JP2780276B2 - Determination of heavy water - Google Patents

Determination of heavy water

Info

Publication number
JP2780276B2
JP2780276B2 JP22525388A JP22525388A JP2780276B2 JP 2780276 B2 JP2780276 B2 JP 2780276B2 JP 22525388 A JP22525388 A JP 22525388A JP 22525388 A JP22525388 A JP 22525388A JP 2780276 B2 JP2780276 B2 JP 2780276B2
Authority
JP
Japan
Prior art keywords
heavy water
water
sample
ppm
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22525388A
Other languages
Japanese (ja)
Other versions
JPH0273153A (en
Inventor
孝博 田島
博三 有元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP22525388A priority Critical patent/JP2780276B2/en
Publication of JPH0273153A publication Critical patent/JPH0273153A/en
Application granted granted Critical
Publication of JP2780276B2 publication Critical patent/JP2780276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、重水の分離定量法に関する。さらに詳し
くは、食品、農業または医学の分野におけるトレーサと
して用いられる重水の迅速簡易測定に好適な重水の定量
法に関する。
The present invention relates to a method of separating and quantifying heavy water. More specifically, the present invention relates to a method for determining heavy water suitable for quick and simple measurement of heavy water used as a tracer in the fields of food, agriculture or medicine.

(ロ)従来の技術 従来、食品、農業または医学等の分野では重水(D
2O)がトレーサとしてよく使用される。このようにトレ
ーサとして使用された重水を分離定量することは、経
路、症状等を調べるうえで意義が大きい。従来重水を分
析するには共存する常水(H2O)との分離が困難である
ことから、マススペクトルが利用されている。
(B) Conventional technology Conventionally, heavy water (D
2 O) is often used as a tracer. Separating and quantifying heavy water used as a tracer in this way is significant in examining pathways, symptoms, and the like. Conventionally, it has been difficult to separate heavy water from coexisting ordinary water (H 2 O) for analysis.

(ハ)発明が解決しようとする課題 しかしながら、マススペクトルを利用する方法は簡便
な方法とは言えず、さらに定量には適した方法ともなら
ない。またガスクロマトグラフを利用して分離定量する
ことが考えられるが、水の分析によく使用されるポーラ
スポリマ(クロモソルブ101,ポラパックQ等)や分配剤
(PEG20M,PEG6000等)の充填カラムを使用すると、重水
が吸着されたり、重水素と水素の交換反応が生じて、重
水が測定できない。またガスクロマトグラフィでは常水
と重水の分離が困難である。
(C) Problems to be Solved by the Invention However, the method using the mass spectrum cannot be said to be a simple method and is not a method suitable for quantification. Separation and quantification using a gas chromatograph can be considered. However, if a porous column (Chromosolve 101, Polapack Q, etc.) and a partitioning agent (PEG20M, PEG6000, etc.) packed with water are often used, Heavy water cannot be measured due to the adsorption of heavy water or the exchange reaction between heavy hydrogen and heavy hydrogen. Also, it is difficult to separate ordinary water and heavy water by gas chromatography.

この発明はかかる状況に鑑みなされたものであり、含
有試料中に共存する重水を迅速簡便に分離定量できる重
水の定量法を提供しようとするものである。
The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for quantitatively determining heavy water that can quickly and simply separate and quantify heavy water coexisting in a contained sample.

(ニ)課題を解決するための手段 かくしてこの発明によれば、水含有試料を、メタル含
有率が1ppm.以下でありかつシラノール基の含有率が1pp
m.以下の高純度シリカでできた熔融シリカキャピラリカ
ラムを用いたガスクロマトグラフィに付して水成分を他
の成分から分離し、次いで分離された水成分をフーリエ
変換赤外分光法に付し、得られた赤外吸収スペクトルの
2400〜3000cm-1の吸収強度を、重水濃度の既知試料によ
り予め作成しておいた、該濃度と吸収強度との関係を示
す検量線に照らし合わせることで、上記試料中に含有さ
れる重水を定量することを特徴とする重水の定量法が提
供される。
(D) Means for Solving the Problems According to the present invention, a water-containing sample is prepared by mixing a metal content of 1 ppm or less and a silanol group content of 1 pp.
m.Subsequently, the water component is separated from other components by gas chromatography using a fused silica capillary column made of the following high-purity silica, and then the separated water component is subjected to Fourier transform infrared spectroscopy. Of the obtained infrared absorption spectrum
The absorption intensity of 2400 to 3000 cm -1 was prepared in advance using a known sample of the concentration of heavy water, and the heavy water contained in the sample was compared with a calibration curve indicating the relationship between the concentration and the absorption intensity. There is provided a method for quantifying heavy water, characterized by quantifying.

