JP2788224B2 - Thermal insulation structure of the cool room ceiling - Google Patents

Thermal insulation structure of the cool room ceiling

Info

Publication number
JP2788224B2
JP2788224B2 JP9218896A JP9218896A JP2788224B2 JP 2788224 B2 JP2788224 B2 JP 2788224B2 JP 9218896 A JP9218896 A JP 9218896A JP 9218896 A JP9218896 A JP 9218896A JP 2788224 B2 JP2788224 B2 JP 2788224B2
Authority
JP
Japan
Prior art keywords
heat
reinforcing frame
ceiling
insulating
foamed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9218896A
Other languages
Japanese (ja)
Other versions
JPH09280726A (en
Inventor
常利 田邊
秀士 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURIJISUTON TEKUNO SHISUTEMU KK
Sankyo Kogyo Co Ltd
Original Assignee
BURIJISUTON TEKUNO SHISUTEMU KK
Sankyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BURIJISUTON TEKUNO SHISUTEMU KK, Sankyo Kogyo Co Ltd filed Critical BURIJISUTON TEKUNO SHISUTEMU KK
Priority to JP9218896A priority Critical patent/JP2788224B2/en
Publication of JPH09280726A publication Critical patent/JPH09280726A/en
Application granted granted Critical
Publication of JP2788224B2 publication Critical patent/JP2788224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍倉庫、冷蔵倉
庫などの、低温に維持される保冷室の天井を対象とした
断熱構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating structure for a ceiling of a cold room, such as a freezing warehouse or a refrigerated warehouse, which is maintained at a low temperature.

【0002】[0002]

【従来の技術】この種の保冷室の断熱構造を構成するに
あたって、従来では、断熱層形成材料としての断熱発泡
樹脂材料を次のようにして設けていた。図4に示すよう
に、天井梁1などの建物側の部分から吊りボルト2を垂
下させ、その吊りボルト2の下部に受け金物3、例えば
角パイプを取付けて、この角パイプの上に吊り天井下地
4としてのキーストンプレートを配設し、このキースト
ンプレートの上側に、つまり、保冷室天井壁面の外側に
断熱層5を形成していた。
2. Description of the Related Art In constructing a heat insulating structure for a cold room of this type, a heat insulating foamed resin material as a heat insulating layer forming material has conventionally been provided as follows. As shown in FIG. 4, a suspension bolt 2 is hung from a part on the building side such as a ceiling beam 1, and a receiving hardware 3, for example, a square pipe is attached to a lower portion of the suspension bolt 2. A keystone plate as the base 4 was provided, and the heat insulating layer 5 was formed above the keystone plate, that is, outside the ceiling wall surface of the cold storage room.

【0003】[0003]

【発明が解決しようとする課題】上記従来構造のもの
は、現場発泡により断熱層を形成するものであるから、
例えば、所定厚さの断熱発泡樹脂製の成形品を、天井下
地上面に沿って多数敷設して断熱層を形成する場合に比
べては、隣接成形品間の断熱処理に多大な手数を要す
る、あるいは、断熱処理に高度な施工技術を要する、と
いう施工面での不便さがなく、能率の良い断熱層施工を
行える点で有用なものである。しかしながら、この従来
構造によると、キーストンプレート上で現場発泡により
成形される断熱発泡樹脂材の層が、キーストンプレート
と強く接着しているものであるため、次のような問題が
ある。すなわち、保冷室室内側の温度低下による断熱層
の熱的な挙動を考察すると、例えば、断熱発泡樹脂材が
ポリウレタンフォームで、室内が−60℃になった場
合、ポリウレタンフォームの1m当たりの理論的な収縮
量αは、温度差95℃とすれば α=7×10ー5×95×100=0.665cm 上記0.665cmだけ収縮することになる。率に換算す
れば0.665%である。ポリウレタンフォームが、天
井下地となるキーストンプレートに接着しているので、
キーストンプレートの収縮量βは、 β=1.08×10ー5×95×100=0.102cm 上記0.102cm以上は収縮できず、その差、約0.5
63cm(0.5%)分の歪応力が発生することになる。
一方、ポリウレタンフォームの弾性は、圧縮歪曲線の直
線範囲で3%程度の値を示すので、この程度の歪応力を
受けても支障のないものとされていた。ところが、実際
には、施工面積、気温、吹き付け面の状態、吹き付け厚
さ、亀裂防止材の有無、及び、使用材質などにより差が
あるが、大きさ、場所、時間的経過の予測不能な亀裂、
剥離が生じ、断熱効果に悪影響を及ぼすことをしばしば
経験する。
In the above-mentioned conventional structure, a heat insulating layer is formed by in-situ foaming.
For example, compared to the case of forming a heat insulating layer by laying a large number of molded products made of a heat insulating foamed resin having a predetermined thickness along the ceiling base upper surface, it takes a great deal of time to perform heat treatment between adjacent molded products. Alternatively, the present invention is useful in that efficient heat insulation layer construction can be performed without the inconvenience in construction that an advanced construction technique is required for heat insulation treatment. However, according to this conventional structure, the layer of the heat insulating foamed resin material formed on the keystone plate by in-situ foaming is strongly bonded to the keystone plate, and thus has the following problem. That is, considering the thermal behavior of the heat insulating layer due to the temperature drop inside the cold storage room, for example, when the heat insulating foamed resin material is polyurethane foam and the room temperature is -60 ° C, the theoretical per 1 m of the polyurethane foam is Do shrinkage amount alpha will be only contracted alpha = 7 × 10 over 5 × 95 × 100 = 0.665cm above 0.665Cm if the temperature difference 95 ° C.. It is 0.665% when converted to a ratio. Polyurethane foam is glued to the keystone plate that will be the base of the ceiling,
The shrinkage of beta keystone plate, beta = 1.08 × 10 over 5 × 95 × 100 = 0.102cm above 0.102 cm or more can not be contracted, the difference, about 0.5
A strain stress of 63 cm (0.5%) is generated.
On the other hand, since the elasticity of the polyurethane foam shows a value of about 3% in the linear range of the compressive strain curve, it has been considered that there is no problem even if a strain stress of this degree is received. However, in actuality, there are differences depending on the construction area, temperature, sprayed surface condition, sprayed thickness, presence or absence of crack prevention material, and material used, but the size, location, cracks with unpredictable time course ,
Delamination often occurs and adversely affects the thermal insulation effect.

