすくし、致命的な障害につながるという恐れが
ある。
First, in the method of manufacturing a thin-film magnetic head described in Japanese Patent Application Laid-Open No. 62-95716, for example, after a plurality of conversion elements 2 are formed on a substrate 1, the conversion elements 2 are subsequently protected. Then, at a heat treatment temperature of about 300 to 400 ° C., an insulating film or the like (not shown) is formed in a uniform thickness over the entire substrate surface including the conversion element, and then cut in block units, air bearing surface polishing, and head. In the case of a thin film magnetic head that performs cutting for each unit, the air bearing surface is polished in the state of a head block in which a plurality of conversion elements are aligned, and the gap depth and flatness are formed with high precision, and then each magnetic head unit This is a step of cutting each (one or two conversion elements). For this reason, stress distortion caused by the difference in thermal expansion coefficient between the substrate and the insulating film during the formation of the insulating film is released after the cutting, and the flatness of the air bearing surface, which is finished with high precision, is equal to the substrate portion and the insulating film. 0.05 locally between
Causes deformation of about 0.1 μm. This deformation not only greatly impairs the performance as a magnetic head when the flying height of the floating magnetic head is controlled with submicron precision, but also causes mechanical contact with the recording medium (head crash).
And may lead to catastrophic failure.

次に、前記従来技術の問題点を解決する手段として開
示された特開昭63−191309号公報の磁気ヘツドの製造方
法では、ヘツドブロツクを各磁気ヘツド単位(1または
2変換素子)毎に切断し、エージングすことによつて、
浮上面研削・溝加工工程136で発生した応力歪を解放さ
せ、その後浮上面を研磨し高精度な平面度を仕上げるこ
とによつて、磁気ヘツドの完成状態において平面度は良
好な状態で維持される。しかし、高精度な平面度を得る
ためには、種々加工,エージング工程を通過した後、最
終的に浮上面の研磨を行う必要があり、加工工程が固定
化される(別の順序の工程を採ることができない。)。
例えば、浮動型磁気ヘツドにおいて、サブミクロンの狭
浮上量で且つ、微妙な浮上姿勢を高精度に制御する必要
性が生じて来た場合、浮上面におけるレール形状(溝24
の幅,深さ,間隔,位置等)を超高精度で且つ、特殊な
形状に形成することで対応する必要があり、従来の機械
加工技術では補えない場合は、エツチング等のパターン
形成技術を用いる可能性がある。この場合、浮上面13が
粗削りのままでは高精度のレール形成はできないので、
浮上面13を研磨し高精度に平面度を仕上げた後前記レー
ル形成(溝24の形成)を行う方が有利である。ところが
本従来技術においては、レール形成を行う場合、既に各
磁気ヘツド単位毎に切断され単体となつているため、磁
気ヘツド単体でレール形成すれば量産化が困難であり、
仮りに、磁気ヘツド単体を複数にまとめて一括形成を行
うにしても、磁気ヘツド間の位置ずれ等の問題によつて
超高精度なレール形成は困難である。
Next, in the method of manufacturing a magnetic head disclosed in Japanese Patent Application Laid-Open No. 63-191309, which is disclosed as a means for solving the problems of the prior art, a head block is cut for each magnetic head unit (one or two conversion elements). , By aging,
The stress distortion generated in the air bearing surface grinding / grooving process 136 is released, and then the air bearing surface is polished to finish the flatness with high accuracy, so that the flatness is maintained in a good state in the completed state of the magnetic head. You. However, in order to obtain high-precision flatness, it is necessary to finally polish the air bearing surface after passing through various processing and aging steps, and the processing step is fixed (steps in another order). It cannot be taken.)
For example, in the case of a floating magnetic head, when it becomes necessary to control the subtle flying height of a submicron with a high precision, the rail shape (groove 24
Width, depth, spacing, position, etc.) must be handled by forming them in a very high precision and special shape. If conventional machining techniques cannot be used, patterning techniques such as etching must be used. May be used. In this case, it is not possible to form the rail with high precision while the air bearing surface 13 is rough-cut,
It is more advantageous to perform the rail formation (formation of the groove 24) after polishing the air bearing surface 13 and finishing the flatness with high precision. However, in the conventional technology, when rails are formed, since each magnetic head unit is already cut and formed as a single unit, mass production is difficult if a rail is formed with a single magnetic head unit,
Even if the magnetic heads are united into a plurality and formed collectively, it is difficult to form rails with ultra-high accuracy due to problems such as misalignment between the magnetic heads.

さらには、上記2つの従来技術に共通する問題点とし
て、各磁気ヘツド単位毎に切断する際、絶縁膜に欠けや
クラツクを生じやすく、又、基板と絶縁膜との境界を剥
離させる可能性がある。又、後工程での製造過程におい
て、ハンドリングや、治具等の接触により、絶縁膜は欠
けやすく、そのため製造歩留りを悪化させ、低コスト化
が困難となる。
Further, as a problem common to the above two prior arts, when cutting is performed for each magnetic head unit, the insulating film is likely to be chipped or cracked, and the boundary between the substrate and the insulating film may be peeled. is there. Further, in a later manufacturing process, the insulating film is easily chipped due to handling, contact with a jig, or the like, which deteriorates the manufacturing yield and makes it difficult to reduce the cost.

