JP2784386B2 - Magnetic multilayer film - Google Patents

Magnetic multilayer film

Info

Publication number
JP2784386B2
JP2784386B2 JP5023281A JP2328193A JP2784386B2 JP 2784386 B2 JP2784386 B2 JP 2784386B2 JP 5023281 A JP5023281 A JP 5023281A JP 2328193 A JP2328193 A JP 2328193A JP 2784386 B2 JP2784386 B2 JP 2784386B2
Authority
JP
Japan
Prior art keywords
magnetic
multilayer film
frequency
magnetic multilayer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5023281A
Other languages
Japanese (ja)
Other versions
JPH06112045A (en
Inventor
正勝 千田
修 石井
修 道上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26360603&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2784386(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5023281A priority Critical patent/JP2784386B2/en
Publication of JPH06112045A publication Critical patent/JPH06112045A/en
Application granted granted Critical
Publication of JP2784386B2 publication Critical patent/JP2784386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高周波磁気デバイス用
磁性多層膜に関する。
The present invention relates to a magnetic multilayer film for a high-frequency magnetic device.

【0002】[0002]

【従来の技術】コイル,トランスなど高周波磁気デバイ
スのコア材料としては、できるだけ高い周波数まで大き
な比透磁率が一定で、かつ損失の小さい磁性材料が要求
される。比透磁率μrはμr′を実部、μr″を虚部と
して、 μr=μr′−j・μr″ (1) と表される。ここで(−1)1/2 =jである。μr′は
実効的な比透磁率、μr″は損失にそれぞれ対応するた
め、コア材料としては、高周波までμr′が高く一定
で、μr″が低いことが要求される。磁性体に高周波磁
場が印加されると、磁性体内に電流が流れ、磁性体の磁
化変化に制動を与え、損失が生じる。これを渦電流損失
という。渦電流損失は磁性体の厚さが(2)式で表され
る表皮深さδより厚くなると顕著となる。 δ={2ρm/(2πf・μr′・μ0 )}1/2 (2) ここで、ρmは磁性体の抵抗率、fは周波数、μ0 は真
空の透磁率である。フェライト系磁性体はρmが高いた
め表皮深さδが厚くなり、100MHz以下の周波数帯
域では渦電流損失は問題とならない。このような理由に
より、従来、高周波磁気デバイス用コアの主要材料とし
てはフェライト系磁性体が使用されてきた。従来材料の
特性を図5に示す。図5においては横軸に周波数、縦軸
にμr′,μr″をとってある。代表的なフェライト
(Ni−Zn)では静的比透磁率μr′(0)は35、
強磁性共鳴周波数fkは300MHzであり、100M
Hz付近からμr′が低下、μr″が増加し始める。一
方、フェロクスプレナフェライトでは、μr′(0)は
35、fkは700MHzであり、400MHz付近か
らμr′の低下およびμr″の増加が始まる(参考文
献:電子材料シリーズ「フェライト」平賀,奥谷,尾島
共著、1986,丸善)。近年、磁気デバイスの小型
・高周波化の要請に伴い、100MHz以上の高周波帯
域において使用可能な磁性材料の開発が要求されてい
る。しかし上記のように、従来材料であるフェライト系
磁性体は、百MHzから数百MHzでμr′の低下、μ
r″の急増が生じるため、100MHz以上では使用で
きない。このため、動作周波数100MHz以上の小型
・高周波磁気デバイスの実現が困難となっている。
2. Description of the Related Art As a core material of a high-frequency magnetic device such as a coil or a transformer, a magnetic material having a constant large relative permeability and a small loss up to as high a frequency as possible is required. The relative magnetic permeability μr is represented by μr = μr′−j · μr ″ (1), where μr ′ is a real part and μr ″ is an imaginary part. Here, (−1) 1/2 = j. Since μr ′ corresponds to the effective relative magnetic permeability and μr ″ corresponds to the loss, respectively, the core material is required to have a high μr ′ and a constant μr ″ up to high frequencies and a low μr ″. When a high-frequency magnetic field is applied to a magnetic material, a current flows in the magnetic material, damping the change in magnetization of the magnetic material, and causing loss. This is called eddy current loss. The eddy