【0004】この亀裂、剥離を生じる原因としては、一
つには、ポリウレタンフォームの発泡原液に対する規制
強化に伴う発泡性能の低下があることに加え、現場発泡
では、試験室や工場生産で得られるような均質な製品の
みを得られる訳ではないためであると考えられる。 つ
まり、ポリウレタンフォームの発泡原液は、一般にイソ
シアネート成分を主成分とするA液と、ポリオール成分
に発泡剤を付加したB液とを混合させて用いている。こ
の発泡剤として、旧来、一般的に使用されていた「フロ
ン11(トリクロロフルオロメタン(ccl3F))」が、
近年のフロンガスの規制強化にともなって製造中止とな
り、最近では発泡剤として「フロン141b(1,1-ジ
クロロ-1-フルオロエタン(ccl2FcH3))」が用いられ
るようになってきた。 このフロン141bは、旧来の
フロン11が、約24℃で気化するものであったのに対
し、48℃程度にまで昇温しないと気化しない性質があ
る。このため、発泡温度を従前に比べてかなり高く設定
して維持する必要が生じる。したがって、作業領域の全
体ならびに作業工程の全体にわたって厳密な温度管理が
なされないと、発泡温度が低すぎる環境では発泡し難く
なり、発泡温度が高すぎる環境では泡が発生するなど、
発泡バランスが悪くなる傾向があり、このことで、断熱
層自体が、旧来のフロン11を使用して発泡させた断熱
層よりも、発泡度合が不均一な発泡バランスの悪いもの
となって、従前の施工方法では亀裂や剥離が生じなかっ
た箇所にも、亀裂や剥離が生じ、後で割れ発生の原因と
なることがある。現実には、外気温度条件や種々の作業
環境などの条件により、作業現場でこの温度管理を厳密
に行うことはきわめて困難であり、ある程度の発泡バラ
ンスの低下は許容した状態でも亀裂や剥離が生じること
を抑止し得るようにすることが望まれている。また、発
泡剤自体の機能低下を除外してみても、従来の施工方法
による現場発泡では、試験室や工場生産で得られるよう
な均質な製品のみを得られないというのは、作業現場で
は、 a.発泡部位の密度の差(スキン部は密度が大) b.気温の影響による密度の不均一 c.メーカーの発泡樹脂原液の質の差 d.発泡機のコンディション e.1回当たりの発泡量、厚みの差 f.作業者の技量 g.施工面の水分、ホコリ、油分などの影響 上記a.〜g.に記載のような各種の要因があることに
よる。そして、これらの要因から製品の密度、強度に不
均一な箇所が発生することは避けられないものであっ
た。このため、室内温度の低下により収縮応力が生じた
際、強度の弱い箇所へ局部的に応力が集中して亀裂や剥
離が生じる、あるいは、ポリウレタンフォームとキース
トンプレートとの前記収縮量の差が累積されることで、
ポリウレタンフォームの許容弾性限界を越えると、亀裂
や剥離が生じ、応力を逃がしているものと考えられてい
る。
[0004] One of the causes of the cracking and peeling is that the foaming performance is reduced due to the strengthening of the regulation on the polyurethane foam undiluted solution, and in-situ foaming is obtained in a test room or factory production. This is because it is not always possible to obtain such a homogeneous product. That is, the foaming stock solution of the polyurethane foam generally uses a mixture of solution A containing an isocyanate component as a main component and solution B obtained by adding a foaming agent to a polyol component. As this foaming agent, “Freon 11 (trichlorofluoromethane (ccl 3 F))” which has been generally used in the past,
Production has been discontinued due to the recent tightening of regulations on Freon gas, and recently "Flon 141b (1,1-dichloro-1-fluoroethane (ccl 2 FcH 3 ))" has been used as a blowing agent. This CFC 141b has a property that the conventional CFC 11 is not vaporized unless the temperature is raised to about 48 ° C., while the conventional CFC 11 is vaporized at about 24 ° C. For this reason, it is necessary to set and maintain the foaming temperature considerably higher than before. Therefore, if strict temperature control is not performed over the entire work area and the entire work process, it is difficult to foam in an environment where the foaming temperature is too low, and bubbles are generated in an environment where the foaming temperature is too high,
There is a tendency for the foaming balance to be poor, and this causes the heat insulating layer itself to have a foaming degree with a non-uniform foaming degree and a poor foaming balance, as compared with the heat insulating layer foamed using the conventional Freon 11. Cracks and peeling may occur in places where cracks and peeling did not occur in the construction method described above, which may later cause cracking. In reality, it is extremely difficult to strictly control this temperature at the work site due to conditions such as the outside air temperature and various working environments, and cracks and peeling occur even when a certain degree of reduction in the foam balance is allowed. It is desired to be able to deter that. Also, even if we exclude the deterioration of the function of the foaming agent itself, the fact that in-situ foaming by the conventional construction method can not only obtain a homogeneous product such as that obtained in a laboratory or factory production is that at the work site, a. Difference in density of foaming part (skin part has high density) b. Non-uniform density due to temperature c. Difference in the quality of the foamed resin stock solution of the manufacturer d. Foaming machine condition e. Difference in foaming amount and thickness per time f. Worker skills g. Effect of moisture, dust, oil, etc. on the construction surface a. ~ G. There are various factors as described in the above. In addition, it is inevitable that there are places where the density and strength of the product are not uniform due to these factors. For this reason, when shrinkage stress is generated due to a decrease in room temperature, the stress is locally concentrated on a portion having a low strength to cause cracking or peeling, or the difference in the shrinkage amount between the polyurethane foam and the keystone plate is accumulated. Being done
When the allowable elastic limit of the polyurethane foam is exceeded, it is considered that cracks and peeling occur to release stress.

【0005】本発明の目的は、建物内部で保冷室の外側
から天井部の防熱工事を行なえるようにして、現場発泡
による工事を可能にするとともに、断熱発泡樹脂材が持
つ本来の物性を合理的に活用しながら応力分散を図り、
断熱層の破壊や剥離を効果的に阻止することのできる保
冷室天井の断熱構造を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to make it possible to perform thermal insulation work on a ceiling from outside a cold storage room inside a building, to enable construction by foaming on site, and to reduce the original physical properties of a heat-insulating foamed resin material. To achieve stress dispersion while utilizing
An object of the present invention is to provide a heat insulating structure for a cooling room ceiling, which can effectively prevent destruction and peeling of a heat insulating layer.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に講じた本発明の第1の技術手段は、冷凍冷蔵倉庫など
の保冷室天井を構成する鋼板製吊り天井下地の上面側に
断熱層を形成した保冷室天井の断熱構造において、前記
断熱層は、鋼板製吊り天井下地の上側に配設した格子状
の補強枠部分と、その補強枠の上側に重ねて形成される
断熱発泡樹脂材部分との組合せで構成され、前記補強枠
は、前記吊り天井下地の天井面に沿って格子状に形成さ
れた木材または軽量型鋼などの強度部材からなり、前記
断熱発泡樹脂材は、前記補強枠の上側から断熱発泡樹脂
を現場発泡させて形成してあり、さらに、前記補強枠
は、前記吊り天井下地との間に、断熱発泡樹脂材の下限
位置を規定して断熱発泡樹脂材と吊り天井下地との直接
接触を阻止する断熱材料製の板状仕切り材を介在させた
状態で、前記吊り天井下地に取り付けてあることであ
る。
Means for Solving the Problems The first technical means of the present invention taken to achieve the above object is to provide a heat insulating layer on the upper surface side of a steel plate suspended ceiling base constituting a cold storage room ceiling such as a refrigerated warehouse. In the heat insulating structure of the cold room ceiling formed as described above, the heat insulating layer is a grid-like reinforcing frame portion disposed above the base of the suspended ceiling made of steel, and a heat insulating foamed resin material formed so as to overlap the reinforcing frame. The reinforcing frame is made of a strength member such as wood or lightweight steel formed in a grid along the ceiling surface of the suspended ceiling base, and the heat-insulating foamed resin material is formed of the reinforcing frame. Is formed by in-situ foaming of the heat-insulating foamed resin from above, and the reinforcing frame defines a lower limit position of the heat-insulating foamed resin material between the suspended ceiling base and the heat-insulating foamed resin material and the suspended ceiling. Insulation that prevents direct contact with the substrate While interposing the postal made plate-shaped partition member is that is attached to the suspended ceiling foundation.

【0007】第2の技術手段は、前記保冷室天井の断熱
構造において、前記断熱層は、鋼板製吊り天井下地の上
側に配設した格子状の補強枠部分と、その補強枠の上側
に形成される断熱発泡樹脂材部分との組合せで構成さ
れ、前記補強枠は、前記吊り天井下地の天井面に沿って
格子状に形成された木材または軽量型鋼などの強度部材
からなり、前記断熱発泡樹脂材は、前記補強枠の上側か
ら断熱発泡樹脂を現場発泡させて形成してあり、さら
に、前記吊り天井下地は、溝方向を一方向に向けて並設
したキーストンプレートで下地上面を形成するように構
成してあり、前記補強枠は、その格子形状を構成する縦
材と横材のうち、前記キーストンプレートに最も近接し
た位置の格子構成部材を、前記キーストンプレートの溝
の方向に交差する方向に沿わせて、そのキーストンプレ
ートに直接取り付けてあることである。
The second technical means is that in the heat insulating structure of the cold storage room ceiling, the heat insulating layer is formed on a grid-like reinforcing frame portion disposed above a steel-plate suspended ceiling base and on the reinforcing frame. The reinforcing frame is made of a strength member such as wood or lightweight steel formed in a grid along the ceiling surface of the suspended ceiling base, and the heat-insulating foamed resin. The material is formed by foaming heat-insulating foamed resin in-situ from the upper side of the reinforcing frame, and further, the suspended ceiling foundation is formed by a keystone plate arranged in parallel with the groove direction in one direction to form an upper surface of the foundation. Wherein the reinforcing frame is configured such that, of the vertical members and the horizontal members constituting the lattice shape, the lattice member located closest to the keystone plate is moved in the direction intersecting the direction of the groove of the keystone plate. Thereby along, it is that is mounted directly to the keystone plate.

【0008】前記補強枠を構成する強度部材は、その断
面の一辺が5〜100mm程度の任意の角型であり、か
つ、格子間隔は30〜300cmに構成するとよい。
[0008] The reinforcing member constituting the reinforcing frame may have an arbitrary rectangular shape with one side of a cross section of about 5 to 100 mm, and a lattice spacing of 30 to 300 cm.

【0009】前記板状仕切り材は、発泡樹脂製成型板、
ガラスウール板、フェルト類、石膏ボード、合板、段ボ
ール紙、等の熱容量及び温度伝導率の小さい断熱材料か
ら構成するとよい。
[0009] The plate-shaped partition member is a molded plate made of foamed resin,
It is preferable to use a heat insulating material having a small heat capacity and a low thermal conductivity, such as a glass wool plate, felts, gypsum board, plywood, corrugated paper, and the like.