従つて、本発明の第1の目的は、絶縁膜形成時に生じ
る応力歪を初期工程で解放させることによつて、ヘツド
ブロツク状態で高精度な浮上面平面度を仕上げ、その後
の製造過程で応力歪に基づく変形が生じることなく、信
頼性の高い薄膜磁気ヘツド及びその製造方法を提供する
ことにある。
Accordingly, a first object of the present invention is to release high-precision air bearing surface flatness in a head block state by releasing stress strain generated at the time of forming an insulating film in an initial step. An object of the present invention is to provide a thin-film magnetic head having high reliability without causing deformation based on the magnetic head and a method for manufacturing the same.

本発明の第2の目的は、各磁気ヘツド単位毎に切断す
る際に生じる絶縁膜の欠陥を無くし、又、その後の製造
過程における絶縁膜の欠けやクラツク等を低減し、製造
歩留り及び量産性を高めて低コスト化を可能とした薄膜
磁気ヘツド及びその製造方法を提供することにある。
A second object of the present invention is to eliminate defects in an insulating film generated when cutting each magnetic head unit, to reduce chipping or cracks in the insulating film in a subsequent manufacturing process, and to improve manufacturing yield and mass productivity. It is an object of the present invention to provide a thin-film magnetic head and a method for manufacturing the same, which can increase the cost and reduce the cost.

[課題を解決するための手段] 上記第1の目的を達成するため、本発明の薄膜磁気ヘ
ツドの製造方法は、(イ)基板の所定面に、整列された
複数の変換素子と絶縁膜とを形成する工程と、(ロ)前
記基板上の磁気ヘツド単位毎の切断の予定される位置
に、予め少なくとも前記絶縁膜の厚み全体に亘る深さの
溝を形成することによつて、各磁気ヘツド単位毎に(基
板は繋がつたまま)絶縁膜のみを分離する工程と、
(ハ)前記複数の変換素子を基板と共に整列方向に列毎
に切断し、ヘツドブロツクを形成する工程と、(ニ)前
記ヘツドブロツクにおける変換素子及び絶縁膜の形成面
に直交する記録媒体対向面(変換素子の磁気ギヤツプが
整列している側の面)を浮上面として研磨し、所定のギ
ヤツプ深さ及び平面度を形成する工程と、(ホ)その
後、前記ヘツドブロツクを各磁気ヘツド単位毎に切断す
る工程とを備えている。なお、前記(ハ)の工程は、変
換素子を基板に縦横に(2次元に)配列した場合必要で
あるが、変換素子を基板に一方向のみに(1次元に)配
列した場合、省いてよい。また、前記(ニ)の工程と
(ホ)の工程の間に、必要に応じて、ヘツドブロツクの
浮上面に浮上量規制用のレールを各変換素子に対応する
ように形成する工程を入れることができる。
[Means for Solving the Problems] In order to achieve the first object, the method of manufacturing a thin-film magnetic head according to the present invention comprises the steps of: (a) forming a plurality of transducers and an insulating film aligned on a predetermined surface of a substrate; And (b) forming a groove having a depth at least over the entire thickness of the insulating film in advance at a position where cutting is to be performed for each magnetic head unit on the substrate. A step of separating only the insulating film for each head unit (with the substrate connected);
(C) cutting the plurality of conversion elements together with the substrate for each row in the alignment direction to form a head block; and (d) recording medium facing surface (conversion) orthogonal to the formation surface of the conversion element and the insulating film in the head block. Polishing the surface of the element on the side where the magnetic gaps are aligned) to form a predetermined gap depth and flatness, and (e) thereafter, cutting the head block for each magnetic head unit And a process. The step (c) is necessary when the conversion elements are arranged vertically and horizontally on the substrate (two-dimensionally). However, when the conversion elements are arranged on the substrate only in one direction (one-dimensionally), it is omitted. Good. Further, between the steps (d) and (e), if necessary, a step of forming a rail for regulating the flying height on the flying surface of the head block so as to correspond to each conversion element may be inserted. it can.

上記第2の目的を達成するため、本発明の薄膜磁気ヘ
ツドは、基板の所定面上に複数の変換素子と絶縁膜とが
形成され、これが各磁気ヘツド単位に切断(分割)され
たものであつて、この切断部位における磁気ヘツドの変
換素子形成面の稜部を、段付き形状に構成する。この段
付き形状は、少なくとも前記絶縁膜の厚み全体に亘る深
さに形成される。
In order to achieve the second object, the thin-film magnetic head of the present invention has a structure in which a plurality of conversion elements and an insulating film are formed on a predetermined surface of a substrate, and this is cut (divided) into units of each magnetic head. Then, the ridge of the conversion element forming surface of the magnetic head at the cut portion is formed in a stepped shape. The stepped shape is formed at least over the entire thickness of the insulating film.

また、このような薄膜磁気ヘツドを製造するために、
前記製造方法において、前記(ロ)の工程中、絶縁膜に
(または絶縁膜及び基板に)予め形成される溝の幅を、
前記(ホ)の工程中の各磁気ヘツド単位毎に切断すると
きの切断幅よりも広くする。そして、その後、種々の工
程を経た後(ホ)の工程が行われる際、前記溝の中心に
沿つて切断することにより、各薄膜磁気単位に、変換素
子形成面の絶縁膜稜部が基板に露出した段付き形状又は
面取り形状(肩部)が形成されるようにする。
In order to manufacture such a thin film magnetic head,
In the manufacturing method, during the step (b), the width of a groove previously formed in the insulating film (or in the insulating film and the substrate)
The cutting width is made wider than the cutting width when cutting for each magnetic head unit in the step (e). After that, when the step (e) is performed after various steps, by cutting along the center of the groove, the insulating film ridge on the conversion element forming surface is formed on the substrate in each thin film magnetic unit. An exposed stepped or chamfered shape (shoulder) is formed.