この発明の方法は、重水の吸着や重水素と水素との交
換が生じない条件下でのガスクロマトグラフィにより試
料中の水成分を他の夾雑物と分離し、分離された水成分
の赤外吸収スペクトルの吸収強度に基づいて上記水成分
中の重水を検出・定量するものである。従ってこの発明
の方法を実施する装置としては、下記するカラムを用い
る以外は通常のガスクロマトグラフーフーリエ変換赤外
分光装置(以下GC/FTIR)を用いることができる。
The method of the present invention separates water components in a sample from other contaminants by gas chromatography under conditions in which adsorption of heavy water or exchange of deuterium with hydrogen does not occur, and infrared absorption of the separated water components. The purpose is to detect and quantify heavy water in the water component based on the absorption intensity of the spectrum. Therefore, as a device for carrying out the method of the present invention, a general gas chromatograph-Fourier transform infrared spectrometer (hereinafter, GC / FTIR) can be used except for using the following column.

この発明の方法に用いる熔融シリカキャピラリカラム
は、高純度のシリカでできたキャピラリカラムが用いら
れる。上記高純度とは、メタル含有率が1ppm.以下であ
りかつシラノール基の含有率が1ppm.以下のものをい
う。このようなカラムでは非常に不活性な吸着面が構成
されており、重水の吸着等が極力押さえられることとな
る。
As the fused silica capillary column used in the method of the present invention, a capillary column made of high-purity silica is used. The high purity means that the metal content is 1 ppm or less and the silanol group content is 1 ppm or less. In such a column, a very inert adsorption surface is formed, and adsorption of heavy water or the like is suppressed as much as possible.

この発明の方法において、重水の検出は、フーリエ変
換赤外分光性により得られる赤外吸収スペクトルにおい
て、重水は吸収をもつが常水については吸収をもたない
特定の吸収波長帯に基づいてなされる。該吸収波長帯と
しては2400〜3000cm-1が選択される。また検出される重
水の定量については、上記特定の吸収波長帯における吸
収強度に基づいてなされる。すなわち、予め重水濃度の
既知試料により該濃度と吸収強度との間で検量線を作成
しておくことにより容易に定量するとができる。この発
明の方法を上記装置により実施する場合、重水の検出・
定量限界は100ppm.程度である。
In the method of the present invention, the detection of heavy water is performed based on a specific absorption wavelength band having absorption of heavy water but no absorption of ordinary water in an infrared absorption spectrum obtained by Fourier transform infrared spectroscopy. You. As the absorption wavelength band, 2400 to 3000 cm -1 is selected. Further, the quantitative determination of the heavy water to be detected is performed based on the absorption intensity in the specific absorption wavelength band. That is, it can be easily determined by preparing a calibration curve between the concentration of heavy water and the absorption intensity in advance using a sample having a known concentration of heavy water. When the method of the present invention is performed by the above-described apparatus, detection and detection of heavy water
The limit of quantification is about 100 ppm.

(ホ)作用 この発明によれば、水含有試料はまず熔融シリカキャ
ピラリカラムを用いたガスクロマトグラフィにより、上
記試料中の水成分が他の夾雑成分から分離される。次い
でこの分離された水成分はフーリエ変換赤外分光法に付
される。そして得られる赤外吸収スペクトルの2400〜30
00cm-1の吸収強度に基づいて、上記試料中の重水が定量
されることとなる。
(E) Function According to the present invention, the water component of the water-containing sample is first separated from other contaminants by gas chromatography using a fused silica capillary column. The separated water component is then subjected to Fourier transform infrared spectroscopy. And the obtained infrared absorption spectrum 2400-30
Based on the absorption intensity of 00 cm- 1 , heavy water in the sample is determined.