【0010】〔作 用〕上記の技術手段を講じたことに
よる作用は次の通りである。 (イ)本発明は、鋼板製吊り天井下地の上側に配設した
格子状の補強枠部分の上側に重ねて断熱発泡樹脂材部分
を設けることで断熱層を形成し、かつ、その補強枠部分
を、吊り天井下地の天井面に沿って格子状に形成された
木材または軽量型鋼などの強度部材から構成するととも
に、その補強枠の上側から断熱発泡樹脂を現場発泡させ
て形成するものであるから、形成断熱層に亀裂や剥離を
生じさせずに現場発泡による断熱層を形成することが可
能となる。つまり、上述の補強枠を用いることで、広い
天井面の断熱層が、補強枠の格子間隔に相当する面積単
位毎の小面積に区分けされた状態となり、その断熱層に
生じる熱収縮も、格子寸法で区画された範囲を単位面積
とする小区画毎に各別に生じる状態となり、断熱発泡樹
脂材と天井下地との熱収縮量の差の累積や応力の集中を
生じさせずに済む。すなわち、この断熱発泡樹脂材が格
子寸法で区画された範囲に相当する単位面積に限定され
た動きになったときの各部材にどのような応力が生じる
かを考察すると、次の通りである。断熱発泡樹脂材とし
て、ポリウレタンフォームを用い、これが縦方向長さ1
m、横方向長さ1m、厚さ350mm、線膨張率α=7×
10ー5cm/cm/℃、ヤング率E=10kgf/cm2であると
き、このポリウレタンフォームの収縮時の応力Pは、室
温が−60℃、温度差△t=95℃、無拘束とすると、 P=(A・λ・E)/L … … … …(1) (但し、A:ポリウレタンフォームの断面積、 λ:収縮量、 L:もとの長さ) 上記(1)式より、P=233kgの応力が生じる計算と
なる。これに対して天井下地及び補強枠の条件を考える
と、 <天井下地(キーストンプレート)> 厚さ0.8mm 長さ1m、幅1m、断面積A=13.167cm2、 ヤング率E=2.1×106kgf/cm2、 線膨張率α=7×10ー5cm/cm/℃、 温度差△t=95℃、 室温=−60℃のとき、 収縮量λ=0.102cm 応力P=28,200kgとなる。 <補強枠(格子状の木材からなる縦材、及び横材)> 45mm角材、長さ1m、断面積A=20.25cm2 ヤング率E=0.11×106kgf/cm2、 線膨張率α=0.5×10ー5cm/cm/℃、 温度差△t=95℃、 室温=−60℃のとき、 収縮量λ=0.0475cm 応力P=1060kgとなる。 上記のように、厚さ0.8mmのキーストンプレートの応
力が桁外れに大きく、これを止めることはできない。す
なわち、キーストンプレートは木格子やポリウレタンフ
ォームが付着していても、熱応力により自由に運動でき
ると考えられる。そして、補強枠についてみると、補強
枠の構成材として木材を用いた場合、木材とキーストン
プレートとは鋼製ビス等の固定手段で連結固定される
が、熱収縮による両者の差は、1m当たり約0.5mmで
あり、かつ、前述のように差の累積もなく、補強枠の格
子寸法もその程度に押さえられるので、木材の性状から
みて、鋼製ビスが少しルーズになる程度で、キーストン
プレートの動きに追随することは容易に理解できる。ま
た、補強枠の構成材として軽量型鋼を用いた場合には、
キーストンプレートと同一材料または同種の材料であ
り、同程度の熱収縮作用を持つことから、キーストンプ
レートとの伸縮量の差を殆ど生じない状態で追随させる
ことができる。そして、ポリウレタンフォームについて
みると、ポリウレタンフォームの応力による歪の度合は
0.5%程度であり、充分弾性限界内にあり、応力が懸
かったまま原型を保っている。結局、ボリウレタンフォ
ームの応力に補強枠の木材強度が耐えられるかどうかが
問題となるが、米栂材45mm角の場合、縦圧縮破壊強度
は300kg/cm2であり、該寸法では、約6000kgの
数値があり、破壊されることはない。参考までに、ポリ
ウレタンフォームの厚さ350mm、補強枠材として米栂
材を用い、格子間隔が縦横夫々1mで、安全率を4倍と
したときの木材の大きさを求めると、18mm角でよい計
算になる。
[Operation] The operation of the above-described technical means is as follows. (A) The present invention provides a heat-insulating layer by providing a heat-insulating foamed resin material portion on top of a lattice-like reinforcing frame portion provided above a steel plate suspended ceiling base, and forming the heat-insulating layer portion. Is made of a strength member such as wood or lightweight steel formed in a grid along the ceiling surface of the suspended ceiling base, and is formed by in-situ foaming of a heat-insulating foam resin from above the reinforcing frame. In addition, it becomes possible to form a heat insulating layer by foaming in situ without causing cracks or peeling in the formed heat insulating layer. In other words, by using the above-described reinforcing frame, the heat-insulating layer of the wide ceiling surface is divided into small areas for each area unit corresponding to the lattice interval of the reinforcing frame, and the heat shrinkage generated in the heat-insulating layer is also reduced by the grid. A state is generated separately for each small section having a unit area of a range defined by dimensions, so that it is not necessary to accumulate a difference in heat shrinkage amount between the heat-insulating foamed resin material and the ceiling base or to concentrate stress. That is, when considering what kind of stress occurs in each member when the heat-insulating foamed resin material moves in a unit area corresponding to the area defined by the lattice dimensions, the following is considered. Polyurethane foam was used as the heat-insulating foam resin material, and the length in the longitudinal direction was 1
m, lateral length 1 m, thickness 350 mm, coefficient of linear expansion α = 7 ×
When 10-5 cm / cm / ° C. and Young's modulus E = 10 kgf / cm 2 , the stress P during shrinkage of this polyurethane foam is -60 ° C. at room temperature, temperature difference Δt = 95 ° C., and no constraint. , P = (A · λ · E) / L (1) (where, A: cross-sectional area of polyurethane foam, λ: shrinkage, L: original length) From the above formula (1), It is calculated that a stress of P = 233 kg is generated. On the other hand, considering the conditions of the ceiling base and the reinforcing frame, <Ceiling base (keystone plate)> Thickness 0.8 mm, length 1 m, width 1 m, cross-sectional area A = 13.167 cm 2 , Young's modulus E = 2. 1 × 10 6 kgf / cm 2 , = 7 × linear expansion coefficient alpha 10 over 5 cm / cm / ℃, the temperature difference △ t = 95 ℃, when the room temperature = -60 ° C., the amount of shrinkage lambda = 0.102 cm stresses P = 28,200 kg. <Reinforcing frame (vertical and horizontal members made of lattice-shaped wood)> 45 mm square member, length 1 m, cross-sectional area A = 20.25 cm 2 Young's modulus E = 0.11 × 10 6 kgf / cm 2 , linear expansion rate α = 0.5 × 10 over 5 cm / cm / ℃, the temperature difference △ t = 95 ℃, when the room temperature = -60 ° C., the amount of shrinkage λ = 0.0475cm stress P = 1060kg. As described above, the stress of the keystone plate having a thickness of 0.8 mm is extremely large and cannot be stopped. That is, it is considered that the keystone plate can freely move due to the thermal stress even when the wood lattice or the polyurethane foam is attached. Looking at the reinforcing frame, when wood is used as a component of the reinforcing frame, the wood and the keystone plate are connected and fixed by fixing means such as steel screws. It is about 0.5 mm, and there is no accumulation of difference as mentioned above, and the grid size of the reinforcing frame is also held down to that extent. Following the movement of the plate is easy to understand. Also, when lightweight steel is used as a component of the reinforcing frame,
The same material or the same kind of material as the keystone plate, and having the same degree of heat shrinkage, it is possible to follow the keystone plate with little difference in expansion and contraction amount. As for the polyurethane foam, the degree of distortion due to the stress of the polyurethane foam is about 0.5%, which is sufficiently within the elastic limit, and maintains the original shape while the stress is applied. In the end, whether the strength of the reinforcing frame can withstand the stress of the polyurethane foam or not is a problem. In the case of a 45-mm square piece of rice-tsuga wood, the vertical compressive fracture strength is 300 kg / cm 2 , and the size is about 6000 kg. Is not destroyed. For reference, if the thickness of the polyurethane foam is 350 mm, the rice frame is used as a reinforcing frame material, the lattice spacing is 1 m each in the vertical and horizontal directions, and the safety factor is 4 times, the size of the wood is 18 mm square. It becomes a calculation.