[作用] 上記構成に基づく作用を説明する。[Operation] An operation based on the above configuration will be described.

基板の状態で各磁気ヘツド単位毎に切断される位置に
おいて予め絶縁膜(及び基板の一部)に形成した溝は、
結果的に、各変換素子毎に、絶縁膜を分離したことにな
る。そのことによつて、絶縁膜形成時に基板と絶縁膜の
熱膨張係数の差により生じた応力歪が解放される。その
状態で、ヘツドブロツクに切断後、浮上面の平面度を高
精度に研磨するが、その際に、基板は繋がつたままで、
複数の磁気ヘツド単位に対して同時に研磨が行われるの
で、高精度の平面度の浮上面をもつ複数の磁気ヘツド単
位が同時に得られ、作業性,量産性が向上する。その
後、浮上量規制用レールの形成等、種々の工程を経てか
ら、各磁気ヘツド単位毎に前記予め形成した溝に沿つて
切断が行われるが、このとき、絶縁膜を切り話すことな
く基板のみが切り離されるため、切断による絶縁膜の応
力歪の解放は皆無となり、浮上面の平面度は変化(変
形)せず、薄膜磁気ヘツド完成状態においても、高精度
な平面度が維持される。
The groove previously formed in the insulating film (and a part of the substrate) at the position where the substrate is cut for each magnetic head unit,
As a result, the insulating film is separated for each conversion element. As a result, stress distortion caused by a difference in thermal expansion coefficient between the substrate and the insulating film when the insulating film is formed is released. In that state, after cutting into a head block, the flatness of the air bearing surface is polished with high precision, but at that time, the substrate remains connected,
Since a plurality of magnetic head units are simultaneously polished, a plurality of magnetic head units having a floating surface with high precision flatness can be obtained at the same time, thereby improving workability and mass productivity. After that, after various steps such as formation of a flying height control rail, cutting is performed along the previously formed groove for each magnetic head unit, but at this time, only the substrate is cut without cutting the insulating film. Is cut off, the stress strain of the insulating film is not released by the cutting, the flatness of the air bearing surface does not change (deform), and the high-precision flatness is maintained even in the completed state of the thin-film magnetic head.

又、前記溝幅を切断幅よりも広くし、その溝の中心に
沿つて切断することによつて、切断時における絶縁膜に
与えるダメージを無くすると共に、完成状態において、
前記加工方法によつて絶縁膜の稜部が段付きとなり、結
果的に絶縁膜は面の内側に凹んだ形に形成されるため、
絶縁膜の欠け,クラツク等の発生を低減できる。
Further, by making the groove width wider than the cutting width and cutting along the center of the groove, damage to the insulating film at the time of cutting is eliminated, and in the completed state,
According to the processing method, the ridge portion of the insulating film is stepped, and as a result, the insulating film is formed in a concave shape inside the surface,
Chipping of the insulating film, generation of cracks and the like can be reduced.

[実施例] 以下に、本発明の一実施例を第1図から第6図と第8
図により説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 6 and FIG.
This will be described with reference to the drawings.