current loss becomes remarkable when the thickness of the magnetic body is larger than the skin depth δ expressed by the equation (2). δ = {2ρm / (2πf · μr ′ · μ 0 )} 1/2 (2) where ρm is the resistivity of the magnetic material, f is the frequency, and μ 0 is the magnetic permeability of vacuum. Since the ferrite magnetic material has a high ρm, the skin depth δ increases, and eddy current loss does not pose a problem in a frequency band of 100 MHz or less. For these reasons, a ferrite-based magnetic material has been conventionally used as a main material of a core for a high-frequency magnetic device. FIG. 5 shows the characteristics of the conventional material. 5, the horizontal axis represents frequency, and the vertical axis represents μr ′, μr ″. In a typical ferrite (Ni—Zn), the static relative magnetic permeability μr ′ (0) is 35,
The ferromagnetic resonance frequency fk is 300 MHz,
Μr ′ begins to decrease and μr ″ starts to increase from around Hz. On the other hand, in ferroxplanar ferrite, μr ′ (0) is 35 and fk is 700 MHz. (Reference: Electronic materials series "Ferrite" Hiraga, Okutani, Ojima, 1986, Maruzen). In recent years, with the demand for downsizing and high frequency of magnetic devices, development of magnetic materials usable in a high frequency band of 100 MHz or more has been required. However, as described above, the ferrite-based magnetic material, which is a conventional material, has a decrease in μr ′ from 100 MHz to several hundred MHz,
Because of the rapid increase of r ″, it cannot be used above 100 MHz, which makes it difficult to realize a small-sized, high-frequency magnetic device with an operating frequency of 100 MHz or more.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、その目的は、従来の
高周波用磁性材料において百MHzから数百MHzの周
波数帯域で比透磁率が低下し、損失が大きくなるという
点を解決した、高比透磁率,低損失性を示す磁性多層膜
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks. It is an object of the present invention to provide a conventional high-frequency magnetic material having a relative permeability in a frequency band of 100 MHz to several hundred MHz. An object of the present invention is to provide a magnetic multilayer film exhibiting high relative permeability and low loss, which solves the problem that the loss is increased and the loss is increased.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は基板上に、磁性体と非磁性絶縁体とが交互
に積層してなる磁性多層膜において、磁性多層膜形状が
ストライプ状に加工されることにより長辺方向と短辺方
向とに応力差を生じて膜応力の異方性を有することを最
も主要な特徴とする。従来の材料とは、材料構成および
構造が異なる。
According to the present invention, there is provided a magnetic multilayer film comprising a magnetic substrate and a non-magnetic insulator alternately laminated on a substrate, wherein the magnetic multilayer film has a stripe shape. Long side direction and short side direction
The most main feature is that a stress difference is generated between the two directions and the film has anisotropy in film stress . The material composition and structure are different from the conventional materials.