以下実施例によりこの発明を詳細に説明するが、これ
によりこの発明は限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

(ヘ)実施例 重水(D2O)と常水(H2O)の赤外吸収スペクトルの比
較 D2O試料とH2O試料の赤外吸収スペクトルを個々に調べ
た結果を第1図に示す。該図においてD2Oのスペクトル
吸収強度を実線で表し、H2Oについては一点鎖線で表し
た。このスペクトル図から、2400〜3000cm-1の波長帯に
おいてはD2Oのみが吸収を有することがわかる。従って
この特定波長帯の吸収スペクトルに基づいて、H2O中に
含有されるD2Oを検出できることとなる。
(F) Example Comparison of infrared absorption spectra of heavy water (D 2 O) and ordinary water (H 2 O) FIG. 1 shows the results of the individual infrared absorption spectra of D 2 O and H 2 O samples. Shown in In this figure, the spectral absorption intensity of D 2 O is represented by a solid line, and H 2 O is represented by an alternate long and short dash line. From this spectrum diagram, it can be seen that only D 2 O has absorption in the wavelength band of 2400 to 3000 cm −1 . Therefore, D 2 O contained in H 2 O can be detected based on the absorption spectrum in this specific wavelength band.

重水含有水の測定 下記濃度で重水を含有する水(イ,ロ)を試料とし、
下記条件にてGC/FTIR(GC/FTIR−1:島津製作所製)に付
し、重水の検出・定量について検討した。
Measurement of water containing heavy water Water (a, b) containing heavy water at the following concentrations is used as a sample.
GC / FTIR (GC / FTIR-1: manufactured by Shimadzu Corporation) was applied under the following conditions to examine the detection and quantification of heavy water.

・使用装置 GC/FTIR:GC/FTIR−1 GC機種 :GC−14A FTIR :FTIR−4100 ・GC/FTIR分析条件 GC 使用カラム:キャピラリカラム CBP1−W25−500 長さ25m×直径0.53mm 温度 カラム温度:100℃等温 注入部 :150℃ 検出部 :150℃ キャリアガス:ヘリウム 0.8Kg/cm2 (初圧6Kg/cm2) 検出器 :50mA GC/FTIR 温度 :パイプ温度 120℃ セル温度 120℃ 検出器 :MCT検出器 (4000cm-1−700cm-1) ・試料 イ)10,000ppm.D2O in H2O ロ) 100ppm.D2O in H2O 試料温度(70℃) 試料量 (1μ) 上記試料イ)についての結果を第2図に、試料ロ)に
ついての結果を第3図にそれぞれ示す。まず第2図に結
果から、2400〜3000cm-1の波長帯にはD2Oに基づく赤外
吸収が明確に観察され、水中に共存するD2Oを検出でき
ることがわかる。また第3図のスペクトル図では上記特
定波長帯にわずかにD2Oに基づく吸収が認められ、従っ
てこの方法による検出限界が試料ロ)の濃度程度である
ことがわかる。
-Apparatus used GC / FTIR: GC / FTIR-1 GC model: GC-14A FTIR: FTIR-4100-GC / FTIR analysis conditions GC used column: Capillary column CBP1-W25-500 Length 25m x diameter 0.53mm Temperature Column temperature : 100 ℃ isothermal injection part: 150 ℃ detection part: 150 ℃ carrier gas: helium 0.8Kg / cm 2 (initial pressure 6Kg / cm 2 ) detector: 50mA GC / FTIR temperature: pipe temperature 120 ℃ cell temperature 120 ℃ detector : MCT detector (4000cm -1 -700cm -1) · sample b) 10,000ppm.D 2 O in H 2 O b) 100ppm.D 2 O in H 2 O sample temperature (70 ° C.) the sample volume (1 [mu]) above The results for sample a) are shown in FIG. 2, and the results for sample b) are shown in FIG. First from the results in Figure 2, the wavelength band of 2400~3000Cm -1 it is observed clearly that the infrared absorption based on D 2 O, it can be seen that detect D 2 O coexisting in water. Further, in the spectrum diagram of FIG. 3, absorption based on D 2 O is slightly observed in the above-mentioned specific wavelength band, and therefore, it can be seen that the detection limit by this method is about the concentration of the sample b).

