JP2784895B2 - Batch fusion splicing of multi-core optical fiber - Google Patents

Batch fusion splicing of multi-core optical fiber

Info

Publication number
JP2784895B2
JP2784895B2 JP7033181A JP3318195A JP2784895B2 JP 2784895 B2 JP2784895 B2 JP 2784895B2 JP 7033181 A JP7033181 A JP 7033181A JP 3318195 A JP3318195 A JP 3318195A JP 2784895 B2 JP2784895 B2 JP 2784895B2
Authority
JP
Japan
Prior art keywords
optical fibers
optical fiber
core optical
fusion splicing
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7033181A
Other languages
Japanese (ja)
Other versions
JPH07261051A (en
Inventor
勤 小野寺
剛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP7033181A priority Critical patent/JP2784895B2/en
Publication of JPH07261051A publication Critical patent/JPH07261051A/en
Application granted granted Critical
Publication of JP2784895B2 publication Critical patent/JP2784895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、光ファイバの融着接
続法に関し、とくに多心光ファイバの一括融着接続法に
関する。 【0002】 【従来の技術】光ファイバの融着接続法では、相互に接
続すべき2つの光ファイバの先端をともに加熱して溶融
したところでこれらを突き合わせる方向に押し込んで融
着接続する。このような融着接続法では実際にどの程度
の熱量が加えられたかを正確に知ることが重要である。 【0003】特に、多心光ファイバ同士を一括接続する
場合、これら多数の光ファイバに対して均一に加熱する
ことは確実な接続を行ないかつ接続損失を小さくする上
でも重要であり、この加熱の均一性を正確に測定するこ
とが望まれる。 【0004】そこで、従来では、たとえば熱源として大
気圧放電を利用する場合、放電中の放電による光をTV
カメラ等で撮像してその輝度分布から加熱強度を測定す
ることが試みられている。 【0005】 【発明が解決しようとする課題】しかしながら、このよ
うに放電による光をTVカメラ等で撮像してその輝度分
布から加熱強度を測定する方法では、光ファイバに実際
に加えられた熱量を直接測定するわけでなく、輝度から
捉えた発熱源自体の熱よりこれを類推するものに過ぎ
ず、間接的で定性的なものであるといえる。したがっ
て、多心光ファイバの一括融着接続時の加熱均一性を確
保することはできない。 【0006】また、TVカメラ等で撮像した放電光の画
像からその輝度分布を分析するため、画像を1画面分記
憶する記憶装置や画像処理装置が必要となり装置全体が
大がかりなものとなったり、時間がかかる等の問題があ
る。 【0007】この発明は、多心光ファイバ同士を一括融
着接続する場合に、これら多数の光ファイバに対して均
一に加熱することを確保して、多数の光ファイバのすべ
てにつき確実でかつ損失の少ない一括接続ができるよう
にした、多心光ファイバの一括融着接続法を提供するこ
とを目的とする。 【0008】 【課題を解決するための手段】上記の目的を達成するた
め、この発明による多心光ファイバの一括融着接続法に
おいては、多心光ファイバの各光ファイバの先端の加熱
による後退量が等しくなるように熱源を調整した上で、
これら各光ファイバを一括加熱して溶融し、互いに接続
すべき双方の多心光ファイバの各光ファイバの先端を、
それらが突き合わさる方向に一括に押し込んで融着接続
することが特徴となっている。 【0009】 【作用】光ファイバの端部に熱を加えると、その先端が
溶融し表面張力により丸くなる。そのため、この丸くな
った分だけ、先端位置がもとの加熱前の位置よりも後退
する。 【0010】この後退量は、先端の溶融量に対応し、す
なわちその先端に実際に加えられた熱量に対応するの
で、この後退量が等しくなるように熱源を調整した上
で、複数の光ファイバの先端を一括加熱すれば、これら
複数の光ファイバに実際に加えられた熱量を正確に定量
的に一致させることができる。 【0011】そこで、このように複数の光ファイバの先
端の加熱による後退量が等しくなるように一括接続する
ことにより、複数の光ファイバのすべてにつき均一な加
熱を行ない、均一に溶融させることができ、複数の光フ
ァイバ同士を確実にかつ低損失に一括融着接続すること
ができる。 【0012】 【実施例】図1において、多心光ファイバ1はテープ状
に形成されていて、各心線が平行に並べられている。端
部において被覆15が剥離され、光ファイバ裸線11〜
14が露出される。光ファイバ裸線11〜14は同一長
さに切断され、その各々の先端位置が1直線に並ぶよう
にされる。 【0013】この実施例では、多心光ファイバの一括融
着接続装置において、1対の電極2、2による大気圧放
電によってこれら各光ファイバ裸線11〜14の先端の
一括加熱を行なう。 【0014】図では省略しているが、この多心光ファイ
バ1と同様の多心光ファイバが、図1の左下側に置か
れ、それらの光ファイバ裸線が上記の光ファイバ裸線1
1〜14と対向配置される。この省略された多心光ファ
イバの複数の光ファイバ裸線も同一長さに切断され、そ
の各々の先端位置が1直線に並ぶようにされる。このよ
うに複数の光ファイバ裸線の2つの列が互いにその先端
が対向した状態で、電極2、2による大気圧放電によっ
て一括加熱されることになる。 【0015】実際に加熱してみると、各光ファイバ裸線
11〜14の先端は、その熱によって溶融し、表面張力
の作用で図2のように丸い形状に変形する。そしてその
丸い形状に変形した分だけ先端位置はもとの点線で示す
先端位置より後退することになる。この後退距離d1,
d2,d3,d4をそれぞれ計測する。すると、実際に
各光ファイバ裸線11〜14の先端に加わった熱量が大
きいほど溶融量が大きく、そのため後退量も大きくなる
ので、この後退距離d1,d2,d3,d4は各光ファ
イバ裸線11〜14の先端に実際に加わった熱量に対応
すると考えられる。 【0016】したがって、この後退距離d1,d2,d
3,d4が等しければ各光ファイバ裸線11〜14の先
端に実際に加わった熱量が等しいことになる。そこで、
複数の光ファイバ裸線11〜14を一括加熱したとき
に、それらの先端の後退距離d1,d2,d3,d4が
等しくなるように融着接続装置を調整しておく。このよ
うに後退距離が等しくなるような調整は、一括融着接続
される一方側の多心光ファイバの1列の光ファイバ裸線
についてだけでなく、他方側の多心光ファイバの1列の
光ファイバ裸線についても行なう。 【0017】この先端位置の後退距離d1,d2,d
3,d4は、顕微鏡を用いて目視により観察し視野目盛
りによって測定したり、あるいは小型のTVカメラとモ
ニター装置とを用い、モニター画面上で測定するとか、
さらにはTVカメラで捉えた先端画像を画像処理装置に
より処理して自動測定することも可能である。画像処理
装置によって処理して自動測定する場合でも、光ファイ
バ裸線11〜14の先端位置の移動距離を測定するだけ
で、画面全体の情報を記憶する必要がないため、装置を
簡単に構成でき小型化できるとともに、処理時間もかか
らない。 【0018】このように、光ファイバ裸線11〜14の
先端の加熱後における加熱前の位置からの後退距離d
1,d2,d3,d4を計測することは、各光ファイバ
裸線11〜14の先端に実際に加わった熱量によく対応
した定量的なパラメータを測定していることになる。こ
の後退距離d1,d2,d3,d4が一致することは、
各光ファイバ裸線11〜14の先端に加わった熱量が同
じになっていることを表わす。 【0019】そのため、このように融着接続装置を調整
して一括融着接続すれば、複数の光ファイバ裸線に同じ
熱量を加えてこれらを溶融させた状態でこれらの対向す
るもの同士を突き合わせる方向に押し込んで一括接続す
ることができることになり、多心光ファイバ1同士の確
実なしかも低損失な一括融着接続を行なうことができ
る。 【0020】なお、上記の実施例では熱源として大気圧
放電を用いたが、酸水素炎や炭酸ガスレーザ等、どのよ
うなものを用いた場合でもこの発明の測定法を適用でき
る。 【0021】 【発明の効果】以上実施例について説明したように、こ
の発明の多心光ファイバの一括融着接続法によれば、各
光ファイバの加熱による後退量が同一になるようにこれ
らの先端を一括加熱した後、これらを突き合わせる方向
に押し込んで一括融着接続するようにしているため、複
数の光ファイバのすべてにつき均一な加熱を行ない、均
一に溶融させることができ、複数の光ファイバ同士を確
実にかつ低損失に一括融着接続することができる。複数
の光ファイバのすべてにつき均一な加熱を行なうため
に、単に、各光ファイバの加熱による後退量を測定する
だけでよいので、非常に簡単であり、作業現場でも容易