【0011】(ロ)前記補強枠と前記吊り天井下地との
間には、断熱発泡樹脂材の下限位置を規定して断熱発泡
樹脂材と吊り天井下地との直接接触を阻止する断熱材料
製の板状仕切り材を介在させてあるので、断熱発泡樹脂
材は天井下地には接着せず、断熱材料製の板状仕切り材
上に形成されることになる。したがって、断熱発泡樹脂
材と天井下地との熱収縮量の差については何等考慮の必
要はなく、断熱発泡樹脂材と補強枠との熱収縮量の差に
ついてのみ対応策を前述のように考慮した構成としてお
くことで、破損を生じにくい断熱層を得ることができ
る。しかも、現場発泡の際、前記断熱材料製の板状仕切
り材は、天井下地の凹凸や汚れ、あるいは天井下地の温
度など、発泡樹脂の発泡条件に強い影響を与えて発泡倍
率を部分的に不均一にするような問題を生じさせること
を防止する手段としても作用する。
(B) Between the reinforcing frame and the suspended ceiling base, a lower limit position of the heat insulating foamed resin material is defined to prevent direct contact between the heat insulating foamed resin material and the suspended ceiling base. Since the plate-shaped partition member is interposed, the heat-insulating foamed resin material does not adhere to the ceiling base, but is formed on the plate-shaped partition member made of a heat-insulating material. Therefore, there is no need to consider any difference in the amount of heat shrinkage between the heat-insulating foamed resin material and the ceiling base, and as described above, only a countermeasure was taken for the difference in heat shrinkage between the heat-insulating foamed resin material and the reinforcing frame. With this configuration, a heat-insulating layer that is less likely to be damaged can be obtained. In addition, at the time of in-situ foaming, the plate-shaped partition material made of the heat-insulating material strongly affects the foaming conditions of the foamed resin, such as unevenness and dirt on the ceiling base, and the temperature of the ceiling base, so that the expansion ratio is partially reduced. It also acts as a means for preventing the problem of uniformity from occurring.

【0012】(ハ)さらにまた、前記補強枠は、現場発
泡で形成された断熱発泡樹脂材による断熱層の肉厚内部
に全体が埋没する状態で配置されるのではなく、板状仕
切り材を除けば、その板状仕切り材に体面していた下面
側が現場発泡時の断熱発泡樹脂材の保冷室内部側表面に
露呈して天井下地に対向する状態に位置するものである
から、全体を埋没状態で設ける場合に比べて、現場発泡
時の能率を向上することもできる。つまり、断熱層が肉
厚である場合、補強枠は、断熱層の表面よりも多少肉厚
内部側へ埋没させた状態で用いる方が、補強枠による格
子間隔内での熱収縮を制限する機能を有効に発揮させ易
いものではあるが、そうすると、発泡開始箇所から所定
の肉厚位置で一旦、現場発泡による断熱層形成作業を中
断し、そこに補強枠を接地する作業を施工した後、発泡
作業を再開する必要がある。このような発泡作業中途で
補強枠の施工を行うことは、作業手順の煩雑さや、各種
作業機材の搬入・搬出の手間、さらには発泡面の損傷な
ど、各種の不都合を招き易いものであるが、本発明のよ
うに補強枠を現場発泡の断熱発泡樹脂材の肉厚内に位置
させても完全には埋没しない状態で位置させることによ
り、この補強枠設置のために発泡作業を中断させる必要
はない。
(C) Still further, the reinforcing frame is not disposed so as to be entirely buried in the thickness of the heat insulating layer made of the heat insulating foamed resin material formed by in-situ foaming. Except for this, the lower surface facing the plate-like partitioning material is exposed to the surface of the heat-insulating foamed resin material inside the insulated room at the time of in-situ foaming and is located facing the ceiling base, so the whole is buried. Efficiency at the time of on-site foaming can be improved as compared with the case where it is provided in a state. In other words, when the heat-insulating layer is thick, it is better to use the reinforcing frame in a state where it is buried slightly inside the thicker than the surface of the heat-insulating layer. However, if this is done, the work of forming the heat insulation layer by foaming in the field is temporarily suspended at a predetermined thickness position from the foaming start point, and the work of grounding the reinforcing frame there is performed. Work needs to be resumed. Performing such a reinforcement frame during the foaming work is complicated, and it is easy to cause various inconveniences, such as troublesome work procedures, trouble of loading and unloading various work equipment, and damage to the foam surface. It is necessary to interrupt the foaming work for the installation of the reinforcing frame by arranging the reinforcing frame within the thickness of the heat-insulating foamed resin material foamed in-situ and not completely burying it as in the present invention. There is no.

【0013】(ニ)また、請求項2に記載したように、
吊り天井下地として、溝方向を一方向に向けて並設した
キーストンプレートを用いるとともに、補強枠の格子形
状を構成する縦材と横材のうち、前記キーストンプレー
トに最も近接した位置の格子部材を、キーストンプレー
トの溝の方向に交差する方向に沿わせて、そのキースト
ンプレートに直接取り付け、その上から直接断熱発泡樹
脂材の現場発泡による断熱層を形成する場合は、次のよ
うに作用する。つまり、補強枠の格子形状によって区画
された範囲内に、さらにキーストンプレートの溝が溝方
向を一方向に並べた状態で形成されることになるので、
この溝方向を一方向に並べたキーストンプレートも、こ
れに交差する格子部材との協働で断熱発泡樹脂材の表層
部分における熱収縮範囲をさらに細かく制限する機能を
有することになる。したがって、この請求項2に記載の
構成のものでは、断熱発泡樹脂材がキーストンプレート
とも接着してキーストンプレートに対しても相対的な熱
収縮量の差を生じることになるが、その熱収縮量の差
は、前述のように、補強枠の格子間隔の範囲内で生じる
程度に制限されるので、ポリウレタンフォームの弾性で
吸収可能なごく僅かな程度であり、しかも、キーストン
プレートの溝の方向と交差する方向の格子部材との協働
で、断熱発泡樹脂材に対する拘束をより効果的に行える
ものである。
(D) Further, as described in claim 2,
As the suspended ceiling base, while using keystone plates arranged side by side with the groove direction in one direction, among the vertical members and the horizontal members constituting the lattice shape of the reinforcing frame, a lattice member at a position closest to the keystone plate is used. In the case where the heat-insulating layer is formed by in-situ foaming of the heat-insulating foamed resin material directly on the keystone plate along the direction intersecting the direction of the groove of the keystone plate, and directly above the keystone plate, the following operation is performed. In other words, within the range defined by the lattice shape of the reinforcing frame, the grooves of the keystone plate are formed with the groove directions arranged in one direction.
The keystone plate in which the groove directions are arranged in one direction also has a function of further restricting the range of heat shrinkage in the surface layer portion of the heat insulating foamed resin material in cooperation with the lattice member intersecting the keystone plate. Therefore, in the structure according to the second aspect, the heat-insulating foamed resin material also adheres to the keystone plate to cause a difference in the amount of heat shrinkage relative to the keystone plate. As described above, the difference is limited to a degree that occurs within the range of the lattice spacing of the reinforcing frame, so that it is a very small amount that can be absorbed by the elasticity of the polyurethane foam. By cooperating with the lattice members in the intersecting directions, the restraint on the heat insulating foamed resin material can be performed more effectively.

【0014】[0014]

【発明の実施の形態】次に、本発明の好ましい実施の形
態を説明する。
Next, a preferred embodiment of the present invention will be described.

【0015】〔第1の実施の形態〕図1及び図2は、本
発明における保冷室天井の断熱構造の第1の実施の形態
を示すものであり、図1は、建物の側壁上部と天井部分
との接続箇所を上下方向で切断した断面を示し、図2は
天井壁を保冷室室内側からみて一部を切り欠いた部分断
面図を示す。
[First Embodiment] FIGS. 1 and 2 show a first embodiment of a heat insulating structure for a cooling room ceiling according to the present invention. FIG. 1 shows an upper part of a side wall of a building and a ceiling. FIG. 2 is a partial cross-sectional view of the ceiling wall viewed from the inside of the cold storage room, with a part cut away.

【0016】この保冷室天井の断熱構造は次のように構
成されている。建物の天井梁1に吊下げられた吊りボル
ト2の下部に、金属製の角パイプで構成された受け金物
3を配し、その上に天井下地4の上面を構成するキース
トンプレート4Aを取り付けてあり、この天井下地4に
対して上側に、断熱層5を現場発泡により形成し、この
断熱層5の上側に防湿層6が形成されている。
The heat insulating structure for the ceiling of the cool room is configured as follows. At the lower part of a suspension bolt 2 suspended from a ceiling beam 1 of a building, a metal fitting 3 composed of a metal square pipe is arranged, and a keystone plate 4A constituting an upper surface of a ceiling foundation 4 is mounted thereon. In addition, a heat insulating layer 5 is formed by in-situ foaming on the upper side of the ceiling base 4, and a moisture-proof layer 6 is formed on the upper side of the heat insulating layer 5.

