JP2784164B2 - Plastic moldings - Google Patents

Plastic moldings

Info

Publication number
JP2784164B2
JP2784164B2 JP7226816A JP22681695A JP2784164B2 JP 2784164 B2 JP2784164 B2 JP 2784164B2 JP 7226816 A JP7226816 A JP 7226816A JP 22681695 A JP22681695 A JP 22681695A JP 2784164 B2 JP2784164 B2 JP 2784164B2
Authority
JP
Japan
Prior art keywords
molded product
resin
rib
temperature
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7226816A
Other languages
Japanese (ja)
Other versions
JPH0970849A (en
Inventor
清孝 沢田
久秋 小瀬古
彰士 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7226816A priority Critical patent/JP2784164B2/en
Publication of JPH0970849A publication Critical patent/JPH0970849A/en
Application granted granted Critical
Publication of JP2784164B2 publication Critical patent/JP2784164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック成形
品に関し、より詳細には、リブを有する長手方向の断面
形状が所定の寸法比をもったプラスチック成形品に関
し、複写機・FAX(ファクシミリ)等の光読取り系,
書込み系用ミラー・レンズや高い形状精度・内部均一性
が必要なハウジングなどに適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic molded product, and more particularly, to a plastic molded product having a rib and having a longitudinal sectional shape having a predetermined dimensional ratio, such as a copying machine and a facsimile machine. Optical reading system,
It is applied to mirrors and lenses for writing systems and housings that require high shape accuracy and internal uniformity.

【0002】[0002]

【従来の技術】レンズ,ミラー等の高精度な光学部品を
プラスチックにより成形する方法としては、主として、
射出成形法,射出圧縮成形法が用いられる。これらの成
形法においては、プラスチックをガラス転移温度Tg以
上の温度に加熱して、所定温度の射出成形金型のキャビ
ティ内に射出充填し、充填されたプラスチックに対し、
所定の圧力を所定時間印加して徐冷してから型開きして
成形品を取り出している。しかし、キャビティ内に射出
された溶融プラスチックは、熱抵抗を有するキャビティ
との温度差のため、キャビティ内での温度分布が不均一
で、温度変化による粘性変動があるため圧力が均一では
ない。これら温度,圧力は、時間経過とともに変化し、
更に、成形樹脂材と成形金型の熱膨張係数の相異などの
ため、成形品に内部歪が発生したり、密度分布が一定で
ないなどのため、ひけや歪が発生し、高精度なプラスチ
ック成形品を得ることは困難であった。
2. Description of the Related Art As a method of molding high-precision optical parts such as lenses and mirrors from plastic, mainly,
Injection molding and injection compression molding are used. In these molding methods, the plastic is heated to a temperature equal to or higher than the glass transition temperature Tg, and is injected and filled into a cavity of an injection mold at a predetermined temperature.
A predetermined pressure is applied for a predetermined time, the temperature is gradually lowered, the mold is opened, and the molded product is taken out. However, the molten plastic injected into the cavity has a non-uniform temperature distribution in the cavity due to a temperature difference from the cavity having thermal resistance, and a non-uniform pressure due to a viscosity change due to a temperature change. These temperatures and pressures change over time,
Furthermore, due to differences in the coefficient of thermal expansion between the molding resin material and the molding die, internal distortion occurs in the molded product, and sinks and distortions occur because the density distribution is not constant. It was difficult to obtain molded articles.

【0003】このような課題に対し、レンズ等の高精度
な光学部品をプラスチック成形するために、本出願人
は、特公平5−73570号公報による「射出成形方
法」および特開平4−163119号公報による「プラ
スチック成形品の製造方法」を提案した。
In order to solve such a problem, in order to plastically mold a high-precision optical component such as a lens, the present applicant has disclosed an "injection molding method" disclosed in Japanese Patent Publication No. Hei 5-73570 and Japanese Patent Laid-Open Publication No. Hei 4-163119. A "method of manufacturing plastic molded articles" by the gazette was proposed.

【0004】特公平5−73570号公報は、プラスチ
ック製レンズ等の高精密な射出成形品を形成することを
目的とし、射出成形金型のキャビティ温度を成形材料の
ガラス転移温度以上に加熱してこれをキャビティ内に射
出充填後、キャビティのゲートを閉じ、射出成形金型の
温度を徐冷してガラス転移温度に下降させてキャビティ
内で成形材料を硬化させ成形する方法である。
Japanese Patent Publication No. Hei 5-73570 aims to form a high-precision injection molded product such as a plastic lens by heating the cavity temperature of an injection mold to a temperature higher than the glass transition temperature of the molding material. After injection filling the cavity, the gate of the cavity is closed, the temperature of the injection mold is gradually cooled, lowered to the glass transition temperature, and the molding material is cured and molded in the cavity.

【0005】また、特開平4−163119号公報は、
前記公報と同様の目的をもち、更に、プラスチック成形
品を短かいサイクル時間で製造するため、樹脂の熱変形
温度以下に保持された金型内に流動可能温度以上に加熱
された樹脂を射出成形してゲートシールする射出成形工
程と、該射出成形工程で得られた成形品を、ガラス転移
温度以上になるように加熱して、この温度を所定時間保
持してから熱変形温度以下になるまで徐冷するエージン
グ工程とでプラスチック成形する製造方法に関するもの
である。
[0005] Also, JP-A-4-163119 discloses that
In order to produce a plastic molded product with a short cycle time, the resin heated to a temperature higher than the flowable temperature is injected into a mold held at a temperature lower than the heat deformation temperature of the resin, in order to produce a plastic molded product with a shorter cycle time. An injection molding step of performing gate sealing and heating the molded product obtained in the injection molding step to a temperature equal to or higher than the glass transition temperature, and holding this temperature for a predetermined time until the temperature becomes equal to or lower than the heat deformation temperature. The present invention relates to a method for producing a plastic by an aging step of slow cooling.

【0006】上述した従来技術に記載されている成形品
としては、主としてプラスチック製レンズ,ミラー等で
あることが述べているが、具体的な形状については述べ
られていない。しかし、高精度なプラスチック成形品形
状にはリブ構造が多く採用されている。リブ構造は下記
の特長があるためである。 (1)成形品強度の向上。 (2)成形品肉厚の均肉化。(成形上、均肉の方がひけ
を防止しやすく、精度が出しやすい為) (3)成形サイクルの低減。 (4)成形材料の節約。 (5)成形品の取り扱い性の向上。(レンズ・ミラー等
の光学部品に対して)
[0006] The molded articles described in the above-mentioned prior art are mainly described as plastic lenses, mirrors and the like, but their specific shapes are not described. However, a rib structure is often employed for a highly accurate plastic molded product. This is because the rib structure has the following features. (1) Improve the strength of molded products. (2) Uniform thickness of molded product. (Because the uniform thickness is easier to prevent sinking in molding, it is easier to obtain accuracy.) (3) Reduction of molding cycle. (4) Saving of molding materials. (5) Improved handling of molded products. (For optical parts such as lenses and mirrors)

【0007】[0007]

【発明が解決しようとする課題】プラスチック成形品に
対し、リブ構造を採用することにより上述したメリット
がある。しかし、その反面、より高精度なレンズやミラ
ー等の光学部品に対し、リブ構造を採用すると、金型キ
ャビティ駒の樹脂圧による変形の不均一さにより、成形
樹脂がガラス転移温度Tg以下になると圧力にアンバラ
ンスが生じ、成形品精度を低下させる原因となることが
本発明者らの実験により判明した。
The advantages described above are obtained by adopting a rib structure for a plastic molded product. However, on the other hand, if a rib structure is adopted for optical components such as lenses and mirrors with higher precision, when the molding resin falls below the glass transition temperature Tg due to non-uniform deformation of the mold cavity piece due to the resin pressure, the pressure increases. It has been found from experiments by the present inventors that an imbalance occurs in the molded product, which causes a reduction in the precision of the molded product.