【0005】[0005]

【作用】本発明によれば、上限周波数である強磁性共鳴
周波数の高周波化を図ることができるため、数GHzの
高周波帯域において高比透磁率,低損失性の実現が可能
となる。
According to the present invention, the ferromagnetic resonance frequency, which is the upper limit frequency, can be increased in frequency, so that high specific permeability and low loss can be realized in a high frequency band of several GHz.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。図1
は本発明の磁性多層膜の実施例を示す図であって、
(a)は斜視図、(b)は図(a)においてcの部分拡
大図である。基板4上に磁性体1と非磁性絶縁体2とが
交互に積層した磁性多層膜3が形成されており、磁性多
層膜はストライプ形状を成している。磁歪定数λsを有
する磁性体に異方的膜応力σfが作用すると、歪磁気異
方性により磁性体には次式で表される異方性磁場Hst
が発生する。 Hst=4π・2{(3/2)σf・λs}/4πMs (3) ここに4πMsは磁性体の飽和磁化である。またこの磁
性体の強磁性共鳴周波数fkは、 fk=(γ/2π){Hst(4πMs+Hst)}1/2 (4) となる。ここにγはジャイロ磁気定数である。膜応力は
主に膜と基板との熱膨張差によって生ずる。一般に、膜
応力は膜面内で等方的であるため、異方性磁場Hstを
発生させるためには、膜応力に異方性を持たせる必要が
ある。磁性多層膜形状を図1に示すようにストライプ状
とすると、ストライプパターンの短辺方向は応力が解放
され、長辺方向は応力が残留するため、膜応力に異方性
が発生する。今、磁性多層膜を強磁性共鳴周波数fk以
下の周波数で使用する場合、fkにおける表皮深さは、
(2)式により、{2ρm/(2πfk・μr′・
μ0 )}1/2 となる。磁性体の厚さをこの表皮深さ以下
にすることによって、強磁性共鳴周波数fk以下では渦
電流損失を回避することが可能となる。図1では、磁性
体の厚さはこの表皮深さ以下に設定されている。また、
非磁性絶縁体の厚さが薄く、磁性体間の電気的絶縁が不
完全であると、磁性体間に電流が流れてしまい、渦電流
損失が生ずる。図1では非磁性絶縁体の厚さは、磁性体
間の電気的絶縁を保ち得る厚さ以上に設定されている。
μr′の周波数の上限は、強磁性共鳴周波数fkで決定
されるため、fkが高いほど高性能な磁性材料というこ
とになる。強磁性共鳴周波数fkを高くするためには、
(4)式より異方性磁場Hstを大きくすること、即
ち、(3)式より異方的膜応力σf、磁歪定数λsが大
きいことが必要である。異方的応力はあまり材料によら
ないため、磁性体として、磁歪定数の大きな材料を選ぶ
ことが有利となる。また、μr′を大きくするために
は、飽和磁化4πMsの大きな磁性体を選ぶことが有利
である。
Next, an embodiment of the present invention will be described. FIG.
Is a diagram showing an embodiment of the magnetic multilayer film of the present invention,
(A) is a perspective view and (b) is a partially enlarged view of c in FIG. (A). A magnetic multilayer film 3 in which magnetic materials 1 and non-magnetic insulators 2 are alternately stacked on a substrate 4 is formed, and the magnetic multilayer film has a stripe shape. When an anisotropic film stress σf acts on a magnetic material having a magnetostriction constant λs, the magnetic material has an anisotropic magnetic field Hst expressed by the following equation due to the strain magnetic anisotropy.
Occurs. Hst = 4π · 2 {(3/2) σf · λs} / 4πMs (3) where 4πMs is the saturation magnetization of the magnetic material. Further, the ferromagnetic resonance frequency fk of this magnetic material is as follows: fk = (γ / 2π) {Hst (4πMs + Hst)} 1/2 (4) Here, γ is a gyro magnetic constant. Film stress is mainly caused by the difference in thermal expansion between the film and the substrate. In general, the film stress is isotropic in the film plane. Therefore, in order to generate the anisotropic magnetic field Hst, the film stress needs to have anisotropy. When the shape of the magnetic multilayer film is a stripe as shown in FIG. 1, the stress is released in the short side direction of the stripe pattern and the stress remains in the long side direction, so that anisotropy occurs in the film stress. When the magnetic multilayer film is used at a frequency lower than the ferromagnetic resonance frequency fk, the skin depth at fk is
From equation (2), {2ρm / (2πfk · μr ′ ·
μ 0 )} 1/2 . By making the thickness of the magnetic material equal to or less than the skin depth, it is possible to avoid eddy current loss at or below the ferromagnetic resonance frequency fk. In FIG. 1, the thickness of the magnetic body is set to be equal to or less than the skin depth. Also,
If the thickness of the non-magnetic insulator is thin and the electrical insulation between the magnetic bodies is incomplete, a current flows between the magnetic bodies, causing eddy current loss. In FIG. 1, the thickness of the non-magnetic insulator is set to be equal to or greater than the thickness that can maintain electrical insulation between the magnetic bodies.
Since the upper limit of the frequency of μr ′ is determined by the ferromagnetic resonance frequency fk, the higher the fk, the higher the performance of the magnetic material. To increase the ferromagnetic resonance frequency fk,
It is necessary to increase the anisotropic magnetic field Hst from the equation (4), that is, to increase the anisotropic film stress σf and the magnetostriction constant λs from the equation (3). Since the anisotropic stress does not depend much on the material, it is advantageous to select a material having a large magnetostriction constant as the magnetic material. In order to increase μr ′, it is advantageous to select a magnetic material having a large saturation magnetization of 4πMs.