第1図は、基板上に形成された変換素子群の斜視図を
示し、第2図は、その変換素子部断面図を示す。又、第
3図から第5図は、薄膜磁気ヘツドの製造過程における
中間工程の状態図を示し、第6図は、薄膜磁気ヘツドの
完成状態斜視図を示す。又、第1図から第6図までの一
連の製造工程をまとめた説明図を第8図に示す。まず第
1図,第2図において、基板1上に下部絶縁膜3aを基板
全域に均等な厚さで形成後、下部磁性膜4a,記録再生用
コイル5,上部磁性膜4bをそれぞれ積層形成し、整列され
た複数の変換素子2を形成する(801)。又、各記録再
生用コイル5と連結させて引出し線6とその末端部に端
子7を形成する。その後、上部絶縁膜3bを変換素子2を
保護するように基板全域に均等な厚さで形成する(80
2)。これらは、蒸着,スパツタリング等の薄膜形成技
術及びエツチング等のパターン形成技術を駆使して高温
下で形成される。次に、後工程において各変換素子2毎
に切断するときの位置に合わせて、絶縁膜分離溝8を機
械研削加工によつて形成する(803)。このとき、絶縁
膜分離溝8の深さは、下部絶縁膜3aと上部絶縁膜3bをた
し合わせた厚さよりも深くし、基板1に若干くい込む程
度が望ましい。この絶縁膜分離溝を形成することによつ
て、各隣合う変換素子2部分に一体化形成されていた絶
縁膜3a,3bは切り離され、個々に基板1と連結された状
態となつている。次に、破線9に沿つて絶縁膜3a,3b及
び基板1を切断し、第3図に示すように、変換素子2が
横一列に複数個形成された状態のヘツドブロツク11を形
成する(804)。ここで、絶縁膜分離溝8間の変換素子
2を含む基板1部は最終的に薄膜磁気ヘツド14となる部
分である。このヘツドブロツク11の状態より浮上面13を
破線部12まで精密研磨し、それによつて、複数の薄膜磁
気ヘツド14のギヤツプ深さ10及び平面度を高精度に仕上
げる(805)。次に、ヘツドブロツク11の高精度に仕上
げられた浮上面13に、第4図に示すように、浮上量制御
のためのレール15を機械研削加工又はエツチング等のパ
ターン形成技術を用いて各薄膜磁気ヘツド14に各々形成
する(806)。次に、第5図で示すように、レール15の
形成されたヘツドブロツク11を、各薄膜磁気ヘツド14毎
に切り離す(807,808)。ここで、前工程により既に形
成されていた絶縁膜分離溝8の中心線18に沿つて、且
つ、絶縁膜分離溝8の幅よりも細いカツターによつてヘ
ツドブロツク11を切断し、複数の薄膜磁気ヘツド14を得
る。この結果、第6図に示すように、切り離された薄膜
磁気ヘツド14単体においては、前記絶縁膜分離溝8と切
断部16とによつて段差部(肩部)17が形成される。この
段差部17は、絶縁膜分離溝8を形成する際に該溝8が、
少なくとも絶縁膜8の厚み全体に亘るように、本例で
は、基板1に若干くい込むように、形成されているた
め、変換素子形成面19側から見た場合、基板部1が露出
している状態となつており、絶縁膜3a,3bが一段内側に
面取りされたような状態に形成される。
FIG. 1 is a perspective view of a conversion element group formed on a substrate, and FIG. 2 is a cross-sectional view of the conversion element section. 3 to 5 show a state diagram of an intermediate step in the process of manufacturing the thin-film magnetic head, and FIG. 6 shows a perspective view of a completed state of the thin-film magnetic head. FIG. 8 is an explanatory view summarizing a series of manufacturing steps from FIG. 1 to FIG. First, in FIGS. 1 and 2, a lower insulating film 3a is formed on the substrate 1 with a uniform thickness over the entire substrate, and then a lower magnetic film 4a, a recording / reproducing coil 5, and an upper magnetic film 4b are formed by lamination, respectively. Then, a plurality of aligned conversion elements 2 are formed (801). Also, a lead wire 6 is connected to each recording / reproducing coil 5 and a terminal 7 is formed at the end thereof. Thereafter, the upper insulating film 3b is formed with a uniform thickness over the entire substrate so as to protect the conversion element 2 (80).
2). These are formed at a high temperature by making full use of thin film forming techniques such as vapor deposition and sputtering and pattern forming techniques such as etching. Next, an insulating film separation groove 8 is formed by mechanical grinding in accordance with the position at which each conversion element 2 is cut in a later step (803). At this time, it is desirable that the depth of the insulating film separating groove 8 is larger than the total thickness of the lower insulating film 3a and the upper insulating film 3b and is slightly penetrated into the substrate 1. By forming the insulating film separation groove, the insulating films 3a and 3b formed integrally with the adjacent conversion elements 2 are separated and connected to the substrate 1 individually. Next, the insulating films 3a and 3b and the substrate 1 are cut along the broken line 9, and as shown in FIG. 3, a head block 11 in which a plurality of conversion elements 2 are formed in a horizontal row is formed (804). . Here, the portion of the substrate 1 including the conversion element 2 between the insulating film separation grooves 8 is a portion that will eventually become the thin-film magnetic head 14. From the state of the head block 11, the air bearing surface 13 is precisely polished to the broken line portion 12, thereby finishing the gap depth 10 and the flatness of the plurality of thin film magnetic heads 14 with high accuracy (805). Next, as shown in FIG. 4, a rail 15 for controlling the flying height is formed on the flying surface 13 of the head block 11 with high precision by using a pattern forming technique such as mechanical grinding or etching. Each is formed on the head 14 (806). Next, as shown in FIG. 5, the head block 11 on which the rail 15 is formed is cut off for each thin film magnetic head 14 (807, 808). Here, the head block 11 is cut by a cutter along the center line 18 of the insulating film separating groove 8 already formed in the previous step and with a cutter thinner than the width of the insulating film separating groove 8, and a plurality of thin film magnetic layers are cut. Get Head 14. As a result, as shown in FIG. 6, in the separated thin film magnetic head 14 alone, a step (shoulder) 17 is formed by the insulating film separation groove 8 and the cut portion 16. When the insulating film separation groove 8 is formed, the step portion 17
In this example, the substrate portion 1 is formed so as to slightly penetrate the substrate 1 so as to cover at least the entire thickness of the insulating film 8, so that the substrate portion 1 is exposed when viewed from the conversion element formation surface 19 side. This is a state where the insulating films 3a and 3b are chamfered to the inside by one step.