【0008】本発明は、リブ構造を有した成形品でも、
高い形状精度・内部均一性を得ることができる成形品形
状を提供することを目的とする。
The present invention provides a molded article having a rib structure,
It is an object of the present invention to provide a molded product shape capable of obtaining high shape accuracy and internal uniformity.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、リブを有し、高い形状精度・内部均一性が必要なプ
ラスチック成形品の長手方向断面形状に関して、前記成
形品のリブを含めた幅寸法aと前記成形品のリブを除い
た幅寸法bの比b/aが0.5以下、かつ前記成形品の
リブを含めた高さ寸法cとリブを除いた高さ寸法dとの
比d/cが0.3以上にすることにより、リブを有し
た、高い形状精度・内部均一性の精密成形品が得られる
ようにする。
According to a first aspect of the present invention, there is provided a plastic molded product having ribs and requiring high shape accuracy and internal uniformity in a longitudinal direction including a rib of the molded product. The ratio b / a of the width dimension a to the width dimension b excluding the ribs of the molded article is 0.5 or less, and the height dimension c including the ribs of the molded article and the height dimension d excluding the ribs are: By setting the ratio d / c to 0.3 or more, it is possible to obtain a precision molded product having ribs and having high shape accuracy and internal uniformity.

【0010】請求項2に記載の発明は、リブを有し、成
形品の一部のみに高い形状精度・内部均一性が必要なプ
ラスチック成形品の断面形状に関して、高い形状精度・
内部均一性が必要な箇所のみ請求項1に記載の断面形状
にして、高い形状精度・内部均一性の必要な部分のみ請
求項1の断面寸法にし、精度が不必要な部分は、b寸法
を大きく、d寸法を小さくして材料を低減させる。
[0010] The invention according to claim 2 has a high shape precision and a high cross-sectional shape of a plastic molded product having a rib and requiring high shape accuracy and internal uniformity only in a part of the molded product.
Only the portion requiring internal uniformity has the cross-sectional shape according to claim 1, and only the portion requiring high shape accuracy and internal uniformity has the cross-sectional dimension of claim 1, and the portion requiring no accuracy has the b dimension. Larger and smaller d dimensions reduce material.

【0011】請求項3に記載の発明は、リブを有し、レ
ンズ・ミラー等の高い形状精度・内部均一性が必要なプ
ラスチック光学部品を成形する成形品の断面形状に関し
て、前記成形品のリブ以外の幅寸法bとリブ以外の高さ
寸法dをレンズ・ミラーの光学的有効範囲の寸法を用
い、請求項1の断面形状にし、光学的有効な部分のみ、
高い形状精度・内部均一性を出すようにし、また、成形
サイクルを向上させる。
According to a third aspect of the present invention, there is provided a molded product for molding a plastic optical component having a rib and requiring high shape accuracy and internal uniformity such as a lens and a mirror. The width dimension b other than the width and the height dimension d other than the ribs are the dimensions of the optically effective range of the lens / mirror.
To achieve high shape accuracy and internal uniformity, and improve the molding cycle.

【0012】請求項4に記載の発明は、あらかじめ樹脂
のガラス転移温度以上の温度に昇温された金型のキャビ
ティに、可塑化された樹脂を射出充填した後ゲートシー
ルし、前記金型の温度を樹脂の熱変形温度以下まで徐冷
する成形方法による高精度な成形品製造方法を用いる事
により、請求項1の発明がより有効になるようにする。
According to a fourth aspect of the present invention, a plasticized resin is injected and filled into a mold cavity heated to a temperature not lower than the glass transition temperature of the resin in advance, and then the gate is sealed. The invention of claim 1 is made more effective by using a high-precision molded product manufacturing method based on a molding method in which the temperature is gradually cooled to a temperature equal to or lower than the thermal deformation temperature of the resin.

【0013】請求項5に記載の発明は、樹脂の熱変形温
度以下の温度に保持された金型に可塑化された樹脂を射
出成形してゲートシールする射出成形工程と、射出成形
した樹脂のガラス転移点以上になるように前記樹脂を充
填した金型を昇温して、樹脂のガラス転移点以上の温度
で所定時間保持し、さらに樹脂の熱変形温度以下まで徐
冷する工程からなる成形方法による高精度な成形品製造
方法を用いる事により、請求項1の発明がより有効にな
るようにする。
According to a fifth aspect of the present invention, there is provided an injection molding step of performing injection molding of a plasticized resin in a mold maintained at a temperature not higher than the thermal deformation temperature of the resin to perform gate sealing, Forming a mold filled with the resin so as to have a temperature equal to or higher than the glass transition temperature, holding the mold at a temperature equal to or higher than the glass transition temperature of the resin for a predetermined time, and gradually cooling the resin to a temperature equal to or lower than the thermal deformation temperature of the resin By using a highly accurate molded article manufacturing method by the method, the invention of claim 1 is made more effective.

【0014】請求項6に記載の発明は、金型のキャビテ
ィ駒の材質を高い縦弾性率をもった鉄鋼系材料として、
キャビティ壁面の変形量を小さくして、高精度な成形品
が得られやすいようにする。
According to a sixth aspect of the present invention, the material of the cavity piece of the mold is a steel-based material having a high longitudinal elastic modulus.
The amount of deformation of the cavity wall surface is reduced so that a highly accurate molded product can be easily obtained.

【0015】請求項7に記載の発明は、金型のキャビテ
ィ駒の材質を弾性率も適度に高く、かつ、熱伝導率の高
い銅合金として、成形サイクルを向上させるようにす
る。
According to a seventh aspect of the present invention, the material of the cavity piece of the mold is made of a copper alloy having a moderately high elastic modulus and a high thermal conductivity to improve the molding cycle.

【0016】請求項8に記載の発明は、成形品のリブ部
にテーパを設けることにより、成形品を金型から離型す
る時に変形しないようにして、変形による精度低下を防
ぐようにする。
According to the eighth aspect of the present invention, the ribs of the molded article are provided with a taper so that the molded article is not deformed when the mold is released from the mold, thereby preventing the precision from being lowered due to the deformation.

【0017】[0017]

【発明の実施の形態】本発明は、リブを有する高い形状
精度と内部均一性が必要なプラスチック成形品を得るた
めに、該プラスチック成形品の長手方向の断面形状の寸
法比を最適に定めたプラスチック成形品に関するもので
あるが、まず、リブを有しない長手方向の断面形状をも
ったプラスチック成形品と、リブを有するプラスチック
成形品が、射出成形金型のキャビティ内に融溶樹脂が充
填してから徐冷され、成形品が取り出されるまでの過程
における各々の成形品の長手方向断面形状の形状変化の
様子について述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to obtain a plastic molded product having high shape accuracy and internal uniformity having ribs, the present invention optimally determines the dimensional ratio of the cross-sectional shape in the longitudinal direction of the plastic molded product. First, a plastic molded product having a longitudinal cross-sectional shape without ribs and a plastic molded product with ribs are filled with molten resin in the cavity of an injection mold. The state of the shape change of the cross-sectional shape in the longitudinal direction of each molded product in the process from when the molded product is gradually cooled until the molded product is taken out will be described.