定量性 異なる6種の濃度(200ppm.,500ppm.,1,000ppm.,4,00
0ppm.,6,000ppm.,10,000ppm.)でD2Oを含有するH2Oにつ
いて、上記GC/FTIRにより上記と同様の条件下で測定に
付し、それぞれ得られる赤外吸収スペクトルの2400〜30
00cm-1における吸収強度を求め、上記濃度とこの吸収強
度との関係を調べたところ、第4図に示す検量線が得ら
れた。この図から、D2O濃度と吸収強度との間には量的
関係がほぼ成立していることがわかる。従ってこれを検
量線として用いることにより、H2O中のD2Oを定量するこ
とができる。
Quantitative Six different concentrations (200 ppm, 500 ppm, 1,000 ppm, 4,000
0ppm., 6,000ppm., 10,000ppm. ) In the H 2 O containing D 2 O, is subjected to measurement by the GC / FTIR under the same conditions as above, 2400 infrared absorption spectra obtained respectively 30
The absorption intensity at 00 cm -1 was determined, and the relationship between the concentration and the absorption intensity was examined. As a result, a calibration curve shown in FIG. 4 was obtained. From this figure, it can be seen that a quantitative relationship is almost established between the D 2 O concentration and the absorption intensity. Therefore, D 2 O in H 2 O can be quantified by using this as a calibration curve.

実施例 尿に、200ppm.になるように重水を加えて試料を調製
し、上記と同様の装置において下記条件に変更する以外
は同様の条件にて、GC/FTIR測定を行った。この結果の
赤外吸収スペクトルを第5図に示す。
Example A sample was prepared by adding heavy water to urine to a concentration of 200 ppm. GC / FTIR measurement was performed using the same apparatus as described above under the same conditions except that the following conditions were used. FIG. 5 shows the resulting infrared absorption spectrum.

GCカラム温度:110℃等温 GC/FTIR 温度 :パイプ温度 130℃ セ ル温度 130℃ 試 料 量 :1μ 上記スペクトル図から、3000〜2500cm-1の範囲で重水
の吸収(該図中矢印)が確認できる。従ってこの方法に
よれば、試料中に含有される重水を検出することができ
る。
GC column temperature: 110 ° C isothermal GC / FTIR temperature: Pipe temperature 130 ° C Cell temperature 130 ° C Sample volume: 1μ From the above spectral diagram, absorption of heavy water (arrow in the figure) was confirmed in the range of 3000 to 2500 cm -1 it can. Therefore, according to this method, heavy water contained in the sample can be detected.

(ト)発明の効果 この発明によれば、水中に共存する重水を迅速簡便に
分離定量できる。またトレーサとして重水を用いる分野
においてその重水の定量が簡便に行うことができる。
(G) Effects of the Invention According to the present invention, heavy water coexisting in water can be separated and quantified quickly and easily. Further, in the field of using heavy water as a tracer, the determination of the heavy water can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、D2O及びH2Oの赤外吸収スペクトル図、第2図
は、10,000ppm.D2OinH2Oの赤外吸収スペクトル図、第3
図は、100ppm.D2OinH2Oの赤外吸収スペクトル図、第4
図は、D2O濃度と吸収強度との関係を示すグラフ図、第
5図は、尿中に200ppm.の濃度で含有されるD2Oについて
の赤外吸収スペクトル図である。
Figure 1 is, D 2 O and H 2 O infrared absorption spectrum of FIG. 2, 10,000ppm.D 2 OinH 2 infrared absorption spectrum of O, third
The figure shows the infrared absorption spectrum of 100 ppm. D 2 OinH 2 O.
The figure is a graph showing the relationship between the D 2 O concentration and the absorption intensity. FIG. 5 is the infrared absorption spectrum of D 2 O contained in urine at a concentration of 200 ppm.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 30/88 G01N 30/74 G01N 21/35──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 30/88 G01N 30/74 G01N 21/35