に実行できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fusion splicing method for optical fibers, and more particularly, to a batch fusion splicing method for multi-core optical fibers. 2. Description of the Related Art In a fusion splicing method for optical fibers, the ends of two optical fibers to be connected to each other are heated and melted together, and when they are pushed together in a direction in which they are joined, they are fusion spliced. In such a fusion splicing method, it is important to know exactly how much heat was actually applied. [0003] In particular, when multi-core optical fibers are connected collectively, it is important to uniformly heat these many optical fibers in order to perform reliable connection and reduce connection loss. It is desirable to measure uniformity accurately. Therefore, conventionally, for example, when atmospheric pressure discharge is used as a heat source, light generated by the discharge during the discharge is transmitted to a TV.
Attempts have been made to measure the heating intensity from the luminance distribution by taking an image with a camera or the like. [0005] However, in the method of measuring the heating intensity from the luminance distribution by imaging the light due to the discharge with a TV camera or the like, the amount of heat actually applied to the optical fiber is determined. It is not a direct measurement, but merely an analogy of this from the heat of the heat source itself as seen from the luminance, and it can be said that it is indirect and qualitative. Therefore, it is not possible to ensure the uniformity of heating during the fusion splicing of the multi-core optical fiber. Further, in order to analyze the brightness distribution from an image of discharge light captured by a TV camera or the like, a storage device or an image processing device for storing an image for one screen is required, and the entire device becomes large. There is a problem that it takes time. According to the present invention, when multi-fiber optical fibers are fusion spliced together, it is ensured that these many optical fibers are uniformly heated, so that all of the many optical fibers can be reliably and loss-free. It is an object of the present invention to provide a batch fusion splicing method of a multi-core optical fiber, which allows a batch connection with less trouble. In order to achieve the above-mentioned object, in the batch fusion splicing method of a multi-core optical fiber according to the present invention, the multi-core optical fiber is retracted by heating the tip of each optical fiber. After adjusting the heat source so that the amount is equal ,
Each of these optical fibers is heated and melted at a time, and the tip of each optical fiber of both multi-core optical fibers to be connected to each other,
It is characterized in that they are pushed together in the direction in which they abut each other and are fused. When heat is applied to the end of the optical fiber, the end is melted and rounded due to surface tension. Therefore, the tip position is retracted from the original position before heating by the amount of the roundness. Since the amount of retreat corresponds to the amount of melting at the tip, that is, the amount of heat actually applied to the tip, the heat source is adjusted so that the amount of retreat is equal.
If the tips of the plurality of optical fibers are heated collectively, the amounts of heat actually applied to the plurality of optical fibers can be accurately and quantitatively matched. [0011] Therefore, by integrally connecting the plurality of optical fibers so that the amounts of retreat due to the heating of the tips of the plurality of optical fibers are equal, uniform heating can be performed on all of the plurality of optical fibers and uniform melting can be performed. Thus, a plurality of optical fibers can be fusion-spliced together reliably and with low loss. In FIG. 1, a multi-core optical fiber 1 is formed in a tape shape, and each core is arranged in parallel. The coating 15 is peeled off at the ends, and the bare optical fibers 11 to 11 are removed.
14 is exposed. The bare optical fibers 11 to 14 are cut to have the same length, and the ends of each of them are aligned in a straight line. In this embodiment, in the fusion splicing device for multi-core optical fibers, the ends of the bare optical fibers 11 to 14 are heated collectively by atmospheric pressure discharge using a pair of electrodes 2 and 2. Although not shown in the figure, a multi-core optical fiber similar to the multi-core optical fiber 1 is placed on the lower left side of FIG.