【0018】図1は、リブを有しない成形品の長手方向
断面形状の変化を説明するための図であり、断面形状1
0が矩形PQRSで、辺の幅寸法が各々PQ=RS=
a,高さ寸法が各々QR=SP=cである。
FIG. 1 is a view for explaining a change in the longitudinal sectional shape of a molded article having no ribs.
0 is a rectangular PQRS, and the width dimension of each side is PQ = RS =
a and the height dimension are respectively QR = SP = c.

【0019】高圧の溶融樹脂が金型のキャビティ(図示
せず)に射出充填されたとき、キャビティ壁面は、樹脂
の発生内圧によって破線で示すように変位xだけ弾性変
形する。この状態から金型が冷却されると、これに従っ
て樹脂温度は低下する。樹脂の熱膨張係数は、金型の熱
膨張係数よりも大きいので、樹脂温度が低下すると、樹
脂圧が低下し、樹脂圧と釣り合っている金型の弾性変形
量(たわみ量)は減少する。このとき、成形品の長手方
向の断面形状が長手方向に断面積が異なる偏肉形状の場
合であっても、金型キャビティ壁面の変形量は場所によ
り変化することがなく、一定であるから、金型の弾性変
形量は、冷却過程で樹脂圧力が低下するに従って回復
し、実線で示す矩形PQRSとなり、比較的高精度な成
形品が得られ易い。
When a high-pressure molten resin is injected and filled into a cavity (not shown) of a mold, the cavity wall surface is elastically deformed by a displacement x as shown by a broken line due to the internal pressure generated by the resin. When the mold is cooled from this state, the resin temperature falls accordingly. Since the coefficient of thermal expansion of the resin is larger than the coefficient of thermal expansion of the mold, when the resin temperature decreases, the resin pressure decreases, and the amount of elastic deformation (deflection) of the mold that is in proportion to the resin pressure decreases. At this time, even if the cross-sectional shape in the longitudinal direction of the molded product is an uneven thickness shape having a different cross-sectional area in the longitudinal direction, the deformation amount of the mold cavity wall surface does not change depending on the location and is constant, The amount of elastic deformation of the mold recovers as the resin pressure decreases in the cooling process, and becomes a rectangular PQRS indicated by a solid line, so that a relatively high-precision molded product is easily obtained.

【0020】図2は、リブを有する成形品の長手方向の
断面形状変化を説明するための図で、図中、1はリブ
部、2は矩形部、3は成形品表面部であり、断面形状は
成形品表面部3を含む矩形部2と矩形部2の裏面両端か
ら突出するリブ部1とからなるABCDEFGHであ
り、成形品表面部3の長さ、すなわちリブ部1を含めた
幅方向の辺ABの寸法がa、リブ部1を含まない高さ方
向(ABとEF間)の寸法がd、リブ部1を含まない辺
EFの幅寸法がb、リブ部1を含めた高さ方向の辺AH
の寸法がcである。
FIG. 2 is a view for explaining changes in the cross-sectional shape in the longitudinal direction of a molded article having ribs. In the figure, reference numeral 1 denotes a rib portion, 2 denotes a rectangular portion, and 3 denotes a molded article surface portion. The shape is ABCDEFGH composed of a rectangular portion 2 including the molded product surface portion 3 and a rib portion 1 protruding from both ends of the rear surface of the rectangular portion 2. The length of the molded product surface portion 3, that is, the width direction including the rib portion 1 A of the side AB is a, the dimension in the height direction (between AB and EF) not including the rib 1 is d, the width of the side EF not including the rib 1 is b, and the height including the rib 1 Direction side AH
Is c.

【0021】図2に示したリブ1を有する長手方向断面
の金型に溶融樹脂が充填されたとき、金型形状はリブ1
を有するため、金型のキャビティは樹脂の発生内圧Pが
一定でも、場所により弾性変形量は異なり、破線で示す
ように、リブ部1を含む幅辺AB=a、リブ部1を含む
高さBC=AH=cでの変位はX、リブ部1を除いた内
側の辺EFでは0.5X、リブ部1の内側(ED=F
G)では0.5Xとなる。
When a mold having a rib 1 shown in FIG. 2 and having a longitudinal section is filled with a molten resin, the shape of the mold is
Therefore, even if the internal pressure P generated by the resin is constant, the amount of elastic deformation varies depending on the location, and the width AB including the rib portion 1 and the height including the rib portion 1 as shown by the broken line in the cavity of the mold. The displacement at BC = AH = c is X, the inner side EF excluding the rib 1 is 0.5X, and the inner side of the rib 1 (ED = F
In G), it becomes 0.5X.

【0022】この状態から金型が冷却され、これに伴っ
てキャビティ内の樹脂温度が低下し、樹脂は収縮する。
しかし、矩形部2とリブ部1の寸法を比較すると、リブ
部1を含む矩形部2の幅寸法aは、リブ部1の幅寸法D
C=HG=(a−b)/2より大きいので、熱収縮量も
大きい。樹脂のガラス転移温度Tg以上の温度領域で
は、樹脂の移動が比較的起り易いので、徐冷により温度
が低下し、ガラス転移温度Tgに達する間の温度域で
は、キャビティ内の樹脂は熱収縮量が小さいリブ部1か
ら熱収縮量の大きい矩形部2に移動し、リブ部1と矩形
部2との間に圧力差が生ずることはなく、圧力は均一に
なる。金型の弾性変形量も温度低下に追従して均一に減
少する。
From this state, the mold is cooled, and the temperature of the resin in the cavity is lowered, and the resin shrinks.
However, comparing the dimensions of the rectangular portion 2 and the rib portion 1, the width a of the rectangular portion 2 including the rib portion 1 is equal to the width dimension D of the rib portion 1.
Since C = HG = (ab) / 2, the heat shrinkage is also large. In the temperature range above the glass transition temperature Tg of the resin, the movement of the resin is relatively easy to occur, so the temperature decreases by slow cooling. Moves from the small rib portion 1 to the rectangular portion 2 having a large heat shrinkage, and there is no pressure difference between the rib portion 1 and the rectangular portion 2, and the pressure becomes uniform. The elastic deformation of the mold also decreases uniformly following the temperature decrease.