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水含有試料を、メタル含有率が1ppm.以下
でありかつシラノール基の含有率が1ppm.以下の高純度
シリカでできた熔融シリカキャピラリカラムを用いたガ
スクロマトグラフィに付して水成分を他の成分から分離
し、次いで分離された水成分をフーリエ変換赤外分光法
に付し、得られた赤外吸収スペクトルの2400〜3000cm-1
の吸収強度を、重水濃度の既知試料により予め作成して
おいた、該濃度と吸収強度との関係を示す検量線に照ら
し合わせることで、上記試料中に含有される重水を定量
することを特徴とする重水の定量法。
1. A water-containing sample is subjected to gas chromatography using a fused silica capillary column made of high-purity silica having a metal content of 1 ppm or less and a silanol group content of 1 ppm or less. The components are separated from the other components, and the separated water component is then subjected to Fourier transform infrared spectroscopy, resulting in an infrared absorption spectrum of 2400-3000 cm -1
Is characterized by quantifying heavy water contained in the sample by comparing the absorption intensity of the sample with a calibration curve showing the relationship between the concentration and the absorption intensity, which was prepared in advance using a sample having a known concentration of heavy water. Heavy water determination method.
JP22525388A 1988-09-07 1988-09-07 Determination of heavy water Expired - Lifetime JP2780276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22525388A JP2780276B2 (en) 1988-09-07 1988-09-07 Determination of heavy water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22525388A JP2780276B2 (en) 1988-09-07 1988-09-07 Determination of heavy water

Publications (2)

Publication Number Publication Date
JPH0273153A JPH0273153A (en) 1990-03-13
JP2780276B2 true JP2780276B2 (en) 1998-07-30

Family

ID=16826412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22525388A Expired - Lifetime JP2780276B2 (en) 1988-09-07 1988-09-07 Determination of heavy water

Country Status (1)

Country Link
JP (1) JP2780276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901565B2 (en) * 2007-04-18 2012-03-21 新日本製鐵株式会社 Method for determination of alkaline earth metal oxide content in oxide materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644175B2 (en) * 1972-05-23 1981-10-17
JPS593242A (en) * 1982-06-29 1984-01-09 Shimadzu Corp Chromatograph fourier transform type spectrophotometer
US4587835A (en) * 1985-01-09 1986-05-13 International Business Machines Corp. Light pipe and heater apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Appl.Physiol.,28(1970),P354−357

Also Published As

Publication number Publication date
JPH0273153A (en) 1990-03-13

Similar Documents

Publication Publication Date Title
Goddu et al. Spectra-structure correlations for near-infrared region
Low et al. Measurements of infrared spectra of gas-liquid chromatography fractions using multiple-scan interference spectrometry
Okada et al. Nonsuppressor ion chromatography of inorganic and organic anions with potassium hydroxide as eluent
CN101620206B (en) Method for detecting ethyl carbamate in yellow wine
Amy et al. A General Technique for Collecting Gas Chromatographic Fractions for Introduction into the Mass Spectrometer.
EP0020072A1 (en) Analytical method and apparatus for the determination of the total nitrogen content in a sample
Pockard et al. The determination of traces of formaldehyde
Gong et al. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples
Humphrey et al. Spectrophotometric determination of cyanide, sulfide, and sulfite with mercuric chloranilate
JP2780276B2 (en) Determination of heavy water
Hellgeth et al. FTIR Detection of liquid chromatographically separated species
US3560158A (en) Method for analysis of labile hydrogen containing compounds
US5440120A (en) Sampling arrangement for thermal gravimetric analyzer
Konieczka et al. Thermal decomposition of immobilized compounds for the generation of gaseous standard mixtures containing ammonia and amines
US3545929A (en) Measurement of trace amounts of carbon monoxide in water solution
Carlstrom et al. Determination of Trace Water in Butane by Gas Chromatography
Ortega-Barrales et al. Solid phase Fourier transform near infrared spectroscopy
Binding et al. Simultaneous determination of airborne acetaldehyde, acetone, 2-butanone, and cyclohexanone using sampling tubes with 2, 4-dinitrophenylhydrazine-coated solid sorbent
Barrio et al. GC-NPD investigation of the recovery of organonitrogen and organophosphorus pesticides from apple samples: the effect of the extraction solvent
Andrawes et al. Analysis of low molecular weight perfluoroalkanes by gas chromatography with helium ionization detection
Gachanja et al. Determination of polycyclic aromatic hydrocarbons in biomass emissions by liquid chromatography with fluorescence and chemiluminescence detection
JPH0161177B2 (en)
Stockwell et al. 25 years’ experience of vapour generation techniques for quantifying trace levels of mercury, arsenic, selenium and antimony in a range of environmental samples
Lotz et al. Gas-phase chromatography
Yoshikawa et al. Sensitive determination of alkoxyethanols by pre-column derivatization with 1-anthroylnitrile and reversed-phasehigh-performance liquid chromatography