It is arranged to face 1-14. The plurality of bare optical fibers of the omitted multi-core optical fiber are also cut to the same length, and the ends of each of the bare optical fibers are aligned. In this manner, the two rows of the plurality of bare optical fibers are collectively heated by the atmospheric pressure discharge by the electrodes 2 and 2 in a state where the ends thereof face each other. When actually heated, the ends of the bare optical fibers 11 to 14 are melted by the heat and deformed into a round shape as shown in FIG. 2 by the action of surface tension. Then, the tip position is retracted from the tip position indicated by the original dotted line by the amount of the deformation into the round shape. This retreat distance d1,
d2, d3 and d4 are respectively measured. Then, the larger the amount of heat actually applied to the tip of each of the bare optical fibers 11 to 14, the greater the amount of fusion, and therefore the greater the amount of retreat, so that the retreat distances d 1, d 2, d 3, and d 4 are equal to the respective optical fiber bare wires. It is considered that this corresponds to the amount of heat actually applied to the tips of 11 to 14. Therefore, the retreat distances d1, d2, d
If d3 and d4 are equal, the amounts of heat actually applied to the ends of the bare optical fibers 11 to 14 are equal. Therefore,
When a plurality of bare optical fibers 11 to 14 are collectively heated, the fusion splicing device is adjusted so that the retreat distances d1, d2, d3, and d4 of their tips become equal. The adjustment to make the retreat distances equal in this manner is performed not only for one row of bare optical fibers of one-side multi-core optical fiber to be fusion-spliced, but also for one row of multi-core optical fiber on the other side. This is also performed for bare optical fibers. The retreat distances d1, d2, d of this tip position
3, d4 can be visually observed using a microscope and measured by visual field scale, or measured on a monitor screen using a small TV camera and a monitor device,
Furthermore, it is also possible to process the tip image captured by the TV camera by the image processing device and automatically measure it. Even in the case of automatic measurement by processing with an image processing device, it is not necessary to store the information of the entire screen simply by measuring the moving distance of the tip positions of the bare optical fibers 11 to 14, so that the device can be easily configured. The size can be reduced and the processing time is not required. As described above, the retreat distance d from the position before heating after heating the distal ends of the bare optical fibers 11 to 14 is obtained.
Measuring 1, d2, d3, and d4 means measuring a quantitative parameter well corresponding to the amount of heat actually applied to the ends of the bare optical fibers 11 to 14. The coincidence of the retreat distances d1, d2, d3, and d4 means that
This indicates that the amounts of heat applied to the tips of the bare optical fibers 11 to 14 are the same. Therefore, if the fusion splicing apparatus is adjusted and fusion spliced as described above, a plurality of bare optical fibers are heated and melted by applying the same amount of heat, but these opposed ones are butted together. The optical fibers 1 can be pushed together in one direction to be connected collectively, so that reliable and low-loss collective fusion splicing of the multi-core optical fibers 1 can be performed. In the above embodiment, atmospheric pressure discharge was used as a heat source. However, the measurement method of the present invention can be applied to any device such as an oxyhydrogen flame or a carbon dioxide gas laser. As described above, according to the batch fusion splicing method of the multi-core optical fibers according to the present invention, the retreating amounts of the respective optical fibers due to the heating are equalized. Since the tips are heated collectively, they are pushed in the direction of abutment to perform the fusion splicing, so that all of the multiple optical fibers can be uniformly heated and melted evenly. The fibers can be fusion-spliced together reliably and with low loss. In order to perform uniform heating for all of the plurality of optical fibers, it is only necessary to measure the amount of retreat due to heating of each of the optical fibers. Therefore, it is very simple and can be easily performed even at a work site.