【0007】次に具体例を示す。磁性体としては、4π
Ms,λsともに大きな値を持つCoFe合金〔Co
50at.%〕(以下CoFe合金と呼ぶ)を使用し
た。また、非磁性絶縁体としてはSiO2 を使用した。
SiO2 では磁性体間の電気的絶縁を保ち得る厚さは
0.05μm(50nm)以上である。以下の例ではマ
ージンをとってSiO2 膜厚を0.1μm(100n
m)とした。図2にCoFe/SiO2 〔50/100
nm〕多層膜における比透磁率の周波数特性を示す。図
2において、横軸に周波数、縦軸にμr′,μr″をと
ってある。異方性磁場は図1のy方向に発生し、その大
きさは200 Oe程度となった。これは(3)式にC
oFe合金の値 4πMs=2.45 Tesla、λs〜+
1.3×10-4、σf〜−109 dyn/cm2 (圧縮
性)を代入したHstの値とほぼ一致する。CoFe合
金のみのμr′(0)は120であり、多層膜全体のμ
r′(0)は体積平均されて40となる。約7GHzで
μr′は急減、μr″は急増し、この付近で強磁性共鳴
が起きていることがわかる。なお、(4)式からfk〜
7GHzと計算され、これは実験結果と一致する。Co
Fe合金における値、ρm=20μΩcm、μr′
(0)=120を(2)式に代入すると7GHzではδ
は0.25μmとなる。図2ではCoFe合金の膜厚は
0.05μm(50nm)とδに比較し十分薄い値とな
っているため、強磁性共鳴周波数fk以下では渦電流損
失は生じない。図2では7GHz以下の周波数帯域でμ
r′=40が一定となる良好な特性が得られており、こ
れを図5の従来材料の特性と比較すると、CoFe/S
iO2 多層膜ではμr′(0)に関してはほぼ同程度、
周波数特性に関してはNi−Znフェライトの約70
倍、フェロクスプレナフェライトの18倍の性能が得ら
れていることがわかる。本実施例では、λs>0かつσ
f<0の場合を示したが、同様に、λs>0かつσf>
0の場合には図1のz方向に、λs<0かつσf<0の
場合には図1のz方向に、λs<0かつσf>0の場合
には図1のy方向にそれぞれ異方性磁場が発生する。ま
た、熱膨張差によって生ずるσfの大きさは±109
yn/cm2 程度であるので、|λs|〜10-6の時、
fk〜数百MHzとなって図5の従来材料と同程度の特
性となる。従って、従来材料を越える特性を実現するた
めには、|λs|>10-6とすることが効果的である。
以上、磁性体と非磁性絶縁体とを交互に積層してなる磁
性多層膜において、磁性多層膜がストライプ形状をなす
ことにより、従来材料に比較し、高周波特性の優れた磁
性材料を得ることができた。
Next, a specific example will be described. As a magnetic material, 4π
CoFe alloy [Co with large values of both Ms and λs
50 at. %] (Hereinafter referred to as a CoFe alloy). Further, SiO 2 was used as the non-magnetic insulator.
SiO 2 has a thickness of 0.05 μm (50 nm) or more that can maintain electrical insulation between magnetic bodies. In the following example, the SiO 2 film thickness is set to 0.1 μm (100 n
m). FIG. 2 shows CoFe / SiO 2 [50/100
nm] shows the frequency characteristics of the relative magnetic permeability in the multilayer film. 2, the horizontal axis represents frequency, and the vertical axis represents μr ′, μr ″. An anisotropic magnetic field was generated in the y direction in FIG. 1 and the magnitude thereof was about 200 Oe. 3) Formula C
oFe alloy value 4πMs = 2.45 Tesla, λs +
1.3 × 10 −4 , approximately equal to the value of Hst into which σf 圧 縮−10 9 dyn / cm 2 (compressibility) is substituted. Μr ′ (0) of the CoFe alloy alone is 120,
r '(0) is volume-averaged to 40. At about 7 GHz, μr ′ sharply decreases and μr ″ sharply increases, and it can be seen that ferromagnetic resonance occurs near this.
7 GHz, which is consistent with the experimental results. Co
Value in Fe alloy, ρm = 20 μΩcm, μr ′
Substituting (0) = 120 into equation (2) gives δ at 7 GHz
Is 0.25 μm. In FIG. 2, the film thickness of the CoFe alloy is 0.05 μm (50 nm), which is a sufficiently small value as compared with δ, so that no eddy current loss occurs below the ferromagnetic resonance frequency fk. FIG. 2 shows that μ in the frequency band of 7 GHz or less.
Good characteristics in which r ′ = 40 is obtained are constant. When this is compared with the characteristics of the conventional material in FIG. 5, CoFe / S
In the iO 2 multilayer film, μr ′ (0) is almost the same,
Regarding frequency characteristics, about 70% of Ni-Zn ferrite
It can be seen that the performance is 18 times that of the ferrox-plana ferrite. In this embodiment, λs> 0 and σ
Although the case where f <0 is shown, similarly, λs> 0 and σf>
1 is anisotropic in the z direction in FIG. 1; λs <0 and σf <0 in the z direction in FIG. 1; and λs <0 and σf> 0 in the y direction in FIG. An activating magnetic field is generated. The magnitude of σf caused by the difference in thermal expansion is ± 10 9 d
Since it is yn / cm 2 approximately, | when ~10 -6, | λs
The frequency becomes fk to several hundred MHz, which is almost the same as that of the conventional material shown in FIG. Therefore, it is effective to satisfy | λs |> 10 −6 in order to realize characteristics exceeding conventional materials.
As described above, in a magnetic multilayer film in which a magnetic material and a non-magnetic insulator are alternately laminated, the magnetic multilayer film has a stripe shape, so that a magnetic material having excellent high-frequency characteristics can be obtained as compared with a conventional material. did it.