【0023】しかし、樹脂温度がガラス転移温度Tgよ
り低い温度域では、樹脂の移動は起りにくい。この結
果、温度が低下してもリブ部1から矩形部2へ樹脂が移
動することができず、リブ部1では金型キャビティ壁面
の変位が大きいので、圧力は低下しない。このため、キ
ャビティ内に圧力のアンバランスが生じ、成形品精度が
低下する。キャビティ内の圧力のアンバランスの度合
は、成形品の長さ方向断面寸法a,b,c,dの寸法比
により定まる。例えば、図1に示すリブ無しの単純な成
形品の長手方向の断面形状に近い程、圧力のアンバラン
スが生じにくく、成形品の精度を出し易いが、図2に示
す長手方向の断面形状がリブを有し、圧力のアンバラン
スが生じ易い成形品の場合は、精度が低下する。
However, when the resin temperature is lower than the glass transition temperature Tg, the resin hardly moves. As a result, even if the temperature decreases, the resin cannot move from the rib portion 1 to the rectangular portion 2, and the rib portion 1 has a large displacement of the mold cavity wall surface, so that the pressure does not decrease. For this reason, pressure imbalance occurs in the cavity, and the precision of the molded product decreases. The degree of pressure imbalance in the cavity is determined by the dimensional ratio of the cross-sectional dimensions a, b, c, and d in the longitudinal direction of the molded product. For example, the closer to the cross-sectional shape in the longitudinal direction of the simple molded product without the rib shown in FIG. 1, the less likely it is for the imbalance in pressure to occur and the easier the accuracy of the molded product is to be obtained, but the longer the cross-sectional shape in the longitudinal direction shown in FIG. In the case of a molded product having a rib and easily causing pressure imbalance, accuracy is reduced.

【0024】本発明者らは、リブを有した長手方向の断
面形状の光学レンズ,ミラー等の高い面精度を必要とす
る光学部品をプラスチックで成形し、使用可能な高精度
が得られる断面形状の寸法比を実験的に求めた結果、 (b/a)≦0.5 …(1) (d/c)≧0.3(好ましくは(d/c)≧0.5) …(2) を満足する寸法比であることが判明した。
The present inventors molded optical components requiring high surface precision, such as optical lenses and mirrors having ribs and having a longitudinal cross-sectional shape in the longitudinal direction, from plastic to obtain a usable cross-sectional shape with high precision. (B / a) ≦ 0.5 (1) (d / c) ≧ 0.3 (preferably (d / c) ≧ 0.5) (2) It was found that the dimensional ratio satisfied the following.

【0025】なお、(b/a)>0.5となるとリブ部
1の幅が狭くなるため、リブ部1と矩形部2の温度が単
位温度減少したときの圧力差が大きくなり、ガラス転位
温度Tg以下で圧力が低下しにくくなる。また、(d/
c)<0.3となり、リブ部1の高さ寸法が相対的に高
くなると、成形品表面部3に与えるリブ部1と矩形部2
の圧力差の影響が大きくなり、成形品精度が出なくな
る。特に、成形品の長手方向に偏肉がある場合には、圧
力差が大きくなり、成形品精度が出なくなる。
When (b / a)> 0.5, the width of the rib portion 1 becomes narrow, so that the pressure difference when the temperature of the rib portion 1 and the rectangular portion 2 decreases by a unit temperature becomes large, and the glass dislocation becomes large. When the temperature is equal to or lower than the temperature Tg, the pressure does not easily decrease. Also, (d /
c) <0.3, and when the height of the rib portion 1 becomes relatively high, the rib portion 1 and the rectangular portion 2 applied to the molded product surface portion 3
The effect of the pressure difference becomes large, and the precision of the molded product cannot be obtained. In particular, when there is uneven thickness in the longitudinal direction of the molded product, the pressure difference becomes large, and the precision of the molded product cannot be obtained.

【0026】図3,図4は、図2に示したリブ部を有
し、リブ部の高さ寸法と幅寸法とが異なる場合の成形精
度の良否を説明するための図であり、リブ部1の幅(a
−b)/2は、図4の場合が最も広く、図3の場合が最
も狭い。また、高さ(c−d)/2は、図4の場合が最
も低く、図3の場合が最も高い。この結果、成形品の形
状精度および内部均一性は、図4が最も高く、図3が最
も低い。
FIGS. 3 and 4 are views for explaining the quality of the molding accuracy when the ribs shown in FIG. 2 have different heights and widths. 1 width (a
-B) / 2 is the widest in FIG. 4 and the narrowest in FIG. The height (cd) / 2 is the lowest in FIG. 4 and the highest in FIG. As a result, the shape accuracy and internal uniformity of the molded product are the highest in FIG. 4 and the lowest in FIG.

【0027】上記(1),(2)式を満足するa,b,
c,d寸法の条件は、図2に示した成形品の長手方向断
面形状が矩形2の裏面両端にリブ1を有する形状の場合
に限らず、リブ部1を有する図5〜図9に示す断面形状
の場合にも成り立つことが確かめられた。なお、図5以
下の図面において、図2と同様の作用をする部分には、
図2の場合と同じ参照番号を付してある。
A, b, which satisfy the above equations (1) and (2),
The conditions for the c and d dimensions are not limited to the case where the cross-sectional shape in the longitudinal direction of the molded product shown in FIG. 2 is a shape having ribs 1 at both ends of the back surface of the rectangle 2, and is shown in FIGS. It has been confirmed that the above holds true in the case of the cross-sectional shape. In the drawings following FIG. 5, parts having the same operation as FIG.
The same reference numerals as in FIG. 2 are used.

【0028】図5に示した成形品の長手方向の断面形状
は、リブ部1を含む幅寸法a、リブ部1を含まない高さ
寸法dの矩形2の両端表・裏面に幅寸法(a−b)/
2、高さ寸法(c−d)/2のリブ1を有する断面H型
の成形品である。
The longitudinal cross-sectional shape of the molded product shown in FIG. 5 is such that the width dimension a including the rib 1 and the width dimension a −b) /
2. This is a molded product having an H-shaped cross section and having a rib 1 having a height (cd) / 2.

【0029】図6に示した成形品の長手方向の断面形状
は、円弧状部4を有し、幅方向,高さ方向に軸対称形状
でレンズ部となるリブ部1を含む幅寸法aで、リブ部1
を含まない幅寸法bの部分にレンズ部となる表・裏面側
に突出する有効範囲b′の円弧状部4を有し、円弧状部
4の両端に幅寸法が(a−b)/2、高さ寸法が(c−
d)/2で、円状部4の有効範囲の幅寸法b′に対応す
る有効範囲の高さ寸法d′を有するリブ1が設けられて
いる。
The cross-sectional shape in the longitudinal direction of the molded product shown in FIG. 6 has an arc-shaped portion 4, and has a width dimension a including a rib portion 1 serving as a lens portion having an axially symmetric shape in the width direction and the height direction. , Rib 1
Is provided with an arc-shaped portion 4 having an effective range b 'protruding toward the front and back sides of the lens portion at a portion having a width b not including the lens portion, and having a width of (ab) / 2 at both ends of the arc-shaped portion 4. , Height dimension is (c-
At d) / 2, a rib 1 having an effective range height d 'corresponding to the effective range width b' of the circular portion 4 is provided.

【0030】図7に示した成形品の長手方向の断面形状
は、幅方向,高さ方向に軸対称で幅方向に長く、リブを
含まない高さ寸法dの矩形2に対し、幅方向の寸法(a
−b)/2、高さ方向の寸法(c−d)/2の複数のリ
ブ部1が表裏面に等間隔に配置されている。
The cross-sectional shape in the longitudinal direction of the molded product shown in FIG. 7 is axially symmetrical in the width direction and the height direction and is long in the width direction. Dimensions (a
A plurality of ribs 1 of -b) / 2 and a dimension (cd) / 2 in the height direction are arranged at equal intervals on the front and back surfaces.