【図面の簡単な説明】 【図1】この発明の一実施例の模式図。 【図2】光ファイバ先端の加熱前後の形状変化を示す模
式図。 【符号の説明】 1 多心光ファイバ 11〜14 光ファイバ裸線 15 被覆 2 放電電極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an embodiment of the present invention. FIG. 2 is a schematic diagram showing a shape change before and after heating an optical fiber tip. [Description of Signs] 1 Multi-core optical fiber 11 to 14 Optical fiber bare wire 15 Coating 2 Discharge electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 剛 千葉県佐倉市六崎1440番地株式会社フジ クラ佐倉工場内 (56)参考文献 特開 昭61−256306(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Go Yamada               Fuji Co., Ltd., 1440, Rokuzaki, Sakura City, Chiba Prefecture               Kura Sakura Factory                (56) References JP-A-61-256306 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.多心光ファイバの各光ファイバの先端の加熱による
後退量が等しくなるように熱源を調整した上で、これら
各光ファイバを一括加熱して溶融し、互いに接続すべき
双方の多心光ファイバの各光ファイバの先端を、それら
が突き合わさる方向に一括に押し込んで融着接続するこ
とを特徴とする多心光ファイバの一括融着接続法。
(57) [Claims] After adjusting the heat source so that the amount of retreat of the tip of each optical fiber of the multi-core optical fiber due to heating becomes equal , these optical fibers are heated and melted at a time, and both multi-core optical fibers to be connected to each other are melted. A fusion splicing method for multi-core optical fibers, wherein the tips of the optical fibers are pushed in a lump in a direction in which they abut each other and fusion spliced.
JP7033181A 1995-01-30 1995-01-30 Batch fusion splicing of multi-core optical fiber Expired - Lifetime JP2784895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033181A JP2784895B2 (en) 1995-01-30 1995-01-30 Batch fusion splicing of multi-core optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033181A JP2784895B2 (en) 1995-01-30 1995-01-30 Batch fusion splicing of multi-core optical fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62318435A Division JPH0617923B2 (en) 1987-12-16 1987-12-16 Optical fiber heating measurement method