【0008】なお、磁性多層膜ストライプは図1に示す
ように、複数本のみではなく、1本であっても同様の効
果を得ることができ、ストライプ形状は図1のように直
線状のみではなく、図3,図4に示すように蛇行状ある
いはジグザグ状に曲がっていても同様の効果を得ること
ができる。図において、3は磁性多層膜、4は基板を示
す。また、強磁性共鳴周波数を上げるためには、磁歪定
数を大きくする必要があるが、従来材料の特性を越える
特性を実現するためには、|λs|>10-6とすること
が効果的である。さらに、磁性体としては、CoFe以
外にFe,Ni,Coに、Fe,Ni,Co,Zr,N
b,Y,Hf,Ti,Mo,W,Ta,Si,B,Re
のうち単独あるいは複数の元素からなる材料を、一方、
非磁性絶縁体としては、SiO2 以外に、AlN,Al
2 3 ,BN,TiN,SiCを各々使用しても上記と
同様の効果を得ることができる。また、磁性体に歪磁気
異方性を発生させる方法として、磁性多層膜の一方向に
外力を加える方法も考えられ、この方法によっても上記
と同様の効果を得ることができる。以上、本発明による
磁性多層膜では、従来材料に比べ、高周波まで高比透磁
率,低損失を示すという改善があった。
The same effect can be obtained not only with a plurality of magnetic multilayer stripes as shown in FIG. 1, but also with a single stripe, as shown in FIG. In addition, the same effect can be obtained even if it is bent in a meandering or zigzag shape as shown in FIGS. In the figure, 3 indicates a magnetic multilayer film, and 4 indicates a substrate. In order to increase the ferromagnetic resonance frequency, it is necessary to increase the magnetostriction constant. However, in order to achieve characteristics exceeding those of conventional materials, it is effective to set | λs |> 10 −6. is there. Further, as a magnetic material, other than CoFe, Fe, Ni, Co, Zr, N
b, Y, Hf, Ti, Mo, W, Ta, Si, B, Re
Materials consisting of one or more elements,
As a non-magnetic insulator, besides SiO 2 , AlN, Al
The same effects as described above can be obtained by using each of 2 O 3 , BN, TiN, and SiC. Further, as a method of generating the strain magnetic anisotropy in the magnetic material, a method of applying an external force in one direction of the magnetic multilayer film can be considered, and the same effect as described above can be obtained by this method. As described above, the magnetic multi-layered film according to the present invention is improved in that it exhibits high relative permeability and low loss up to high frequencies as compared with conventional materials.