【0017】前記受け金物3は、天井面に沿う方向で
2.5m毎に配された100mm角の角パイプで構成さ
れ、天井梁1に2mピッチで固定された直径16mmの吊
りボルト2で吊下げられ、水平姿勢に配設されている。
この受け金物3の上に、板厚0.8mmのキーストンプレ
ート4Aが敷並べられ、受け金物3に対してビスで固定
されている。
The receiving hardware 3 is composed of 100 mm square pipes arranged every 2.5 m in the direction along the ceiling surface, and is suspended by 16 mm diameter suspension bolts 2 fixed to the ceiling beam 1 at a pitch of 2 m. It is lowered and arranged in a horizontal position.
A keystone plate 4A having a thickness of 0.8 mm is laid on the metal receiving member 3, and is fixed to the metal receiving member 3 with screws.

【0018】前記キーストンプレート4Aの上面側に
は、キーストンプレート4Aの上面側を覆うように、熱
容量及び温度伝導率が小さい、例えばポリスチレン板な
どの発泡樹脂製断熱板や、ガラスウール板、フェルト
類、石膏ボート等で構成される板状仕切り材7を敷並べ
てあり、この板状仕切り材7の上側に前記断熱層5が形
成される。
On the upper surface side of the keystone plate 4A, a heat insulating plate made of a foamed resin such as a polystyrene plate, a glass wool plate, a felt or the like having a small heat capacity and a low temperature conductivity is covered so as to cover the upper surface side of the keystone plate 4A. , A plate-like partition member 7 composed of a gypsum boat or the like is arranged, and the heat insulating layer 5 is formed above the plate-like partition member 7.

【0019】前記断熱層5は、前記キーストンプレート
4A上の板状仕切り材7に面して位置する補強枠9と、
その補強枠9の上側からの現場発泡によって形成される
断熱発泡樹脂材8の層との組合せ構造に構成されてい
る。
The heat-insulating layer 5 includes a reinforcing frame 9 which faces the plate-like partition member 7 on the keystone plate 4A,
The reinforcing frame 9 is configured to be combined with a layer of a heat-insulating foamed resin material 8 formed by in-situ foaming from above.

【0020】前記補強枠9は、米栂材などの木材からな
り、縦材9Aと横材9Bとを格子状に組み合わせて構成
されたものであり、各縦材9Aと横材9Bとは、夫々、
断面の一辺の長さが45mm程度の角材で構成されてお
り、かつ、縦横とも格子の間隔Lが約90cmである。
尚、ここで云う格子の間隔Lとは、隣合う縦材9Aの中
心線どうしの間隔、及び、隣合う横材9Bの中心線どう
しの間隔をいう。このように構成された補強枠9が、断
熱層5の保冷室側の面(下面)部分に設けられている。
すなわち、45mm角の木材からなる縦材9Aを、90cm
間隔でキーストンプレート4Aの溝方向に直交する方向
で並設し、直径5mmの鋼製六角頭セルフタッピングビス
10aで約90cmピッチでキーストンプレート4Aに固
定してある。前記鋼製六角頭セルフタッピングビス10
aは、縦材9Aをキーストンプレート4Aに強固に固定
できるように、首下長さが木材厚みに15mmを加えた程
度の長さのもので構成されている。次に、前記縦材9A
の上に重ねて、直角に45mm角木材からなる横材9Bを
90cm間隔に格子状に配し、直径5mmの鋼製セルフタッ
ピングビス10bで下部の縦材9Aに締め付ける。この
直径5mmのビス10bは、その首下長さが横材9Bの厚
みに縦材9Aの厚みの2/3の長さ(30mm)を加えた
程度のものである。
The reinforcing frame 9 is made of wood, such as a timber, and is formed by combining a vertical member 9A and a horizontal member 9B in a lattice shape. Each vertical member 9A and the horizontal member 9B are Respectively,
The cross section is made of a rectangular piece having a length of one side of about 45 mm, and the grid interval L is about 90 cm in both the vertical and horizontal directions.
Note that the lattice spacing L referred to here refers to the spacing between the center lines of adjacent vertical members 9A and the spacing between the center lines of adjacent horizontal members 9B. The reinforcing frame 9 configured as described above is provided on a surface (lower surface) of the heat insulating layer 5 on the side of the cold storage room.
That is, a vertical member 9A made of 45 mm square wood is 90 cm long.
The keystone plates 4A are arranged side by side in the direction perpendicular to the groove direction of the keystone plate 4A, and are fixed to the keystone plate 4A at a pitch of about 90 cm with a hexagonal self-tapping screw 10a made of steel having a diameter of 5 mm. The steel hexagonal head self-tapping screw 10
“a” has a neck length of approximately 15 mm added to the thickness of the wood so that the vertical member 9A can be firmly fixed to the keystone plate 4A. Next, the vertical member 9A
The horizontal members 9B made of 45 mm square wood are arranged in a grid pattern at 90 cm intervals, and fastened to the lower vertical members 9A with self-tapping screws 10b having a diameter of 5 mm. The screw 10b having a diameter of 5 mm has a length under the neck equal to the thickness of the horizontal member 9B plus the length (30 mm) of the thickness of the vertical member 9A.

【0021】前記断熱発泡樹脂材8は、ポリウレタンフ
ォームやポリスチロールなどの発泡樹脂材を現場発泡さ
せて約400mmの厚さに構成したものであり、厚み方向
での中間部に、亀裂防止材11として、網目の大きさが
15mm程度のガラスメッシュを配設してある。このガラ
スメッシュからなる亀裂防止材11は、作業者が天井断
熱層5の上を歩くなどの物理的な衝撃により部分的な亀
裂が生じた場合の、亀裂の進行を防止するための予防手
段として断熱層5の内部に配設してある。
The heat-insulating foamed resin material 8 is formed by foaming a foamed resin material such as polyurethane foam or polystyrene in-situ to a thickness of about 400 mm. A glass mesh having a mesh size of about 15 mm is provided. The crack prevention member 11 made of the glass mesh is used as a preventive measure for preventing the progress of the crack when a partial crack occurs due to a physical impact such as a worker walking on the ceiling heat insulating layer 5. It is arranged inside the heat insulating layer 5.

【0022】前記防湿層3は、下地1側から保冷室内側
へ水分、及び水蒸気の透過を規制するために設けられた
ゴムアスファルトエマルジョン塗布剤などで構成されて
いる。
The moisture-proof layer 3 is made of a rubber asphalt emulsion coating agent or the like provided to control the permeation of moisture and water vapor from the base 1 side to the cold room side.

【0023】天井梁からの吊りボルト2は、断熱層5の
上面側より1mの高さまでは、結露を防止する目的で断
熱を施し得てある。
The suspension bolt 2 from the ceiling beam can be insulated at a height of 1 m above the upper surface of the heat insulating layer 5 for the purpose of preventing dew condensation.

【0024】このように構成された保冷室の断熱層5で
は、次のような現象により、断熱発泡樹脂材8の収縮応
力が緩和される。即ち、断熱発泡樹脂材8(例えばポリ
ウレタンフォーム)の線膨張係数が(5〜7)×10-5
mm℃であるのに対し、前記補強枠9を構成する木材の長
さ方向での線膨張係数は(0.3〜0.5)×10ー5mm
℃であり、木材は断熱発泡樹脂材8の1/10〜1/2
0しか収縮しない。したがって、この断熱発泡樹脂材8
の熱収縮が、その1/10〜1/20の熱収縮しかしな
い木材の補強枠9で拘束される結果、その補強枠9、及
び断熱発泡樹脂材8自体には、補強枠9の格子間隔の範
囲内における断熱発泡樹脂材8の収縮応力しか働かず、
断熱発泡樹脂材8は、ポリウレタンフォーム固有の物性
範囲内で応力が生じたまま原形を保つことができ、補強
枠9は前記収縮応力に抗して破損されずに所期姿勢を維
持する。
In the heat insulating layer 5 of the cold room configured as described above, the shrinkage stress of the heat insulating foamed resin material 8 is reduced by the following phenomenon. That is, the coefficient of linear expansion of the heat insulating foamed resin material 8 (for example, polyurethane foam) is (5 to 7) × 10 −5.
whereas a mm ° C., the linear expansion coefficient in the longitudinal direction of the timber constituting the reinforcing frame 9 (0.3 to 0.5) × 10 over 5 mm
° C and wood is 1/10 to 1/2 of the heat-insulating foamed resin material 8
Only 0 contracts. Therefore, this heat insulating foamed resin material 8
Is restrained by the wood reinforcing frame 9 having only 1/10 to 1/20 of the heat shrinkage, and the reinforcing frame 9 and the heat insulating foamed resin material 8 itself have a lattice spacing of the reinforcing frame 9. Only the contraction stress of the heat-insulating foamed resin material 8 within the range of
The heat-insulating foamed resin material 8 can maintain its original shape with stress generated within the physical property range inherent to the polyurethane foam, and the reinforcing frame 9 is maintained in the desired posture without being damaged against the shrinkage stress.