【0031】図8に示した成形品の長手方向の断面形状
は、正六角形状断面5の各頂点から放射方向に高さ寸法
(c−d)のリブ部1が突出している。ここで、寸法c
は、正六角形状断面5の中心Oからリブ部1の高さ表面
までの距離、寸法dは、正六角形状断面5とリブ部1の
接点までの距離である。また、リブ部を含む幅寸法a
は、隣接するリブ部1の高さ表面部間の最大距離、リブ
部1を含まない幅寸法bは正六角形状断面5の隣接する
リブ部1の間の距離である。
In the longitudinal section of the molded product shown in FIG. 8, a rib 1 having a height (cd) protrudes radially from each vertex of the regular hexagonal section 5. Where dimension c
Is the distance from the center O of the regular hexagonal cross section 5 to the height surface of the rib portion 1, and the dimension d is the distance from the regular hexagonal cross section 5 to the contact point of the rib portion 1. Also, width a including the rib portion a
Is the maximum distance between the height surface portions of the adjacent ribs 1, and the width b not including the ribs 1 is the distance between the adjacent ribs 1 of the regular hexagonal cross section 5.

【0032】図9に示した成形品の長手方向の断面形状
は、高さ方向にのみ対称な形状で、リブ部1の幅寸法が
(a−b)/2で、リブ部1の最大高さ寸法が(c−
d)/2の異形であり、これに従って、リブ部1を含ま
ない矩形部2は、最小の高さ寸法がdで、リブ部1を含
む幅寸法aに従って高さ寸法が段状に変化する複雑形状
をもっている。
The cross-sectional shape in the longitudinal direction of the molded product shown in FIG. 9 is symmetrical only in the height direction, the width of the rib 1 is (ab) / 2, and the maximum height of the rib 1 is The size is (c-
d) / 2, and accordingly, the rectangular portion 2 not including the rib portion 1 has the minimum height dimension d, and the height dimension changes stepwise according to the width dimension a including the rib portion 1. It has a complicated shape.

【0033】以上、図2〜図9に示したリブを有する長
手方向の断面形状の成形品は、前記(1),(2)式の
条件を満足するa,b,c,dの長さ寸法比を選ぶこと
により、高精度な成形品が得られるが、前記(1),
(2)式を満足する寸法比を与える部分は、すべての成
形品に対してではなく、例えば、成形品表面3のよう
に、高い面精度が必要な個所のみでよい。例えば、ハウ
ジングについては、他の部品を取り付ける取り付け面な
どである(請求項2に対応)。
As described above, the molded product having the ribs shown in FIGS. 2 to 9 and having a longitudinal sectional shape has the lengths of a, b, c, and d satisfying the conditions of the above equations (1) and (2). By selecting the dimensional ratio, a highly accurate molded product can be obtained.
The part giving the dimensional ratio satisfying the expression (2) does not have to be applied to all the molded products, but only to a portion requiring a high surface accuracy, such as the molded product surface 3. For example, the housing is a mounting surface for mounting other parts (corresponding to claim 2).

【0034】また、高い形状寸法精度・内部均一性が必
要なレンズ,ミラー等の光学部品の断面形状について
は、例えば、図6に示す円弧状部4のように、成形品の
リブ部1以外の幅寸法bとリブ部1以外の高さ寸法d
は、レンズ,ミラー等の光学部品の光学的有効範囲の寸
法を用いる。図6に示す例では、有効幅寸法はb′であ
り、有効高さ寸法はd′であり、このような有効幅寸法
を適用することにより、光学的有効な部分のみ高い形状
精度や内部均一性を出すことができる(請求項3に対
応)。
The cross-sectional shape of an optical component such as a lens or a mirror that requires high shape / dimensional accuracy and internal uniformity is, for example, an arc-shaped portion 4 shown in FIG. Width dimension b and height dimension d other than rib 1
Uses the dimensions of the optically effective range of optical components such as lenses and mirrors. In the example shown in FIG. 6, the effective width dimension is b 'and the effective height dimension is d'. By applying such an effective width dimension, only the optically effective portion has high shape accuracy and internal uniformity. (See claim 3).

【0035】更に、また、前記(1),(2)式を満足
する幅寸法a,b、高さ寸法c,dで定められたリブを
有した長手方向断面形状の成形品を、前記特公平5−7
3570号公報による「射出成形方法」、すなわち、樹
脂のガラス転移温度以上の温度にあらかじめ昇温された
金型の前記(1),(2)式を満足する幅寸法a,b、
高さ寸法c,dのキャビティに、可塑化された樹脂を射
出充填した後ゲートシールし、前記金型の温度を樹脂の
熱変形温度以下まで徐冷する成形方法によって成形する
ことにより、請求項1の発明の効果がより有効になり、
高い寸法精度と内部均一のリブを有する成形品を得るこ
とができる(請求項4に対応)。
Further, a molded article having a longitudinal cross-sectional shape having a rib defined by width dimensions a and b and height dimensions c and d satisfying the above-mentioned equations (1) and (2) is provided by the above-mentioned feature. Fairness 5-7
No. 3570, "Injection molding method", that is, width dimensions a and b of a mold previously heated to a temperature equal to or higher than the glass transition temperature of a resin, satisfying the above equations (1) and (2).
Claims 1. A mold formed by injection-filling a plasticized resin into a cavity having a height dimension c or d, sealing the gate, and gradually cooling the temperature of the mold to a temperature equal to or lower than a thermal deformation temperature of the resin. The effect of the first invention becomes more effective,
It is possible to obtain a molded product having high dimensional accuracy and ribs with uniform inside (corresponding to claim 4).

【0036】更に、また、特開平4−163119号公
報による「プラスチック製造方法」、すなわち、樹脂の
熱変形温度以下の温度に保持された金型に射出成形して
ゲートシールする射出成形工程と、射出成形した樹脂の
ガラス転移点以上になるように、前記樹脂を充填した金
型を昇温して、樹脂のガラス転移点以上の温度で所定時
間保持し、さらに樹脂の熱変形温度以下まで徐冷する工
程からなる成形方法を用いて、前記(1),(2)式を
満足する幅寸法a,bおよび高さ寸法c,dのリブを有
した長手方向断面形状の成形品を成形することにより、
請求項4の発明と同様に、請求項1の発明の効果がより
有効になり、高い寸法精度および内部均一性をもった光
学部品が成形される(請求項5に対応)。
Furthermore, a plastic manufacturing method disclosed in Japanese Patent Application Laid-Open No. 4-163119, that is, an injection molding step of performing injection molding on a mold maintained at a temperature equal to or lower than the thermal deformation temperature of a resin to perform gate sealing, The temperature of the mold filled with the resin is increased so that the temperature is equal to or higher than the glass transition point of the injection-molded resin, the temperature is maintained at a temperature equal to or higher than the glass transition point of the resin for a predetermined time, and the temperature is gradually lowered to a temperature equal to or lower than the thermal deformation temperature of the resin. Using a molding method including a cooling step, a molded product having a longitudinal cross-sectional shape having ribs having width dimensions a and b and height dimensions c and d that satisfies the expressions (1) and (2) is formed. By doing
Similarly to the fourth aspect, the effect of the first aspect becomes more effective, and an optical component having high dimensional accuracy and internal uniformity is molded (corresponding to the fifth aspect).