Publications (2)

Publication Number Publication Date
JPH07261051A JPH07261051A (en) 1995-10-13
JP2784895B2 true JP2784895B2 (en) 1998-08-06

Family

ID=12379342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033181A Expired - Lifetime JP2784895B2 (en) 1995-01-30 1995-01-30 Batch fusion splicing of multi-core optical fiber

Country Status (1)

Country Link
JP (1) JP2784895B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256306A (en) * 1985-05-10 1986-11-13 Nippon Telegr & Teleph Corp <Ntt> Formation of multicore optical fiber core terminal

Also Published As

Publication number Publication date
JPH07261051A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
JPH0617923B2 (en) Optical fiber heating measurement method
US4978201A (en) Method for measuring splice loss of an optical fiber
JP3176574B2 (en) Optical fiber observation device and optical fiber fusion splicer
JP3732205B2 (en) Controlled permanent connection of optical fiber
US9086538B2 (en) Method for fusion splicing optical fibers
US4945776A (en) Method of testing spliced portion of optical fibers
SE511966C2 (en) Method and apparatus for jointing the ends of two optical fibers of different type with each other
JP3806766B2 (en) Automatic fusion temperature control method and apparatus for permanent fiber optic connection
US7845194B2 (en) Method of splicing optical fibers with arc imagining and recentering
JP4430058B2 (en) Fusion splicer and fusion splicer control method
JP2784895B2 (en) Batch fusion splicing of multi-core optical fiber
JP5416721B2 (en) Optical fiber end processing method and optical fiber end processing apparatus
JP3206607B2 (en) Optical fiber fusion splicer
JPH0228605A (en) Fusion splicing method for optical fibers
JP3142751B2 (en) Optical fiber fusion splicer
JP3259733B2 (en) Optical fiber fusion splicing method
JP2005070461A (en) Polarization maintaining photonic crystal fiber, its fiber end treatment method, computer program for controlling optical fiber fusion splicing system and recording medium capable of reading the program
JP2612934B2 (en) Optical fiber fusion splicer
JPH1114855A (en) Optical fiber observation device and fusion splicing device
JP2584651B2 (en) Optical fiber fusion splicing method
JPH0233108A (en) Connecting method for optical fiber
JPH095207A (en) Method for evaluating fusion splicing part of different diameter core optical fibers
JP2842627B2 (en) Multi-core fusion splicing method for optical fibers
JP2005017662A (en) Optical fiber fusion splicing device and fusion splicing method
JPH0233107A (en) Welding connection device for optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10