【0025】〔第2の実施の形態〕図3は、本発明にお
ける保冷室天井の断熱構造の第2の実施の形態を示すも
のであり、建物の天井部分を上下方向で切断した断面を
示す。
[Second Embodiment] FIG. 3 shows a second embodiment of a heat insulating structure for a cooling room ceiling according to the present invention, and shows a cross section of a ceiling portion of a building cut in a vertical direction. .

【0026】この実施の形態では、受け金物3の上に、
板厚0.8mmのキーストンプレート4Aを、その溝方向
が一方向に並ぶように敷並べ、受け金物3に対してビス
で固定するとともに、このキーストンプレート4Aの上
に、前記第1の実施の形態で用いた板状仕切り材7を用
いずに、直接補強枠9を取り付けている。そして、この
補強枠9は、その補強枠9を構成する縦材9Aと横材9
Bのうち、前記キーストンプレート4Aの溝方向に直交
する方向の縦材9Aを、キーストンプレート4A上に置
いて直径5mmの鋼製六角頭セルフタッピングビス10a
で約90cmピッチでキーストンプレート4Aに固定し、
次に、前記縦材9Aの上に重ねて、直角に45mm角木材
からなる横材9Bを90cm間隔に格子状に配置して、直
径5mmの鋼製セルフタッピングビス10bで下部の縦材
9Aに締め付け固定してある。
In this embodiment, on the receiving hardware 3,
A keystone plate 4A having a plate thickness of 0.8 mm is laid out so that its groove direction is aligned in one direction, and is fixed to the receiving hardware 3 with screws, and the first embodiment is mounted on the keystone plate 4A. The reinforcing frame 9 is directly attached without using the plate-like partition member 7 used in the embodiment. The reinforcing frame 9 includes a vertical member 9A and a horizontal member 9 that constitute the reinforcing frame 9.
B, a vertical member 9A in a direction perpendicular to the groove direction of the keystone plate 4A is placed on the keystone plate 4A and a self-tapping screw 10a made of a steel hexagonal head having a diameter of 5 mm.
And fix it to keystone plate 4A at about 90cm pitch,
Next, superimposed on the vertical member 9A, cross members 9B made of 45 mm square wood are arranged in a grid pattern at 90 cm intervals at a right angle, and the self-tapping screws 10b having a diameter of 5 mm are used to form a lower vertical member 9A. Fastened and fixed.

【0027】そして、前記補強枠9の上側から現場発泡
によって断熱発泡樹脂材8の層を形成することにより前
記断熱層5を構成するものであるが、このとき、断熱発
泡樹脂材8は、補強枠9に接するキーストンプレート4
Aの溝内部にまで入り込む状態で形成される。このた
め、断熱層5の断熱発泡樹脂材8は、前記補強枠9によ
る前述の拘束を受ける状態となっているとともに、その
補強枠9の格子間隔の中でキーストンプレート4Aの溝
に入り込む状態の断熱発泡樹脂材8の下面部分が、溝方
向と交差する方向での拘束をも受けることにもなり、よ
り一層断熱層5の低温側(保冷室内方側)の拘束範囲を
狭め、収縮応力の大きさをさらに小さくする上で有効で
ある。
The heat-insulating foamed resin material 8 is formed by forming a layer of the heat-insulating foamed resin material 8 from the upper side of the reinforcing frame 9 by in-situ foaming. Keystone plate 4 in contact with frame 9
It is formed so as to enter the inside of the groove of A. Therefore, the heat-insulating foamed resin material 8 of the heat-insulating layer 5 is in a state of being restrained by the reinforcing frame 9 as described above, and also enters a groove of the keystone plate 4A within the lattice interval of the reinforcing frame 9. The lower surface of the heat-insulating foamed resin material 8 is also constrained in a direction intersecting with the groove direction, further narrowing the constrained range of the heat-insulating layer 5 on the low-temperature side (inside the cold storage room), and reducing the shrinkage stress. This is effective in further reducing the size.

【0028】この第2の実施の形態のその他の構成は、
前記第1の実施の形態で示した構成と同様であるため説
明を省略する。
Another configuration of the second embodiment is as follows.
Since the configuration is the same as that shown in the first embodiment, the description is omitted.

【0029】〔その他の実施の形態〕 [1] 補強枠9の材質は、前記の米栂材に限らず、各種の
木材、あるいは、各種の軽量型鋼を用いて構成すること
ができる。つまり、断熱発泡樹脂材8の収縮応力で破壊
されない程度の所要の強度を有し、かつ、熱収縮率の小
さい材料で構成することで断熱発泡樹脂材8の収縮範囲
を格子間隔内に制限する機能を有したものであればよ
い。 [2] 補強枠9の格子の間隔や縦材9A横材9Bの大き
さ、あるいは断面形状は、それ自身の材質や断熱発泡樹
脂材8の材質などに応じて適宜設定すればよいが、一応
の目安としては、断面の一辺が5〜100mm程度の任意
の角型であり、かつ、格子間隔(L)が30〜300cm
で自由に設定することができる。 [3] 前記補強枠9は、その格子間隔も、縦横同寸である
ものに限らず、必要に応じてその比率を変更してもよ
い。また、縦材9Aと横材9Bとを別々の部材で構成す
るものに限らず、同一平面上に縦材9A部分と横材9B
部分とが位置するように一体化されたものであっても良
い。 [4] 前記受け金物3は、角パイプに限らず、C型鋼な
ど、キーストンプレート4Aの下側から天井部の全体を
受け止め支持するに適した強度と構造を備えたものであ
ればよい。 [5] また、前記断熱層5を形成する断熱発泡樹脂材8と
しては、前述のポリウレタンフォームの他、現場発泡で
構成することのできる各種の発泡樹脂材を用いることが
できる。
[Other Embodiments] [1] The material of the reinforcing frame 9 is not limited to the above-mentioned rice toga material, but may be made of various woods or various lightweight steels. That is, the shrinkage range of the heat-insulating foamed resin material 8 is limited to within the lattice interval by having a required strength that is not broken by the shrinkage stress of the heat-insulating foamed resin material 8 and having a small heat shrinkage. Any device having a function may be used. [2] The grid spacing of the reinforcing frame 9, the size of the vertical members 9A and the horizontal members 9B, or the cross-sectional shape may be appropriately set according to the material of itself, the material of the heat insulating foamed resin material 8, and the like. As a rule of thumb, the cross-section is an arbitrary square having a side of about 5 to 100 mm, and the lattice spacing (L) is 30 to 300 cm.
Can be set freely. [3] The lattice spacing of the reinforcing frame 9 is not limited to one having the same vertical and horizontal dimensions, and the ratio may be changed as necessary. In addition, the vertical member 9A and the horizontal member 9B are not limited to those formed by separate members, and the vertical member 9A and the horizontal member 9B are arranged on the same plane.
It may be integrated so that the part is located. [4] The receiving hardware 3 is not limited to a square pipe, but may be any material having a strength and a structure suitable for receiving and supporting the entire ceiling from below the keystone plate 4A, such as a C-shaped steel. [5] Further, as the heat-insulating foamed resin material 8 forming the heat-insulating layer 5, various foamed resin materials that can be formed by in-situ foaming can be used in addition to the polyurethane foam described above.

【0030】[0030]

【実施例】前記保冷室の天井側の断熱構造は、図1に示
す保冷室の側壁を構成する側壁下地22の内側に設けた
防熱壁23の上部に引き続いて形成されている。前記防
熱壁23は、前記側壁下地22との境界付近に最も近接
させて設けた防湿層6と、その防湿層6の室内側に設け
た断熱層5と、更に内側に設けた内装材24との組合せ
で構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat insulating structure on the ceiling side of the above-mentioned cold storage room is formed successively above the heat insulating wall 23 provided inside the side wall base 22 constituting the side wall of the cold storage room shown in FIG. The heat-insulating wall 23 includes a moisture-proof layer 6 provided closest to the boundary with the sidewall base 22, a heat-insulating layer 5 provided on the indoor side of the moisture-proof layer 6, and an interior material 24 provided further inside. It is composed of a combination of

【0031】前記防湿層6は、側壁下地22側から保冷
室内側へ水分、及び水蒸気の透過を規制する可撓性のシ
ート、又は、塗剤(例えば、ゴムとアスファルトのエマ
ルジョン等)で構成され、上下姿勢で、かつ、横方向に
約90cmの間隔を隔てて配設した押え桟木により、側壁
下地22に対して固定されている。
The moisture-proof layer 6 is made of a flexible sheet or a paint (for example, an emulsion of rubber and asphalt, etc.) for controlling the permeation of moisture and water vapor from the side wall substrate 22 side to the cold room. It is fixed to the side wall substrate 22 by a holding bar which is arranged in a vertical position and spaced apart by about 90 cm in the horizontal direction.