【0037】更に、また、プラスチック成形品を成形す
る金型は、樹脂を充填したとき、金型のキャビティには
高い内圧が生じ、キャビティの形状が弾性変形してキャ
ビティの壁面形状が変化し、前記(1),(2)式を満
足する幅寸法a,bおよび高さ寸法c,dをもったリブ
を有した長手方向断面形状のプラスチック成形品であっ
ても、高精度な形状寸法および内部均一性を得ることが
できない。
Further, in a mold for molding a plastic molded product, when the mold is filled with resin, a high internal pressure is generated in the cavity of the mold, and the shape of the cavity is elastically deformed to change the wall surface shape of the cavity. Even a plastic molded product having a longitudinal cross-sectional shape having a rib having a width dimension a, b and a height dimension c, d that satisfies the above formulas (1) and (2), has a high precision shape and dimension. Internal uniformity cannot be obtained.

【0038】このため、金型のキャビティ駒の材料を縦
弾性率Eが大きい、例えば、E=21000kg/mm2
鉄鋼材料とし、更に、前記(1),(2)式を満足する
幅寸法a,bおよび高さ寸法c,dをもち、リブを有し
た長手方向断面形状のプラスチック成形品をキャビティ
内圧による壁面形状変化の影響を少くして高精度の寸法
精度,内部均一性のプラスチック成形品を製造すること
ができる(請求項6に対応)。
For this reason, the material of the cavity piece of the mold is a steel material having a large longitudinal elasticity E, for example, E = 21000 kg / mm 2 , and a width dimension a satisfying the above-mentioned equations (1) and (2). , B and height c, d, plastic molded products having ribs and having a longitudinal cross-sectional shape are less affected by changes in wall shape due to cavity internal pressure, and have high dimensional accuracy and uniform inside. Can be manufactured (corresponding to claim 6).

【0039】しかし、キャビティ内に充填される樹脂
は、ガラス転位温度Tg以上に加熱されており、充填
後、金型内で徐冷されるが、リブを有した断面形状のキ
ャビティ内の樹脂温度分布は、金型の熱伝導率により影
響を受け、キャビティ内の樹脂温度が一定な程、高精度
の成形品が短時間に得られる。従って、キャビティ駒が
熱伝導率の悪い材料である場合は、成形サイクルが長時
間となる。このため、金型材料として樹脂内圧によるキ
ャビティ内壁変形が少い縦弾性率Eが大きく(E=14
000kg/mm2)、且つ熱伝導率の優れた銅合金を用い
て、銅合金のキャビティ駒を用いて、前記(1),
(2)式を満足する幅寸法a,b、高さ寸法c,dをも
ったリブを有した長手方向の断面形状のプラスチック成
形品を成形することにより、高い寸法精度,内部均一性
のプラスチック成形品を製造することができる(請求項
7に対応)。
However, the resin filled in the cavity is heated to a temperature higher than the glass transition temperature Tg. After filling, the resin is gradually cooled in the mold. The distribution is affected by the thermal conductivity of the mold. As the resin temperature in the cavity is constant, a highly accurate molded product can be obtained in a short time. Therefore, when the cavity piece is made of a material having poor thermal conductivity, the molding cycle becomes long. For this reason, the longitudinal elastic modulus E is small (E = 14) where the cavity inner wall deformation due to the resin internal pressure is small as a mold material.
000 kg / mm 2 ) and using a copper alloy having excellent thermal conductivity, using a copper alloy cavity piece,
By molding a plastic molded product having a rib having the width dimensions a and b and the height dimensions c and d satisfying the expression (2), the plastic molded article has high dimensional accuracy and internal uniformity. A molded article can be manufactured (corresponding to claim 7).

【0040】図2〜図4にしたプラスチック成形品のリ
ブ部1は、何れも幅寸法が(a−b)/2一定で、高さ
寸法が(c−d)/2であり、成形品表面3の裏側に設
けられている。このため、離型時にリブ部1が金型に接
触して変形する危険がある。
Each of the ribs 1 of the plastic molded product shown in FIGS. 2 to 4 has a constant width (ab) / 2 and a height (cd) / 2. It is provided behind the front surface 3. For this reason, there is a risk that the rib portion 1 may be deformed due to contact with the mold during release.

【0041】図10は、図2に示したリブを有した長手
方向断面形状の前記リブにテーパをもたした成形品を説
明するための図であり、リブ部1bの幅寸法は、高さ寸
法がcの部分では(c−d)/2で、高さ(c−d)の
部分では(a−b″)/2(b<b″)で、内側に傾斜
した(c−d)/(b−b″)のテーパをもっている。
FIG. 10 is a view for explaining a molded product in which the rib having the rib shown in FIG. 2 has a tapered shape in the longitudinal cross-sectional shape. (C-d) / 2 in the portion of the dimension c, (ab-) / 2 (b <b ") in the portion of the height (cd), and inwardly inclined (cd). / (Bb ′).

【0042】図2に示した(1),(2)式を満足する
幅寸法a,bおよび高さ寸法c,dのリブを有した長手
方向の断面形状のプラスチック成形品のリブ部1を、図
10に示したように、テーパをもったリブ部1bにする
ことにより、離型し易くなり、離形時における変形発生
を防ぐことができる。
The rib portion 1 of a plastic molded product having a cross section in the longitudinal direction having ribs of width dimensions a and b and height dimensions c and d satisfying the equations (1) and (2) shown in FIG. As shown in FIG. 10, the rib 1b having a taper makes it easy to release the mold, thereby preventing deformation from occurring at the time of release.

【0043】[0043]

【発明の効果】【The invention's effect】

請求項1に対応する効果:リブを有し、高い形状精度・
内部均一性が必要なプラスチック成形品の長手方向断面
形状に関して、前記成形品のリブを含めた幅寸法aと前
記成形品のリブを除いた幅寸法bの比b/aが0.5以
下、かつ前記成形品のリブを含めた高さ寸法cとリブを
除いた高さ寸法dとの比d/cが0.3以上としたの
で、リブを有した、高い形状精度・内部均一性の精密成
形品が得られる。
Effect corresponding to claim 1: Having ribs, high shape accuracy
Regarding the longitudinal cross-sectional shape of the plastic molded product requiring internal uniformity, the ratio b / a of the width dimension a including the rib of the molded product to the width dimension b excluding the rib of the molded product is 0.5 or less, In addition, since the ratio d / c of the height c including the ribs of the molded article including the ribs to the height d excluding the ribs is set to 0.3 or more, the ribs have high shape accuracy and high internal uniformity. A precision molded product is obtained.

【0044】請求項2に対応する効果:リブを有し、成
形品の一部のみに高い形状精度・内部均一性が必要なプ
ラスチック成形品の断面形状に関して、高い形状精度・
内部均一性が必要な箇所のみ請求項1に記載の断面形状
にしたので、高い形状精度・内部均一性の必要な部分の
み請求項1の断面寸法にし、精度が不必要な部分は、リ
ブを含まない寸法bを大きく、リブを含まない高さ寸法
dを小さくして材料を低減させる。
According to the second aspect of the present invention, the cross-sectional shape of a plastic molded product that has ribs and requires high shape accuracy and internal uniformity only in a part of the molded product has high shape accuracy and high precision.
Since only the portions requiring internal uniformity have the cross-sectional shape according to claim 1, only the portions requiring high shape accuracy and internal uniformity have the cross-sectional dimensions of claim 1, and the portions requiring no accuracy are ribs. The material b is reduced by increasing the dimension b not including the rib and decreasing the height dimension d not including the rib.