以上制御したような製造方法によつて製作された薄膜
磁気ヘツド14においては、基板1上に複数の変換素子2
及び絶縁膜3a,3bを形成後、絶縁膜分離溝8を絶縁膜3a,
3bの厚さよりも深く形成されたことによつて、絶縁膜3
a,3bの形成時に基板1と絶縁膜3a,3bの熱膨張係数の差
により生じた応力歪が解放され、この時点で絶縁膜3a,3
bに変形を生じる。その後、前記変形を含んでヘツドブ
ロツク11の状態で浮上面を研磨することによつて、変形
により生じた誤差分を取り除きながら高精度な平面度を
仕上げる。その後、各薄膜磁気ヘツド14単体に切断して
も、切断する幅が絶縁膜分離溝8の幅よりも細いカツタ
ーにより切断するため、その切り込みは単一材料である
基板に対してのみに施され、その結果、該切り込みによ
る絶縁膜3a,3bへの影響が皆無となり、薄膜磁気ヘツド1
4の完成状態においても、前記高精度に仕上げられた平
面度は、そのままの状態で維持することが可能となる。
又、絶縁膜3a,3bを切断することが無いため(切断幅が
細く、その刃が絶縁膜に当ることがないため)、切断時
における絶縁膜3a,3bの欠け、クラツク又は基板1との
はがれを無くすことが可能となる。(なお、予め溝8の
形成時に絶縁膜の欠け等が生じることがあつても、それ
は不良品として取り除くなど、工程の初期の段階で対処
できるので、問題は少ない。また、予め溝8の形成法と
しては、機械加工によらず、後述のように、エツチング
やレーザビーム等のパターン形成技術を用いることによ
り、絶縁膜の欠け等が生じないようにできるので、問題
がない。)さらには、薄膜磁気ヘツド14が単体に分離さ
れた状態では、絶縁膜3a,3bの稜部に段差17が形成され
ているため、その後の磁気ヘツドのアセンブリ工程にお
いて、ハンドリングや治具等によつて接触することによ
る絶縁膜3a,3b稜部の欠け、クラツク等を低減すること
が可能となる。
In the thin-film magnetic head 14 manufactured by the manufacturing method controlled as described above, a plurality of conversion elements 2
After forming the insulating films 3a and 3b, the insulating film separating groove 8 is formed in the insulating films 3a and 3b.
3b, the insulating film 3 is formed deeper than the thickness of the insulating film 3b.
During the formation of the insulating films 3a and 3b, the stress strain caused by the difference in the thermal expansion coefficient between the substrate 1 and the insulating films 3a and 3b is released.
Deforms b. Thereafter, the air bearing surface is polished in the state of the head block 11 including the deformation, thereby finishing the high-precision flatness while removing an error caused by the deformation. After that, even if each thin film magnetic head 14 is cut, the cut width is cut with a cutter whose width is smaller than the width of the insulating film separation groove 8, so that the cut is made only for the substrate made of a single material. As a result, the cut has no effect on the insulating films 3a and 3b, and the thin film magnetic head 1
Even in the completed state of 4, the flatness finished with high precision can be maintained as it is.
Also, since the insulating films 3a and 3b are not cut (because the cutting width is narrow and the blade does not hit the insulating film), the insulating films 3a and 3b are not chipped at the time of cutting, and the crack or the substrate 1 Peeling can be eliminated. (Even if the insulating film is chipped in advance when the groove 8 is formed, it can be dealt with at an early stage of the process, such as removing it as a defective product, so that there is little problem. As a method, there is no problem because the insulating film can be prevented from being chipped or the like by using a pattern forming technique such as etching or a laser beam, as described later, instead of using mechanical processing.) In the state where the thin-film magnetic head 14 is separated into single pieces, a step 17 is formed at the ridge portion of the insulating films 3a and 3b, so that in the subsequent magnetic head assembly process, the magnetic head 14 comes into contact with a handling or a jig or the like. As a result, chipping of the ridges of the insulating films 3a and 3b, cracks, and the like can be reduced.

また、第7図で示すように、絶縁膜分離溝8の形成
時、研削砥石入の先端形状をV字形にし、溝形成を行え
ば、薄膜磁気ヘツド14の完成状態においては、絶縁膜3
a,3bと基板1の間に階段状の段差は生じず、稜部が面取
りされた状態の肩部(傾斜面)17が形成させる。この状
態であれば、磁気ヘツドアセンブリ工程におけるハンド
リングや治具等によつて接触することによる絶縁膜3a,3
bの稜部の欠け,クラツク等をさらに低減することが可
能である。
As shown in FIG. 7, when the insulating film separating groove 8 is formed, the tip of the grinding wheel is formed into a V-shape, and if the groove is formed, the insulating film 3 is completed when the thin-film magnetic head 14 is completed.
A step-like step does not occur between a, 3b and the substrate 1, and a shoulder (inclined surface) 17 with a chamfered ridge is formed. In this state, the insulating films 3a and 3a are brought into contact with each other by a handling or a jig in a magnetic head assembly process.
It is possible to further reduce chipping, cracks and the like of the ridge of b.

第9図,第10図は、絶縁膜分離溝8の形態の変形例、
及び、それによつて形成された薄膜磁気ヘツド14を示
す。
9 and 10 show a modification of the form of the insulating film separation groove 8,
And a thin-film magnetic head 14 formed thereby.

第9図は、基板状態からヘツドブロツク11の状態に切
断するための位置に対応する部分と、溝膜磁気ヘツド14
に切断するための位置に対応する部分とに、それぞれ絶
縁膜分離溝8を形成したもので、薄膜磁気ヘツド14(単
体)の状態では、絶縁膜3a,3bの浮上面13側に対して両
側及び裏面側の稜部に段差17が形成されている。
FIG. 9 shows a portion corresponding to a position for cutting from a substrate state to a state of a head block 11, and a groove film magnetic head 14;
Insulating film separating grooves 8 are formed in portions corresponding to the positions for cutting the insulating films, respectively. In the state of the thin film magnetic head 14 (single unit), the insulating films 3a and 3b are on both sides with respect to the air bearing surface 13 side. Also, a step 17 is formed at the ridge on the back surface side.