【0032】前記断熱層5は、ポリウレタンフォームや
ポリスチロールなどの断熱発泡樹脂材8を現場発泡させ
て約450mmの厚さに構成したものであり、その断熱層
5の前記側壁下地22側の防湿層6との境界に、前記断
熱発泡樹脂材8の厚さ方向でのある程度の動きを許すク
ッション材27を設け、断熱層5の保冷室室内側の面に
補強枠9を当てつけ、前記側壁下地22に打たれた断熱
ボルト26で固定してある。この断熱ボルト26は、プ
ラスチック製又はステンレス製であり、表面には、グリ
ースなどの油脂類、またはプラスチックテープなどの離
型材を施してある。前記内装材24は、前記補強枠9
に、または、前記断熱ボルト26に連結されることによ
り、側壁下地22に固定される。
The heat-insulating layer 5 is formed by foaming a heat-insulating foamed resin material 8 such as polyurethane foam or polystyrene in-situ to a thickness of about 450 mm. At the boundary with the layer 6, a cushion material 27 is provided to allow a certain amount of movement in the thickness direction of the heat-insulating foamed resin material 8, and a reinforcing frame 9 is applied to the surface of the heat-insulating layer 5 on the indoor side in the cold storage room. It is fixed with a heat insulating bolt 26 struck at 22. The heat insulating bolt 26 is made of plastic or stainless steel, and its surface is provided with oils and fats such as grease or a release material such as a plastic tape. The interior material 24 includes the reinforcing frame 9.
Or by being connected to the heat insulating bolt 26, it is fixed to the side wall substrate 22.

【0033】前記保冷室の床側は、コンクリート基礎と
の間に適宜間隔を隔ててコンクリート製の床を設け、そ
の床と基礎との間に適宜厚さの断熱発泡樹脂材を現場発
泡により吹き付けるなどして断熱構造を構成すればよ
い。
On the floor side of the cool room, a concrete floor is provided at an appropriate distance from the concrete foundation, and an insulating foam resin material having an appropriate thickness is sprayed between the floor and the foundation by in-situ foaming. What is necessary is just to comprise a heat insulation structure.

【0034】前記補強枠9として用いるに適当な軽量型
鋼としては、例えば、横25mm、縦19mm、板厚0.5
mmのチャンネル状の溶融亜鉛メッキ鋼板(JIS A−
6517 鋼製下地材 CS−19)などが挙げられ
る。 〔付記〕尚、特許請求の範囲の項に図面との対照を便利
にするために符号を記すが、該記入により本発明は添付
図面の構成に限定されるものではない。
The lightweight steel suitable for use as the reinforcing frame 9 is, for example, 25 mm wide, 19 mm long, and 0.5 mm thick.
mm hot-dip galvanized steel sheet (JIS A-
6517 steel base material CS-19). [Supplementary Note] In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the description.

【0035】[0035]

【発明の効果】【The invention's effect】

a.前記の技術作用を講じると、たとえ、断熱層を形成
する上記の断熱発泡樹脂材の物性が、発泡度合の不均一
があるなどの、ある程度発泡バランスの低いものであっ
ても、熱収縮による応力が最も早く起こってくる低温側
(保冷室室内側)に木材又は金属製軽量型鋼の格子状の
補強枠が固定されているため、断熱発泡樹脂材の熱収縮
による歪は、天井面の全体を単位として生じるのではな
く、その動きが格子で区画された範囲の中で生じるよう
に限定された動きになる。また、熱収縮による応力も、
各格子部分で相殺し合う方向に働くように分散される。
その結果、断熱発泡樹脂材の歪も応力も、断熱発泡樹脂
材固有の物性範囲内で無理なく吸収され、亀裂、剥離の
発生を回避できる。 b.しかも、補強枠は、その全体が断熱層の肉厚内部に
埋没する状態で設けられるのではなく、現場発泡によっ
て形成する断熱層の天井下地との対向面側に露呈する状
態で設けられるので、肉厚内部に形成する場合のよう
に、現場発泡の工数を増すなど作業能率の低下がない点
で有利である。 c.そして、断熱層を形成する断熱発泡樹脂材は天井下
地には接着せず、断熱材料製の板状仕切り材上に形成さ
れるものであるから、発泡時に天井下地側に温度を奪わ
れる、あるいは、天井下地の凹凸や汚れなど、発泡樹脂
の発泡条件に強い影響を与えて発泡倍率を部分的に変化
させるような問題を良好に回避し、断熱層の不均一さを
避けて断熱性能のよい断熱層を得易いものである。 d.そのうえ、天井下地の形状や材質に関係なく断熱発
泡樹脂材を選定することができるので、断熱発泡樹脂材
の熱収縮量は、補強枠との相関においてのみ相互破壊を
生じないように設定すればよく、天井下地も含めて素材
の選択や設計上の自由度を高める上でも有効である。 e.また、請求項2に記載したように、キーストンプレ
ートに最も近接した位置の格子部材を、キーストンプレ
ートの溝の方向に交差する方向に沿わせて、そのキース
トンプレートに直接取り付け、その上から直接断熱発泡
樹脂材の現場発泡による断熱層を形成する場合には、前
述のように、断熱発泡樹脂材の熱収縮による歪を、補強
枠の格子間隔の範囲内で生じる程度に制限するととも
に、キーストンプレートの溝と、その溝の方向と交差す
る方向の格子部材との協働で、断熱発泡樹脂材に対する
断熱層下面での拘束をより効果的に行えるものである。
a. Taking the above technical action, even if the physical properties of the above-mentioned heat-insulating foamed resin material forming the heat-insulating layer have a somewhat low foaming balance, such as a non-uniform foaming degree, the stress due to thermal shrinkage Since the grid-like reinforcing frame made of wood or metal lightweight steel is fixed on the low-temperature side (inside the cold storage room) where the earliest occurrence occurs, the distortion due to the heat shrinkage of the heat-insulating foamed resin material causes the entire ceiling surface to be distorted. Rather than occurring as a unit, the movement is limited so that the movement occurs within the area defined by the grid. Also, the stress due to heat shrinkage,
It is dispersed so as to work in a direction that cancels out each lattice portion.
As a result, both the strain and the stress of the heat-insulating foamed resin material are easily absorbed within the physical property range inherent to the heat-insulating foamed resin material, and the occurrence of cracks and peeling can be avoided. b. Moreover, since the reinforcing frame is not provided so as to be entirely buried inside the thickness of the heat insulating layer, it is provided so as to be exposed on the side facing the ceiling base of the heat insulating layer formed by in-situ foaming. This is advantageous in that there is no decrease in work efficiency such as an increase in the number of steps of foaming in the site, as in the case of forming inside the wall thickness. c. The heat-insulating foamed resin material forming the heat-insulating layer does not adhere to the ceiling base, and is formed on a plate-shaped partition member made of a heat-insulating material. The problem that the foaming conditions of the foamed resin, such as unevenness and dirt on the ceiling underlayer, are strongly affected, and the foaming ratio is partially changed is satisfactorily avoided. It is easy to obtain a heat insulating layer. d. In addition, since the heat-insulating foamed resin material can be selected regardless of the shape and material of the ceiling base, the amount of heat shrinkage of the heat-insulating foamed resin material should be set so as not to cause mutual destruction only in correlation with the reinforcing frame. Often, it is also effective in increasing the degree of freedom in material selection and design, including the ceiling base. e. Further, as described in claim 2, the lattice member at the position closest to the keystone plate is directly attached to the keystone plate along the direction intersecting the direction of the groove of the keystone plate, and directly insulated from above. In the case where the heat insulating layer is formed by in-situ foaming of the foamed resin material, as described above, the strain due to the heat shrinkage of the heat-insulated foamed resin material is limited to the extent that it occurs within the range of the lattice spacing of the reinforcing frame and the keystone plate The groove and the lattice member in a direction intersecting the direction of the groove cooperate to more effectively restrain the heat-insulating foamed resin material on the lower surface of the heat-insulating layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】保冷室天井の断熱構造を示す縦断面図FIG. 1 is a longitudinal sectional view showing a heat insulating structure of a cooling room ceiling.

【図2】保冷室天井の断熱構造を示す一部切り欠き平面
FIG. 2 is a partially cutaway plan view showing a heat insulation structure of a cooling room ceiling.

【図3】他の実施の形態を示す縦断面図FIG. 3 is a longitudinal sectional view showing another embodiment.