【0045】請求項3に対応する効果:リブを有し、レ
ンズ・ミラー等の高い形状精度・内部均一性が必要なプ
ラスチック光学部品を成形する成形品の断面形状に関し
て、前記成形品のリブ以外の幅寸法bとリブ以外の高さ
寸法dをレンズ・ミラーの光学的有効範囲の寸法を用
い、請求項1の断面形状にしたので、光学的有効な部分
のみ、高い形状精度・内部均一性を出すようにし、ま
た、成形サイクルを向上させる。
According to a third aspect of the present invention, the cross-sectional shape of a molded article for molding a plastic optical component having a rib and requiring high shape accuracy and internal uniformity such as a lens and a mirror is other than the rib of the molded article. The width dimension b and the height dimension d other than the ribs are the dimensions of the optically effective range of the lens / mirror, and the cross-sectional shape of claim 1 is used. And improve the molding cycle.

【0046】請求項4に対応する効果:樹脂のガラス転
移温度以上の温度にあらかじめ昇温された金型のキャビ
ティに、可塑化された樹脂を射出充填した後ゲートシー
ルし、前記金型の温度を樹脂の熱変形温度以下まで徐冷
する成形方法による高精度な成形品製造方法を用いる事
で、請求項1の発明がより有効になる。
According to a fourth aspect of the present invention, a plasticized resin is injected and filled into a cavity of a mold which has been heated to a temperature equal to or higher than the glass transition temperature of the resin, and then a gate seal is performed. The invention of claim 1 becomes more effective by using a high-precision molded product manufacturing method based on a molding method in which is gradually cooled to a temperature not higher than the heat deformation temperature of the resin.

【0047】請求項5に対応する効果:樹脂の熱変形温
度以下の温度に保持された金型に射出成形してゲートシ
ールする射出成形工程と、射出成形した樹脂のガラス転
移点以上になるように前記樹脂を充填した金型を昇温し
て、樹脂のガラス転移点以上の温度で所定時間保持し、
さらに樹脂の熱変形温度以下まで徐冷する工程からなる
成形方法による高精度な成形品製造方法を用いる事で、
請求項1の発明がより有効になる。
According to a fifth aspect of the present invention, an injection molding step of performing injection molding on a mold maintained at a temperature equal to or lower than the thermal deformation temperature of the resin and performing gate sealing, and maintaining the temperature at or above the glass transition point of the injection molded resin. Raise the temperature of the mold filled with the resin, and hold at a temperature equal to or higher than the glass transition point of the resin for a predetermined time,
Furthermore, by using a high-precision molded product manufacturing method by a molding method comprising a step of gradually cooling the resin to a temperature not higher than the thermal deformation temperature,
The invention of claim 1 becomes more effective.

【0048】請求項6に対応する効果:金型のキャビテ
ィ駒の材質を高い縦弾性率をもった鉄鋼系材料とし、こ
の金型で請求項1に対応した寸法比形状で樹脂成形した
ので、キャビティ壁面の変形量を小さくして、高精度な
成形品が得られやすくなる。
According to the sixth aspect, the material of the cavity piece of the mold is a steel-based material having a high longitudinal elastic modulus, and the mold is resin-molded in the dimension ratio shape according to the first aspect. By reducing the amount of deformation of the wall surface, a highly accurate molded product can be easily obtained.

【0049】請求項7に対応する効果:金型のキャビテ
ィ駒の材質を弾性率も適度に高く、かつ、熱伝導率の高
い銅合金とし、この金型で請求項1に対応した寸法比形
状で樹脂成形したので、成形サイクルを向上させる。
Effect corresponding to claim 7: The material of the cavity piece of the mold is a copper alloy having a moderately high elastic modulus and a high thermal conductivity, and this mold has a dimensional ratio shape corresponding to claim 1. Since the resin is molded, the molding cycle is improved.

【0050】請求項8に対応する効果:成形品のリブ部
にテーパを設けたので、金型からの離型時の変形発生を
なくし、精度低下を防ぐことができる。
According to the eighth aspect, since the ribs of the molded product are provided with a taper, deformation at the time of releasing from the mold can be prevented, and a decrease in accuracy can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 リブを有しない成形品の長手方向断面形状の
変化を説明するための図である。
FIG. 1 is a diagram for explaining a change in a longitudinal cross-sectional shape of a molded product having no rib.

【図2】 成形品のリブを含めた幅寸法a,リブを除い
た幅寸法b,リブを含めた高さ寸法c,リブを除いた高
さ寸法dのプラスチック成形品の第1の長手方向断面形
状を示す図である。
FIG. 2 is a first longitudinal direction of a plastic molded product having a width a including a rib, a width b excluding a rib, a height c including a rib, and a height d excluding a rib of the molded product. It is a figure showing a section shape.

【図3】 図2に示したリブ部を有し、リブ部の高さと
幅とが異なる場合の成形精度の良否を説明するための図
である。
FIG. 3 is a view for explaining the quality of molding accuracy when the ribs shown in FIG. 2 are provided and the height and width of the ribs are different.

【図4】 図2に示したリブ部を有し、リブ部の高さと
幅とが異なる場合の成形精度の良否を説明するための図
である。
FIG. 4 is a diagram for explaining the quality of molding accuracy when the ribs shown in FIG. 2 are provided and the heights and widths of the ribs are different.

【図5】 図2のリブ寸法を有するプラスチック成形品
の第2の長手方向断面形状を示す図である。
FIG. 5 is a view showing a second longitudinal cross-sectional shape of the plastic molded product having the rib dimensions shown in FIG. 2;

【図6】 図2のリブ寸法を有するプラスチック成形品
の第3の長手方向断面形状を示す図である。
FIG. 6 is a view showing a third longitudinal cross-sectional shape of the plastic molded product having the rib dimensions shown in FIG. 2;

【図7】 図2のリブ寸法を有するプラスチック成形品
の第4の長手方向断面形状を示す図である。
FIG. 7 is a view showing a fourth longitudinal cross-sectional shape of the plastic molded product having the rib dimensions shown in FIG. 2;

【図8】 図2のリブ寸法を有するプラスチック成形品
の第5の長手方向断面形状を示す図である。
FIG. 8 is a view showing a fifth longitudinal cross-sectional shape of the plastic molded product having the rib dimensions shown in FIG. 2;

【図9】 図2のリブ寸法を有するプラスチック成形品
の第6の長手方向断面形状を示す図である。
9 is a view showing a sixth longitudinal cross-sectional shape of the plastic molded product having the rib dimensions shown in FIG. 2;

【図10】 図2においてテーパをもったリブを有した
長手方向断面形状の成形品を説明するための図である。
FIG. 10 is a view for explaining a molded product having a longitudinal cross-sectional shape having a tapered rib in FIG. 2;

【符号の説明】[Explanation of symbols]