第10図は、前記ヘツドブロツク11及び薄膜磁気ヘツド
14の切断位置に対応する部分と、さらに、浮上面13のレ
ール形成加工を行う位置に対応する部分にも絶縁膜分離
溝8をエツチング等のパターン形成技術を用いて形成し
たもので、薄膜磁気ヘツド14の状態では、浮上面13の稜
部以外の全ての絶縁膜3a,3bの稜部に段差17が形成され
ている。
FIG. 10 shows the head block 11 and the thin-film magnetic head.
The insulating film separating groove 8 is formed by using a pattern forming technique such as etching at a portion corresponding to the cutting position of 14 and a portion corresponding to the position where the rail forming process of the floating surface 13 is performed. In the state of the head 14, a step 17 is formed on the ridges of all the insulating films 3a and 3b other than the ridges of the air bearing surface 13.

両者は、絶縁膜分離溝8の形成工程以降の加工におけ
る絶縁膜3a,3bへの影響の回避機能及び絶縁膜3a,3b稜部
の欠け,クラツクやはがれの防止機能をさらに改良した
ものであり、特に第10図は、後工程での絶縁膜への加工
を最少限におさえた場合である。これらの実施例から明
らかなように、絶縁膜3a,3b形成時の応力歪を解放する
ための絶縁膜分離溝8の形状及び場所が異なつていても
良く、後工程における基板加工の際に絶縁膜3a,3bを加
工せず、基板1のみを加工出来るような溝形状及びその
深さを保つていれば良く、それらの特定の形態に限定さ
れるべきではない。又、絶縁膜分離溝8の形成方法とし
て、エツチング等によるパターン形成技術を用いたり、
レーザビームによつて形成しても良く、これらの形成方
法によれば、絶縁膜分離溝8を形成する際の絶縁膜3a,3
bへのダメージを低減できる。従つて、溝形成法は特定
方法に限定されない。
Both of them have further improved functions of avoiding the influence on the insulating films 3a and 3b in the processing after the step of forming the insulating film separating groove 8 and preventing chipping of the insulating films 3a and 3b, cracks and peeling. In particular, FIG. 10 shows a case where the processing of the insulating film in the subsequent process is minimized. As is clear from these examples, the shape and location of the insulating film separating groove 8 for releasing the stress strain at the time of forming the insulating films 3a and 3b may be different. It is only necessary to maintain the groove shape and the depth so that only the substrate 1 can be processed without processing the insulating films 3a and 3b, and it should not be limited to these specific forms. In addition, as a method for forming the insulating film separation groove 8, a pattern forming technique by etching or the like is used,
It may be formed by a laser beam. According to these forming methods, the insulating films 3a, 3a when forming the insulating film separating groove 8 are formed.
The damage to b can be reduced. Therefore, the groove forming method is not limited to a specific method.

[発明の効果] 以上詳しく述べたように、本発明によれば、基板に複
数の変換素子及び絶縁膜を形成した後、磁気ヘツド単位
で切断して薄膜磁気ヘツドを構成する場合、絶縁膜形成
時に生じる応力歪を予め形成した絶縁膜分離溝によつて
解放し、その後、多数の変換素子が一体となつたままの
ヘツドブロツク状態において、浮上面を高精度な平面度
に仕上げ、しかる後に、基板(ヘツドブロツク)を個々
の磁気ヘツド単位に分離切断するので、この分離切断時
には応力歪は解放されていて新たな変形が生じることは
なく、従つて、上記の高精度な平面度に浮上面を仕上げ
た状態は、磁気ヘツド単位の完成時点においても維持で
きると共に、そのような高精度の研磨が多数個の磁気ヘ
ツド単位に同時に行われ、作業性が向上するという効果
を奏する。また、浮上量をサブミクロン単位で調整し、
且つ微妙な浮上姿勢を高精度に得るために、特殊形状の
レールを形成するレール形成手段を用いる場合には、上
記高精度に仕上げた浮上面に合わせて精度の高いレール
形成を低コストで作業性よく行うことができ、このよう
なレール形成等種々の工程が介在した場合でも、最終的
な磁気ヘツド単位の分離時に新たな変形が生じることは
なく、信頼性の高い薄膜磁気ヘツドの製造が可能である
効果を奏する。
[Effects of the Invention] As described above in detail, according to the present invention, after forming a plurality of conversion elements and an insulating film on a substrate, and cutting the magnetic head unit to form a thin-film magnetic head, forming the insulating film The stress strain that occurs at the time is released by the insulating film separating groove formed in advance, and then, in a head block state in which a large number of conversion elements remain connected, the air bearing surface is finished to high precision flatness, and then the substrate is (Head block) is separated and cut into individual magnetic head units. At the time of this separation and cutting, stress and strain are released and no new deformation occurs. Therefore, the air bearing surface is finished to the above-mentioned flatness with high precision. This state can be maintained even when the magnetic head unit is completed, and such high-precision polishing is simultaneously performed on a large number of magnetic head units, thereby improving workability. I do. Also, adjust the flying height in sub-micron units,
When using a rail forming means to form a specially shaped rail in order to obtain a delicate flying posture with high precision, work on low-cost rail formation with high precision according to the floating surface finished with high precision. Even when various steps such as rail formation are involved, no new deformation occurs when the magnetic head units are finally separated, and a highly reliable thin-film magnetic head can be manufactured. Has the effect that is possible.