【図4】従来例を示す縦断面図FIG. 4 is a longitudinal sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

4 天井下地 4A キーストンプレート 5 断熱層 7 板状仕切り材 8 断熱発泡樹脂材 9 補強枠 9A 縦材 9B 横材 4 Ceiling base 4A Keystone plate 5 Heat insulation layer 7 Plate-like partition material 8 Insulation foamed resin material 9 Reinforcement frame 9A Vertical material 9B Horizontal material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−299617(JP,A) 特開 昭62−37670(JP,A) 特開 昭63−118582(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25D 23/06 303──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-299617 (JP, A) JP-A-62-37670 (JP, A) JP-A-63-118582 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) F25D 23/06 303

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷凍冷蔵倉庫などの保冷室天井を構成する
鋼板製吊り天井下地(4)の上面側に断熱層(5)を形
成した保冷室天井の断熱構造であって、前記断熱層
(5)は、鋼板製吊り天井下地(4)の上側に配設した
格子状の補強枠(9)部分と、その補強枠(9)の上側
に重ねて形成される断熱発泡樹脂材(8)部分との組合
せで構成され、前記補強枠(9)は、前記吊り天井下地
(4)の天井面に沿って格子状に形成された木材または
軽量型鋼などの強度部材からなり、前記断熱発泡樹脂材
(8)は、前記補強枠(9)の上側から断熱発泡樹脂を
現場発泡させて形成してあり、さらに、前記補強枠
(9)は、前記吊り天井下地(4)との間に、断熱発泡
樹脂材の下限位置を規定して断熱発泡樹脂材と吊り天井
下地(4)との直接接触を阻止する断熱材料製の板状仕
切り材(7)を介在させた状態で、前記吊り天井下地
(4)に取り付けてある保冷室天井の断熱構造。
1. A heat insulation structure for a cold storage room ceiling, wherein a heat insulation layer (5) is formed on the upper surface side of a steel plate suspended ceiling base (4) constituting a cold storage room ceiling such as a freezing and refrigerated warehouse. 5) is a grid-like reinforcing frame (9) disposed above the steel plate suspended ceiling base (4), and a heat-insulating foamed resin material (8) formed on the reinforcing frame (9). The reinforcing frame (9) is made of a strength member such as wood or lightweight steel formed in a grid along the ceiling surface of the suspended ceiling base (4), and The material (8) is formed by foaming heat-insulating foamed resin in situ from above the reinforcing frame (9), and the reinforcing frame (9) is provided between the reinforcing frame (9) and the suspended ceiling base (4). By specifying the lower limit position of the heat-insulating foam resin material, direct contact between the heat-insulating foam resin material and the suspended ceiling base (4) is established. In a state of thermal insulating material made of plate-shaped partition member to stop (7) is interposed, cold room ceiling insulation structure is attached to the suspended ceiling foundation (4).
【請求項2】冷凍冷蔵倉庫などの保冷室天井を構成する
鋼板製吊り天井下地(4)の上面側に断熱層(5)を形
成した保冷室天井の断熱構造であって、前記断熱層
(5)は、鋼板製吊り天井下地(4)の上側に配設した
格子状の補強枠(9)部分と、その補強枠(9)の上側
に形成される断熱発泡樹脂材(8)部分との組合せで構
成され、前記補強枠(9)は、前記吊り天井下地(4)
の天井面に沿って格子状に形成された木材または軽量型
鋼などの強度部材からなり、前記断熱発泡樹脂材(8)
は、前記補強枠(9)の上側から断熱発泡樹脂を現場発
泡させて形成してあり、さらに、前記吊り天井下地
(4)は、溝方向を一方向に向けて並設したキーストン
プレート(4A)で下地上面を形成するように構成して
あり、前記補強枠(9)は、その格子形状を構成する縦
材(9A)と横材(9B)のうち、前記キーストンプレ
ート(4A)に最も近接した位置の格子構成部材を、前
記キーストンプレート(4A)の溝の方向に交差する方
向に沿わせて、そのキーストンプレート(4A)に直接
取り付けてある保冷室天井の断熱構造。
2. A heat insulation structure of a cold storage room ceiling, wherein a heat insulation layer (5) is formed on the upper surface side of a steel plate suspended ceiling base (4) constituting a cold storage room ceiling such as a freezer cold storage warehouse. 5) a lattice-shaped reinforcing frame (9) disposed above the steel plate suspended ceiling base (4), and a heat-insulating foamed resin material (8) formed above the reinforcing frame (9). And the reinforcing frame (9) is connected to the suspended ceiling base (4).
The heat-insulating foamed resin material (8), which is made of a strength member such as wood or lightweight steel formed in a grid along the ceiling surface of
Is formed by foaming a heat-insulating foam resin in-situ from the upper side of the reinforcing frame (9). Further, the suspended ceiling base (4) is provided with a keystone plate (4A) having grooves in one direction. ) To form the upper surface of the base, and the reinforcing frame (9) is the most suitable for the keystone plate (4A) among the vertical members (9A) and the horizontal members (9B) constituting the lattice shape. A heat insulating structure for a ceiling of a cold storage room, wherein a lattice component at an adjacent position is directly attached to a keystone plate (4A) along a direction intersecting a direction of a groove of the keystone plate (4A).
【請求項3】前記補強枠(9)を構成する強度部材は、
断面の一辺が5〜100mm程度の任意の角型であり、か
つ、格子間隔(L)が30〜300cmである請求項1ま
たは2記載の保冷室天井の断熱構造。
3. A strength member constituting the reinforcing frame (9),
3. The heat insulating structure for a cooling room ceiling according to claim 1, wherein one of the cross-sections is an arbitrary square having a side of about 5 to 100 mm, and a lattice spacing (L) is 30 to 300 cm.
【請求項4】前記板状仕切り材(7)は、発泡樹脂製成
型板、ガラスウール板、フェルト類、石膏ボード、合
板、段ボール紙、等の熱容量及び温度伝導率の小さい断
熱材料から構成されている請求項1記載の保冷室天井の
断熱構造。
4. The plate-like partition member (7) is made of a heat-insulating material having a small heat capacity and a low thermal conductivity, such as a molded plate made of a foamed resin, a glass wool plate, felts, gypsum board, plywood, corrugated paper, and the like. The heat insulation structure for a cooling room ceiling according to claim 1, wherein:
JP9218896A 1996-04-15 1996-04-15 Thermal insulation structure of the cool room ceiling Expired - Lifetime JP2788224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9218896A JP2788224B2 (en) 1996-04-15 1996-04-15 Thermal insulation structure of the cool room ceiling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9218896A JP2788224B2 (en) 1996-04-15 1996-04-15 Thermal insulation structure of the cool room ceiling

Publications (2)

Publication Number Publication Date
JPH09280726A JPH09280726A (en) 1997-10-31
JP2788224B2 true JP2788224B2 (en) 1998-08-20

Family

ID=14047472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9218896A Expired - Lifetime JP2788224B2 (en) 1996-04-15 1996-04-15 Thermal insulation structure of the cool room ceiling

Country Status (1)

Country Link
JP (1) JP2788224B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107116B2 (en) * 2008-03-31 2012-12-26 大阪瓦斯株式会社 Low temperature liquefied gas storage facility and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09280726A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
US6125608A (en) Composite insulated framing members and envelope extension system for buildings
US20080313985A1 (en) Method for increasing wind uplift resistance of wood-framed roofs using closed-cell spray polyurethane foam
US20040221518A1 (en) Live fire burn room and insulating system for a live fire burn room
KR20070014427A (en) Sounding device of double-layered floor
JP2788224B2 (en) Thermal insulation structure of the cool room ceiling
JP7097446B2 (en) Partition panels, partition walls and room structures
JP2791982B2 (en) Tunnel interior material mounting structure
GB2051910A (en) Roofing
JP3914033B2 (en) Anti-vibration and heat insulation floor structure for buildings
JPH116219A (en) Structure for preventing bridge from freezing in steel-structured building
JP3263174B2 (en) Insulation structure of cool room
JP2017014745A (en) External wall structure of building
JP2918514B2 (en) Prevention structure of the cold bridge of the first floor concrete part in the outside insulation steel frame building
JP7271832B2 (en) Fireproof structure
JP2022052546A (en) Sandwich panel and wall structure
JP4636075B2 (en) Sound insulation floor and floor base panel
KR102568264B1 (en) Insulating drainage board and construction method of cold storage warehouse using the same
JP2009030250A (en) Ceiling structure
JP2947070B2 (en) Exterior insulation structure and exterior insulation method
WO2021166099A1 (en) Partition panel, partition wall, and room structure
JPH0666015A (en) Sound insulating floor
KR102260708B1 (en) Construction materials and manufacturing method thereof
JP6765209B2 (en) Wall structure and how to build the wall structure
KR102351520B1 (en) Double Basement System for Preventing Noise of Apartment Housing
JP7088060B2 (en) Fireproof coating structure of the structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term