【0009】[0009]

【発明の効果】以上説明したように、本発明による磁性
多層膜は、基板上に、磁性体と非磁性絶縁体とが交互に
積層してなる磁性多層膜において、磁性多層膜がストラ
イプ形状に加工されることにより長辺方向と短辺方向と
に応力差を生じて膜応力の異方性を有することにより、
数百MHzから数GHzの高周波帯域において、高比透
磁率,低損失であるという利点がある。従って、本磁性
多層膜は、動作周波数100MHz以上の小型・高周波
磁気デバイスのコア材料として有用である。
As described above, according to the present invention, the magnetic multilayer film according to the present invention, on a substrate, the magnetic multilayer film which is a magnetic body and a non-magnetic insulator formed by laminating alternately, the magnetic multilayer film in a stripe shape By processing, long side direction and short side direction
By causing an anisotropy of the film stress by causing a stress difference in the
In a high frequency band of several hundred MHz to several GHz, there are advantages of high relative permeability and low loss. Therefore, the present magnetic multilayer film is useful as a core material of a small high-frequency magnetic device having an operating frequency of 100 MHz or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁性多層膜の実施例を示す図であり、
(a)は斜視図、(b)は部分拡大図である。
FIG. 1 is a view showing an embodiment of a magnetic multilayer film of the present invention,
(A) is a perspective view, (b) is a partial enlarged view.

【図2】本発明の磁性多層膜における比透磁率の周波数
特性を示す。
FIG. 2 shows frequency characteristics of relative magnetic permeability in the magnetic multilayer film of the present invention.

【図3】本発明の他の実施例を示す。FIG. 3 shows another embodiment of the present invention.

【図4】本発明の他の実施例を示す。FIG. 4 shows another embodiment of the present invention.

【図5】従来材料における比透磁率の周波数特性を示
す。
FIG. 5 shows frequency characteristics of relative magnetic permeability in a conventional material.

【符号の説明】[Explanation of symbols]

1 磁性体 2 非磁性絶縁体 3 磁性多層膜 4 基板 DESCRIPTION OF SYMBOLS 1 Magnetic body 2 Nonmagnetic insulator 3 Magnetic multilayer film 4 Substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−283503(JP,A) 特開 平2−121312(JP,A) 特開 昭49−78877(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 10/16──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-283503 (JP, A) JP-A-2-121213 (JP, A) JP-A-49-78877 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) H01F 10/16