又、各薄膜磁気ヘツド単位を得るまでの工程でけでな
く、該薄膜磁気ヘツド単位のその後の加工時及びその後
の製造工程においても、絶縁膜稜部の段差の存在により
該絶縁膜に他のヘツド等の物体が当ることが少なくな
り、欠け等の発生を低減でき、製造歩留りを向上させ、
低コスト化がさらに可能となる効果を奏する。
In addition, not only in the process of obtaining each thin-film magnetic head unit, but also in the subsequent processing of the thin-film magnetic head unit and in the subsequent manufacturing process, the insulating film has another step due to the presence of the step at the ridge of the insulating film. Heads and other objects are less likely to hit, reducing the occurrence of chipping etc., improving manufacturing yield,
There is an effect that the cost can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による変換素子形成状態を示
す斜視図、第2図は同変換素子の断面図、第3図は同実
施例によるヘツドブロツクの斜視図、第4図は同実施例
による浮上面レールを形成したヘツドブロツクの斜視
図、第5図は同実施例によるヘツドブロツク切断後の断
面図、第6図は同実施例による薄膜磁気ヘツドの完成斜
視図、第7図は溝形状を変えた場合の変換素子形成状態
及び完成状態を示す斜視図、第8図は同実施例による加
工工程を示す説明図、第9図は本発明の他の実施例によ
る変換素子形成状態を示す斜視図、第10図は同実施例に
よる薄膜磁気ヘツドの完成斜視図、第11図ないし第15図
は従来技術の説明図で、第11図は変換素子形成状態の平
面図、第12図はヘツドブロツク斜視図、第13図は加工工
程を示す説明図、第14図はヘツドブロツクと治具の斜視
図、第15図は加工後のヘツドブロツクと治具の斜視図で
ある。 1……基板、2……変換素子、3a,3b……絶縁膜、4a…
…下部磁性膜、4b……上部磁性膜、5……記録再生コイ
ル、6……引出線、7……端子、8……絶縁膜分離溝、
10……ギヤツプ深さ、11……ヘツドブロツク、12……研
磨面、13……浮上面、14……薄膜磁気ヘツド(単体)、
15……レール、16……切断部、17……段差部。
FIG. 1 is a perspective view showing a conversion element forming state according to an embodiment of the present invention, FIG. 2 is a sectional view of the conversion element, FIG. 3 is a perspective view of a head block according to the embodiment, and FIG. FIG. 5 is a perspective view of a head block on which a floating surface rail is formed according to an example, FIG. 5 is a cross-sectional view after cutting the head block according to the embodiment, FIG. 6 is a completed perspective view of a thin film magnetic head according to the embodiment, and FIG. FIG. 8 is a perspective view showing a conversion element formation state and a completed state in the case of changing the shape, FIG. 8 is an explanatory view showing a processing step according to the embodiment, and FIG. 9 shows a conversion element formation state according to another embodiment of the present invention. FIG. 10 is a completed perspective view of the thin-film magnetic head according to the embodiment, FIG. 11 to FIG. 15 are explanatory views of the prior art, FIG. 11 is a plan view of a conversion element formation state, and FIG. FIG. 13 is a perspective view of a head block, FIG. 13 is an explanatory view showing a processing step, FIG. Perspective view of Hetsudoburotsuku and the jig, FIG. 15 is a perspective view of Hetsudoburotsuku and the jig after machining. 1 ... substrate, 2 ... conversion element, 3a, 3b ... insulating film, 4a ...
... lower magnetic film, 4b ... upper magnetic film, 5 ... read / write coil, 6 ... lead wire, 7 ... terminal, 8 ... insulating film separation groove,
10 ... Gap depth, 11 ... Head block, 12 ... Polished surface, 13 ... Floating surface, 14 ... Thin film magnetic head (single unit),
15 ... rail, 16 ... cutting section, 17 ... step section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 義一 神奈川県小田原市国府津2880番地 株式 会社日立製作所小田原工場内 (72)発明者 高倉 昭雄 神奈川県小田原市国府津2880番地 株式 会社日立製作所小田原工場内 (56)参考文献 特開 昭64−46216(JP,A) 特開 昭62−73411(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/31──────────────────────────────────────────────────続 き Continuing from the front page (72) Yoshikazu Tsuji 2880 Kozu, Kozuhara, Odawara, Kanagawa Prefecture Inside the Odawara Plant, Hitachi, Ltd. (72) Akio Takakura 2880 Kozuhara, Kozuhara, Odawara, Kanagawa, Japan 56) References JP-A-64-46216 (JP, A) JP-A-62-73411 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5/31