1…リブ部、2…矩形部、3…成形品表面部。 1 ... rib part, 2 ... rectangular part, 3 ... molded product surface part.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−142105(JP,A) 特開 平5−200793(JP,A) 特開 平5−111937(JP,A) 特開 平8−294934(JP,A) 特開 平7−125099(JP,A) 特開 平4−163119(JP,A) 特公 平5−73570(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B29C 45/00 - 45/84 B29D 11/00 B29L 11:00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-142105 (JP, A) JP-A-5-200793 (JP, A) JP-A-5-111937 (JP, A) JP-A-8-108 294934 (JP, A) JP-A-7-125099 (JP, A) JP-A-4-163119 (JP, A) JP-B 5-73570 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B29C 45/00-45/84 B29D 11/00 B29L 11:00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リブを有し、高い形状精度・内部均一性
が必要なプラスチック成形品の長手方向断面形状に関し
て、前記成形品のリブを含めた幅寸法aと前記成形品の
リブを除いた幅寸法bの比b/aが0.5以下、かつ前
記成形品のリブを含めた高さ寸法cとリブを除いた高さ
寸法dとの比d/cが0.3以上であることを特徴とし
たプラスチック成形品。
1. With respect to the longitudinal cross-sectional shape of a plastic molded product having a rib and requiring high shape accuracy and internal uniformity, a width dimension a including the rib of the molded product and a rib of the molded product are excluded. The ratio b / a of the width dimension b is 0.5 or less, and the ratio d / c of the height dimension c including the ribs of the molded article and the height dimension d excluding the ribs is 0.3 or more. Plastic molded products characterized by:
【請求項2】 リブを有し、成形品の一部のみに高い形
状精度・内部均一性が必要なプラスチック成形品の断面
形状に関して、高い形状精度・内部均一性が必要な箇所
のみ請求項1に記載の断面形状にすることを特徴とした
プラスチック成形品。
2. A cross-sectional shape of a plastic molded product having ribs and requiring high shape accuracy and internal uniformity only in a part of the molded product, only in a portion requiring high shape accuracy and internal uniformity. A plastic molded product characterized by having a cross-sectional shape as described in (1).
【請求項3】 リブを有し、レンズ・ミラー等の高い形
状精度・内部均一性が必要なプラスチック光学部品を成
形する成形品の断面形状に関して、前記成形品のリブ以
外の幅寸法bとリブ以外の高さ寸法dをレンズ・ミラー
の光学的有効範囲の寸法を用い、請求項1の断面形状に
することを特徴としたプラスチック成形品。
3. A cross-sectional shape of a molded product having a rib for molding a plastic optical component such as a lens and a mirror which requires high shape accuracy and internal uniformity, and a width b and a rib other than the rib of the molded product. 2. A plastic molded product characterized in that the height d other than the above is a cross-sectional shape according to claim 1, using a dimension of the optically effective range of the lens / mirror.
【請求項4】 あらかじめ樹脂のガラス転移温度以上の
温度に昇温された金型のキャビティに、可塑化された樹
脂を射出充填した後ゲートシールし、前記金型の温度を
樹脂の熱変形温度以下まで徐冷する成形方法で得ること
を特徴とした請求項1に記載のプラスチック成形品。
4. A plasticized resin is injected and filled into a cavity of a mold which has been heated to a temperature equal to or higher than the glass transition temperature of the resin in advance, and the gate is sealed. The plastic molded article according to claim 1, wherein the plastic molded article is obtained by a molding method of gradually cooling to below.
【請求項5】 樹脂の熱変形温度以下の温度に保持され
た金型に可塑化された樹脂を射出成形してゲートシール
する射出成形工程と、射出成形した樹脂のガラス転移点
以上になるように前記樹脂を充填した金型を昇温して、
樹脂のガラス転移点以上の温度で所定時間保持し、さら
に樹脂の熱変形温度以下まで徐冷する工程からなる成形
方法で得ることを特徴とした請求項1に記載のプラスチ
ック成形品。
5. An injection molding step of injection-molding a plasticized resin into a mold held at a temperature equal to or lower than a thermal deformation temperature of the resin to perform gate sealing, and a step of making the temperature higher than the glass transition point of the injection-molded resin. To raise the temperature of the mold filled with the resin,
2. The plastic molded article according to claim 1, wherein the molded article is obtained by a molding method comprising a step of holding the resin at a temperature not lower than the glass transition point of the resin for a predetermined time and further gradually cooling the resin to a temperature not higher than the thermal deformation temperature of the resin.
【請求項6】 金型のキャビティ駒の材質が鉄鋼系材料
である金型で成形することを特徴とした請求項1に記載
のプラスチック成形品。
6. The plastic molded product according to claim 1, wherein the cavity piece of the mold is formed by a mold whose material is a steel-based material.
【請求項7】 金型のキャビティ駒の材質が銅合金であ
る金型で成形することを特徴とした請求項1に記載のプ
ラスチック成形品。
7. The plastic molded article according to claim 1, wherein the cavity piece of the mold is molded by a mold whose material is a copper alloy.
【請求項8】 成形品のリブ部にテーパを設けることを
特徴とした請求項1に記載のプラスチック成形品。
8. The plastic molded product according to claim 1, wherein a taper is provided in a rib portion of the molded product.
JP7226816A 1995-09-04 1995-09-04 Plastic moldings Expired - Lifetime JP2784164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226816A JP2784164B2 (en) 1995-09-04 1995-09-04 Plastic moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226816A JP2784164B2 (en) 1995-09-04 1995-09-04 Plastic moldings

Publications (2)

Publication Number Publication Date
JPH0970849A JPH0970849A (en) 1997-03-18
JP2784164B2 true JP2784164B2 (en) 1998-08-06

Family

ID=16851058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226816A Expired - Lifetime JP2784164B2 (en) 1995-09-04 1995-09-04 Plastic moldings

Country Status (1)

Country Link
JP (1) JP2784164B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674129B2 (en) * 2005-07-19 2011-04-20 株式会社リコー Plastic molded products and plastic lenses

Also Published As

Publication number Publication date
JPH0970849A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
EP0610002B1 (en) Mold for injection molding of thermoplastic resin
US5199171A (en) Method of manufacturing a motor casing made of resin
JP2000084945A (en) Plastic molding and method for molding it
US6223497B1 (en) Windows for automobiles and the like
JP2784164B2 (en) Plastic moldings
JP3867966B2 (en) OPTICAL ELEMENT, MOLD FOR MOLDING, AND METHOD FOR PRODUCING OPTICAL ELEMENT
EP0371773B1 (en) Windows for automobiles or the like, and method of manufacturing the same
JP3476841B2 (en) Plastic lens injection molding method
JP4057385B2 (en) Molding method of plastic molded product and injection mold
US6838031B2 (en) Method and mold for manufacture of a solid molded article, and a solid molded article manufactured according to the method
CN113226695B (en) Resin member and method for producing same
JPH08127037A (en) Molding die
JP4674129B2 (en) Plastic molded products and plastic lenses
CN108883559B (en) Injection molding die, injection molding method, and molded article
JP3207645B2 (en) Manufacturing method of plastic molded products
JP3266283B2 (en) Injection molding die and injection molding method
JP2002086517A (en) Method for manufacturing plastic molded product and mold therefor
JP2936457B2 (en) Vehicle window with synthetic resin frame
JP3580560B2 (en) Elastic compression molding method and elastic compression mold
JP4124390B2 (en) Shape of plastic injection molded product, its manufacturing method and mold
JP2813083B2 (en) Molding mold and method for producing plastic molded article
JP2001062870A (en) Mold and method for molding plastic material
JP2004338099A (en) Manufacturing method for optical reflecting mirror
WO2019235031A1 (en) Molded item manufacturing method
JP2002036355A (en) Method and apparatus for manufacturing plastic molded article

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 15

EXPY Cancellation because of completion of term