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、磁性体と非磁性絶縁体とを交
互に積層してなる磁性多層膜において、磁性体が磁歪を
有し、前記磁性多層膜がストライプ形状に加工されるこ
とにより長辺方向と短辺方向とに応力差を生じて膜応力
の異方性を有することを特徴とする磁性多層膜。」
To 1. A substrate, in the magnetic multilayer film formed by laminating a magnetic material and a nonmagnetic insulator alternately magnetic material having a magnetostriction, this said magnetic multilayered film is processed into a stripe shape
Causes a stress difference between the long side direction and the short side direction, resulting in film stress.
A magnetic multilayer film having anisotropy of: "
【請求項2】 請求項1記載の磁性多層膜が、1本ある
いは複数本の、直線状あるいは蛇行状に曲がったあるい
はジグザグ状に曲がったストライプ形状を成すことを特
徴とする磁性多層膜。
2. A magnetic multilayer film according to claim 1, wherein the magnetic multilayer film has one or more stripe shapes bent in a straight line, meandering shape, or zigzag shape.
【請求項3】 磁性体の磁歪定数の絶対値が10−6
上であることを特徴とする請求項1あるいは請求項2に
記載の磁性多層膜。
3. The magnetic multilayer film according to claim 1, wherein the absolute value of the magnetostriction constant of the magnetic material is 10 −6 or more.
【請求項4】 磁性多層膜を強磁性共鳴周波数以下の周
波数帯域で使用する場合、磁性体の厚さが強磁性共鳴周
波数における表皮深さ以下であり、非磁性絶縁体の厚さ
が前記磁性体間の電気的絶縁を保ち得る厚さ以上である
ことを特徴とする請求項1あるいは請求項2あるいは請
求項3に記載の磁性多層膜。
4. When the magnetic multilayer film is used in a frequency band equal to or lower than the ferromagnetic resonance frequency, the thickness of the magnetic material is equal to or less than the skin depth at the ferromagnetic resonance frequency, and the thickness of the non-magnetic insulator is equal to or less than the magnetic depth. 4. The magnetic multilayer film according to claim 1, wherein the thickness is not less than a thickness capable of maintaining electrical insulation between the bodies.
JP5023281A 1992-08-14 1993-01-18 Magnetic multilayer film Expired - Lifetime JP2784386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5023281A JP2784386B2 (en) 1992-08-14 1993-01-18 Magnetic multilayer film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-238980 1992-08-14
JP23898092 1992-08-14
JP5023281A JP2784386B2 (en) 1992-08-14 1993-01-18 Magnetic multilayer film

Publications (2)

Publication Number Publication Date
JPH06112045A JPH06112045A (en) 1994-04-22
JP2784386B2 true JP2784386B2 (en) 1998-08-06

Family

ID=26360603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5023281A Expired - Lifetime JP2784386B2 (en) 1992-08-14 1993-01-18 Magnetic multilayer film

Country Status (1)

Country Link
JP (1) JP2784386B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515180B2 (en) * 1972-12-11 1976-02-18
JPH02121312A (en) * 1988-10-31 1990-05-09 Toshiba Corp Manufacture of magnetic thin film
JPH03283503A (en) * 1990-03-30 1991-12-13 Amorphous Denshi Device Kenkyusho:Kk Thin magnetic film having high permeability and excellent frequency characteristics

Also Published As

Publication number Publication date
JPH06112045A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
US6175293B1 (en) Planar inductor
JP3688732B2 (en) Planar magnetic element and amorphous magnetic thin film
JP7325964B2 (en) Electromagnetic wave attenuator and electronic device
JP2002158112A (en) Fine element of type such as minute inductor and minute transformer
US11798725B2 (en) Magnetic laminate, magnetic structure including same, electronic component including magnetic laminate or magnetic structure, and method for producing magnetic laminate
JPH11340037A (en) Soft magnetic film, soft magnetic multi-layer film, manufacture thereof, and magnetic body element using same
US7791836B2 (en) Thin film magnetic device having strip-shaped magnetic films with their magnetization easy axes arranged orthogonal to a thin film coil and method of manufacturing the same
EP0185406B1 (en) Magnetic head having core parts of an amorphous ferromagnetic metal
JP4998292B2 (en) Magnetic thin film and thin film magnetic device
JP2784386B2 (en) Magnetic multilayer film
JP2744945B2 (en) Magnetic multilayer film
JPH08288143A (en) Variable inductor
JP2005109246A (en) High frequency magnetic thin film and its manufacturing method, and magnetic element
JP2898129B2 (en) Amorphous soft magnetic multilayer thin film and manufacturing method thereof
JP2007073551A (en) Magnetic multilayer film and its manufacturing method
JP4893366B2 (en) Thin film magnetic device
JPH10289821A (en) Magnetic device for high-frequency band use
JP3375009B2 (en) Thin film magnetic head
JP3028495B2 (en) Thin film magnetic head
JP3866498B2 (en) Magneto-impedance effect element and manufacturing method thereof
JP2668014B2 (en) Magnetic multilayer film
JP3399899B2 (en) Thin film magnetic device
JP4869111B2 (en) High-frequency magnetic thin film and high-frequency magnetic device using the same
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH07142249A (en) Magnetic-substance thin film