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に下部絶縁膜を基板全域に均等厚さ
で形成後、下部磁性膜、記録再生用コイル、上部磁性膜
を順次形成して整列された複数の変換素子を形成する工
程と、 前記複数の変換素子を保護するための上部絶縁膜を基板
全域に形成する工程と、 磁気ヘッド単位毎の切断予定位置に、前記上部絶縁膜と
下部絶縁膜とを合わせた厚さよりも深くて前記基板に食
い込む程度の絶縁膜分離溝を形成する工程と、 前記変換素子が一列に複数個形成されたヘッドブロック
を形成する工程と、 前記上部絶縁膜の形成面に直交する記録媒体対向面を浮
上面として研磨し、所定のギャップ深さおよび平面度を
形成する工程と、 前記ヘッドブロックの前記絶縁膜分離溝をその溝幅より
も細く切断して、前記磁気ヘッドの変換素子形成面にお
ける稜部を段付き形状に形成する工程と、を備えた ことを特徴とする薄膜磁気ヘッドの製造方法。
A step of forming a plurality of aligned transducer elements by sequentially forming a lower magnetic film, a recording / reproducing coil, and an upper magnetic film after forming a lower insulating film on the substrate with a uniform thickness over the entire substrate. Forming an upper insulating film for protecting the plurality of conversion elements over the entire area of the substrate; and, at a cutting position for each magnetic head unit, deeper than the combined thickness of the upper insulating film and the lower insulating film. Forming an insulating film separating groove to a depth that penetrates into the substrate, forming a head block in which a plurality of the conversion elements are formed in a row, and a recording medium facing surface orthogonal to a forming surface of the upper insulating film. Polishing as a floating surface to form a predetermined gap depth and flatness; and cutting the insulating film isolation groove of the head block to be thinner than the groove width, thereby forming a magnetic element on the conversion element forming surface of the magnetic head. Ridge Method of manufacturing a thin film magnetic head comprising: the step of forming the stepped shape, the.
【請求項2】基板上に下部絶縁膜を基板全域に均等厚さ
で形成後、下部磁性膜、記録再生用コイル、上部磁性膜
を順次形成して整列された複数の変換素子を形成し、前
記複数の変換素子を保護するための上部絶縁膜を基板全
域に形成し、磁気ヘッド単位毎に切断して構成した薄膜
磁気ヘッドにおいて、 前記磁気ヘッドの変換素子形成面における稜部が段付き
形状に形成され、 前記稜部の段付き形状における段の深さが前記上部絶縁
膜と下部絶縁膜とを合わせた厚さよりも深くて前記基板
に食い込む程度に形成され、 前記稜部の段付き形状における前記変換素子形成面と同
一の面は、前記基板が露出している ことを特徴とする薄膜磁気ヘッド。
2. A method according to claim 1, further comprising: forming a lower insulating film on the substrate with a uniform thickness over the entire substrate; forming a lower magnetic film, a recording / reproducing coil, and an upper magnetic film in order to form a plurality of aligned transducer elements; In a thin-film magnetic head in which an upper insulating film for protecting the plurality of transducers is formed over the entire substrate and cut for each magnetic head unit, a ridge on the transducer element forming surface of the magnetic head has a stepped shape. The stepped shape of the ridge is formed such that the depth of the step in the stepped shape of the ridge is deeper than the combined thickness of the upper insulating film and the lower insulating film and bites into the substrate. Wherein the substrate is exposed on the same surface as the conversion element forming surface.
JP1194194A 1989-07-28 1989-07-28 Thin film magnetic head and method of manufacturing the same Expired - Fee Related JP2793847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1194194A JP2793847B2 (en) 1989-07-28 1989-07-28 Thin film magnetic head and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1194194A JP2793847B2 (en) 1989-07-28 1989-07-28 Thin film magnetic head and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0359811A JPH0359811A (en) 1991-03-14
JP2793847B2 true JP2793847B2 (en) 1998-09-03

Family

ID=16320516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1194194A Expired - Fee Related JP2793847B2 (en) 1989-07-28 1989-07-28 Thin film magnetic head and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2793847B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507489B2 (en) * 2002-12-16 2010-07-21 富士ゼロックス株式会社 Surface emitting semiconductor laser and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273411A (en) * 1985-09-26 1987-04-04 Seiko Epson Corp Manufacture of magnetic head
JPS6446216A (en) * 1987-08-14 1989-02-20 Tdk Corp Magnetic head

Also Published As

Publication number Publication date
JPH0359811A (en) 1991-03-14

Similar Documents

Publication Publication Date Title
US5095613A (en) Thin film head slider fabrication process
US5406694A (en) Scalable method of fabricating thin-film sliders
US6202289B1 (en) Manufacturing process of thin film magnetic head sliders
JP2758560B2 (en) Method for manufacturing thin-film magnetic head
US20180108374A1 (en) Toothed slider high density head gimbal assembly slider interconnect
JP2793847B2 (en) Thin film magnetic head and method of manufacturing the same
KR19990063701A (en) Magnetic Head Slider Manufacturing Method
US4738021A (en) Method of making a slant gap thin-film head
JP2677399B2 (en) Method for manufacturing thin-film magnetic head
JP3332222B2 (en) Method for manufacturing slider material, method for manufacturing slider, and material for slider
JP2964722B2 (en) Manufacturing method of floating type thin film magnetic head
JPH10334412A (en) Thin film magnetic head and magnetic disk device
JP2658908B2 (en) Method for manufacturing thin-film magnetic head
JPS6295716A (en) Manufacture of thin film magnetic head
JP3271375B2 (en) Method of manufacturing magnetic head device
JP2680750B2 (en) Manufacturing method of magnetic head
JP2001006141A (en) Manufacture of magnetic head
JPH056512A (en) Production of thin-film magnetic head
JPH06349222A (en) Manufacture of magnetic head device
EP0689198A2 (en) Hard disk drive transducer-slider having controlled contact bearing with controlled pitch and roll
JPH10134318A (en) Apparatus for production of thin-film magnetic head and its production
JPS62124684A (en) Head slider
JP2992375B2 (en) Magnetic head processing method and processing apparatus
JPH08273120A (en) Production of thin-film magnetic head
JPS62119715A (en) Production of thin film magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees