JP2778905B2 - Method for purifying gaseous hydride or gas diluted therefrom - Google Patents

Method for purifying gaseous hydride or gas diluted therefrom

Info

Publication number
JP2778905B2
JP2778905B2 JP5254963A JP25496393A JP2778905B2 JP 2778905 B2 JP2778905 B2 JP 2778905B2 JP 5254963 A JP5254963 A JP 5254963A JP 25496393 A JP25496393 A JP 25496393A JP 2778905 B2 JP2778905 B2 JP 2778905B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
hydrogen sulfide
iron
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5254963A
Other languages
Japanese (ja)
Other versions
JPH0781901A (en
Inventor
貴義 足立
誠 内野
泰三 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP5254963A priority Critical patent/JP2778905B2/en
Publication of JPH0781901A publication Critical patent/JPH0781901A/en
Application granted granted Critical
Publication of JP2778905B2 publication Critical patent/JP2778905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、不純物として酸素ガス
と硫化水素ガスとを含む気状水素化物またはそれを稀釈
したガスからなる対象ガスから、酸素ガスと硫化水素ガ
スとを同時に除去することにより気状水素化物を精製す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the simultaneous removal of oxygen gas and hydrogen sulfide gas from a gaseous hydride containing oxygen gas and hydrogen sulfide gas as impurities or a gas obtained by diluting the same. And a method for purifying gaseous hydride by the method.

【0002】[0002]

【従来の技術】ホスフィン、モノシラン、アルシンをは
じめとする気状水素化物は、半導体工場において用いる
ガスとして重要である。
BACKGROUND ART Gas hydrides such as phosphine, monosilane and arsine are important as gases used in semiconductor factories.

【0003】これらの気状水素化物は、主としてボンベ
に詰めた状態で取り扱われるが、原材料中に含まれてい
る硫黄に起因して硫化水素が混入したり、製造工程中あ
るいは爾後の取り扱い工程において大気成分である酸素
が混入したりすることを完全には防止できない。
[0003] These gaseous hydrides are mainly handled in the state of being packed in cylinders. However, hydrogen sulfide is mixed in due to sulfur contained in raw materials, or is produced in a manufacturing process or a subsequent handling process. It is not possible to completely prevent entry of oxygen, which is an atmospheric component.

【0004】気状水素化物に含まれる酸素や硫化水素は
反応性に富むものであり、気状水素化物を半導体工場で
用いた場合、これらの不純物が原因と見られる半導体製
品の不良が発生することがある。そこで気状水素化物を
使用するときには、これらの不純物を許容限度以下にま
で除去することが必要である。
[0004] Oxygen and hydrogen sulfide contained in gaseous hydrides are highly reactive, and when gaseous hydrides are used in semiconductor factories, defects in semiconductor products caused by these impurities occur. Sometimes. Therefore, when using gaseous hydride, it is necessary to remove these impurities to below the allowable limit.

【0005】一般のガス中に含まれる酸素は、鉄系反応
剤を用いて除去することが可能である。気状水素化物に
含まれる酸素の除去にかかるものではないが、英国特許
第553991号には、真空包装またはガス置換包装し
た乾燥製品を入れた容器の雰囲気から残存酸素を常温で
除去するために、水素ガスで処理した活性鉄粉を用いる
技術が示されている。
[0005] Oxygen contained in general gas can be removed using an iron-based reactant. Although it does not involve the removal of oxygen contained in gaseous hydrides, British Patent No. 5,399,991 discloses a method for removing residual oxygen from the atmosphere of a container containing a vacuum-packed or gas-displaced packaged dry product at room temperature. Discloses a technique using activated iron powder treated with hydrogen gas.

【0006】特開平2−188408号公報には、粗水
素化物ガスをニッケルのりん化物と接触させて、該粗水
素化物ガス中に含有される酸素を除去する水素化物ガス
の精製方法が開示されている。
Japanese Patent Application Laid-Open No. 2-188408 discloses a method for purifying a hydride gas in which a crude hydride gas is brought into contact with a nickel phosphide to remove oxygen contained in the crude hydride gas. ing.

【0007】ガス中に含まれる還元性ガスについては、
たとえば還元性ガスが硫化水素である場合、その硫化水
素を酸化鉄を用いて除去することが原理的には可能であ
る。
[0007] Regarding the reducing gas contained in the gas,
For example, when the reducing gas is hydrogen sulfide, it is possible in principle to remove the hydrogen sulfide using iron oxide.

【0008】特開平5−170405号には、ジシロキ
サンを含有するシランのような不純物含有ガスを、水素
化したゲッタ金属(たとえばZr−V−Feゲッタ合
金)に接触させることにより、ジシロキサンを除去する
方法が示されている。
Japanese Patent Application Laid-Open No. 5-170405 discloses that an impurity-containing gas such as silane containing disiloxane is brought into contact with a hydrogenated getter metal (for example, a Zr-V-Fe getter alloy) to convert disiloxane. A method for removal is shown.

【0009】[0009]

【発明が解決しようとする課題】先に述べたように、気
状水素化物には不純物として酸素や硫化水素が含まれる
ことが多いが、不純物が酸素のみである場合は酸素除去
に適した反応剤を充填したカラムを通過させることによ
り、不純物が硫化水素のみである場合は硫化水素除去に
適した反応剤を充填したカラムを通過させることによ
り、それぞれの不純物を除去することができる。
As described above, gaseous hydrides often contain oxygen and hydrogen sulfide as impurities, but when the only impurities are oxygen, a reaction suitable for oxygen removal is performed. When the impurities are only hydrogen sulfide by passing through a column filled with the agent, each impurity can be removed by passing through a column filled with a reactant suitable for removing hydrogen sulfide.

【0010】しかしながら、気状水素化物には酸素ガス
および硫化水素ガスの双方が不純物として含まれること
が多いので、酸素除去に適した反応剤を充填したカラム
を用いた場合には硫化水素の除去を行うことができず、
一方硫化水素の除去に適した反応剤を充填したカラムを
用いた場合には酸素除去を行うことができない。
However, since gaseous hydrides often contain both oxygen gas and hydrogen sulfide gas as impurities, when a column packed with a reactant suitable for oxygen removal is used, the removal of hydrogen sulfide becomes difficult. Can not do
On the other hand it is not possible to carry out the removal of oxygen in the case of using a column filled with reaction agent suitable for the removal of hydrogen sulfide.

【0011】そこでそのような場合には、酸素除去に適
した反応剤を充填したカラムと、硫化水素除去に適した
反応剤を充填したカラムとを任意の順序で直列に結び、
そこに気状水素化物を通過させることが考えられるが、
そのようにすると、各カラムの反応剤充填部分以外の空
間が無視しえなくなって、使用に際し事前にその空間の
ガスを完全に除去することが難しくなり、また両カラム
の連結操作時に大気が侵入することを防止しえなくな
る。
In such a case, a column filled with a reactant suitable for removing oxygen and a column filled with a reactant suitable for removing hydrogen sulfide are connected in series in an arbitrary order,
It is possible to pass gaseous hydride there,
By doing so, the space other than the reactant-filled part of each column cannot be ignored, making it difficult to completely remove the gas in that space before use, and the intrusion of air when connecting the two columns Can not be prevented.

【0012】本発明は、このような背景下において、酸
素ガスおよび硫化水素ガスの双方を不純物として含む気
状水素化物またはそれを稀釈したガスからなる対象ガス
から、酸素ガスと硫化水素ガスとを同時に除去すること
により、気状水素化物を精製する方法を提供することを
目的とするものである。
In this background, the present invention provides a method for converting an oxygen gas and a hydrogen sulfide gas from a gaseous hydride containing both oxygen gas and hydrogen sulfide gas as impurities or a gas obtained by diluting the gaseous hydride. It is an object of the present invention to provide a method for purifying gaseous hydrides by simultaneously removing them.

【0013】[0013]

【課題を解決するための手段】本発明の気状水素化物ま
たはそれを稀釈したガスの精製方法は、母ガスとしての
気状水素化物またはそれを稀釈用ガスで稀釈したガス
を、その母ガスを消耗することなく精製する方法であっ
て、不純物として酸素ガスおよび硫化水素ガスの双方
含む気状水素化物またはそれを稀釈用ガスで稀釈した対
象ガスを、鉄系反応剤を充填した単一のカラムを通過さ
せることにより、前記対象ガス中に含まれる酸素ガスお
よび硫化水素ガスの双方を同時に除去することを特徴と
するものである。
Method for purifying gaseous hydrides or diluted gas of the same of the present invention According to an aspect of the as mother Gas
Gaseous hydride or gas diluted with dilution gas
Is to be purified without depleting its mother gas.
Te, by a gaseous hydride or a diluted target gas diluent gas including both oxygen gas and hydrogen sulfide gas as an impurity, is passed through a single column packed with iron reactant, the subject It is characterized by simultaneously removing both oxygen gas and hydrogen sulfide gas contained in the gas.

【0014】以下本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0015】本発明における対象ガスとしては、ホスフ
ィン、アルシン、ジボラン、モノシラン、ジシラン、セ
レン化水素、モノゲルマン、スチビンなどの気状水素化
物からなる単一成分ガス、あるいはこれらのガスを水
素、窒素、アルゴン、ヘリウムなどの稀釈用ガスで稀釈
したガス、さらにはこれらの稀釈ガス中に上記の気状水
素化物の2種以上を混合したガスがあげられる。
The target gas in the present invention may be a single component gas composed of gaseous hydrides such as phosphine, arsine, diborane, monosilane, disilane, hydrogen selenide, monogermane, stibine, or these gases may be hydrogen, nitrogen, A gas diluted with a diluting gas such as argon, helium, etc .; and a gas obtained by mixing two or more of the above gaseous hydrides with these diluted gases.

【0016】この対象ガスには、製造工程あるいは爾後
の取り扱い工程において、不純物として酸素ガスおよび
硫化水素ガスが含まれることが多いが、本発明はそのよ
うな不純物が含まれるガスから酸素ガスおよび硫化水素
ガスを一挙に除去しようとするものである。
The target gas often contains oxygen gas and hydrogen sulfide gas as impurities in a manufacturing process or a subsequent handling process, and the present invention converts oxygen gas and sulfide gas into gases containing such impurities. It is intended to remove hydrogen gas at once.

【0017】本発明においては、上記の対象ガスを鉄系
反応剤を充填した単一のカラムを通過させることによ
り、前記対象ガス中に含まれる酸素ガスおよび硫化水素
ガスを同時に除去する。
In the present invention, the oxygen gas and the hydrogen sulfide gas contained in the target gas are simultaneously removed by passing the target gas through a single column filled with an iron-based reactant.

【0018】ここで鉄系反応剤用の鉄系材料としては、
鉄、四酸化三鉄、酸化第二鉄、水酸化鉄等やこれらの混
合物、あるいはこれらをゼオライト、アルミナ、活性炭
等に担持させたものが用いられる。鉄系材料は、予め適
当な粒度の粉粒状にしておくことが望ましい。
Here, as the iron-based material for the iron-based reactant,
Iron, triiron tetroxide, ferric oxide, iron hydroxide, and the like, or a mixture thereof, or those in which these are supported on zeolite, alumina, activated carbon, or the like are used. It is desirable that the iron-based material is previously formed into a powder having an appropriate particle size.

【0019】上記の鉄系材料は、水素ガス中で不完全に
還元して鉄系反応剤となす。このときの還元反応の温度
は210〜400℃、殊に220〜360℃とすること
が望ましく、還元温度が低すぎるときは還元性が不足し
て酸素ガスの除去量が減少し、一方還元温度が高すぎる
ときは還元過多となって硫化水素の除去量が減少する。
従って、対象ガス中に含まれる酸素ガスおよび硫化水素
ガスの濃度比を考慮して、上記温度範囲の中から最適の
温度条件を採用すればよい。還元時間、水素ガスの流速
や流量については、還元の程度を考慮して適宜に設定す
る。
The above-mentioned iron-based material is incompletely reduced in hydrogen gas to form an iron-based reactant. The temperature of the reduction reaction at this time is desirably 210 to 400 ° C., preferably 220 to 360 ° C. When the reduction temperature is too low, the reducing property becomes insufficient and the amount of oxygen gas removed decreases. Is too high, the amount of hydrogen sulfide removed decreases due to excessive reduction.
Therefore, the optimum temperature condition may be selected from the above temperature range in consideration of the concentration ratio of the oxygen gas and the hydrogen sulfide gas contained in the target gas. The reduction time and the flow rate and flow rate of the hydrogen gas are appropriately set in consideration of the degree of reduction.

【0020】鉄系材料の還元処理は、通常はこれをカラ
ム内に充填した状態で加熱下に水素ガスを通過させる方
法が好適に採用される。還元処理後は、このカラムを封
止し、気状水素化物またはそれを稀釈したガスを充填し
たボンベと使用個所への配管との間に接続すればよい。
For the reduction treatment of the iron-based material, a method in which hydrogen gas is passed under heating while the column is packed in a column is preferably employed. After the reduction treatment, the column may be sealed and connected between a gas hydride or a cylinder filled with a gas obtained by diluting the gaseous hydride and a pipe to the place of use.

【0021】なお事情が許せば、一旦大容量のカラム中
で鉄系材料の還元処理を行ってから、得られた鉄系反応
剤を取り出して小カラムに充填することもできる。この
場合は、異なる還元温度で処理したものあるいは異なる
組成の鉄系材料を還元処理したものを2種以上混合して
小カラムに充填することもできる。
If circumstances permit, the iron-based material can be once reduced in a large-capacity column, and then the obtained iron-based reactant can be taken out and packed in a small column. In this case, two or more kinds of materials treated at different reduction temperatures or those obtained by reducing iron-based materials having different compositions may be mixed and packed in a small column.

【0022】対象ガスをカラムに通す方法としては、対
象ガスが鉄系反応剤と接触すればいかなる方法でも構わ
ないが、たとえば、配管の入口と出口に目皿のようなも
のを設け、両目皿間の空間に粉粒状の鉄系反応剤を配し
た状態で対象ガスを通す方法が採用される。
As a method for passing the target gas through the column, any method may be used as long as the target gas comes into contact with the iron-based reactant. A method is adopted in which the target gas is passed in a state where a powdery iron-based reactant is disposed in the space between them.

【0023】[0023]

【作用】本発明によれば、不純物として酸素ガスおよび
硫化水素ガスを含む気状水素化物またはそれを稀釈用ガ
スで稀釈した対象ガスを、鉄系反応剤を充填したカラム
を通過させるだけで、酸素ガスと硫化水素ガスとを同時
に除去することができる。この場合、鉄系反応剤は母ガ
スである気状水素化物とは反応しない。
According to the present invention, a gaseous hydride containing oxygen gas and hydrogen sulfide gas as impurities or a target gas obtained by diluting the gaseous hydride with a diluting gas is simply passed through a column filled with an iron-based reactant. Oxygen gas and hydrogen sulfide gas can be removed simultaneously. In this case, the iron-based reactant does not react with the gaseous hydride that is the mother gas.

【0024】[0024]

【実施例】次に実施例をあげて本発明をさらに説明す
る。なおいずれの検討例および実施例においても、カラ
ムとしてはSUS316L製のカラムを用いた。
The present invention will be further described with reference to the following examples. In each of the examination examples and examples, a SUS316L column was used as a column.

【0025】検討例1〜2 まず、窒素ガス中に含まれる酸素ガスおよびヘリウムガ
ス中に含まれる硫化水素ガスの除去量と、鉄系反応剤を
得るための鉄系材料の還元処理温度との関係を見るため
に、次のような予備実験を行った。
Study Examples 1 and 2 First, the removal amount of oxygen gas contained in nitrogen gas and hydrogen sulfide gas contained in helium gas, and the reduction temperature of an iron-based material for obtaining an iron-based reactant were determined. To see the relationship, the following preliminary experiment was performed.

【0026】検討例1(窒素ガス中の酸素ガスの除去) 還元処理温度を下記のように変更して鉄系材料の還元処
理を行い、鉄系反応剤となした。 (1) 鉄系材料の一例としてのFe23 0.2gを外径6.
35mm×長さ25mmのカラムに充填し、水素ガスを110
ml/minの流速で流しながら、200℃で3時間加熱して
還元処理を行った。還元処理後は常温にまで放冷した。 (2) 還元処理条件を温度300℃×3時間としたほか
は、上記(1) の操作を繰り返した。 (3) 還元処理条件を温度400℃×3時間としたほか
は、上記(1) の操作を繰り返した。
Study Example 1 (Removal of Oxygen Gas in Nitrogen Gas) An iron-based material was reduced by changing the temperature of the reduction treatment as described below to obtain an iron-based reactant. (1) 0.2 g of Fe 2 O 3 as an example of an iron-based material having an outer diameter of 6.
Packed into a 35mm x 25mm long column and charged with 110% hydrogen gas
While flowing at a flow rate of ml / min, a reduction treatment was performed by heating at 200 ° C. for 3 hours. After the reduction treatment, it was allowed to cool to room temperature. (2) The above operation (1) was repeated, except that the conditions for the reduction treatment were a temperature of 300 ° C. × 3 hours. (3) The above operation (1) was repeated except that the reduction treatment conditions were a temperature of 400 ° C. × 3 hours.

【0027】次に、上記(1), (2), (3) のカラムに、2
5ppm の酸素ガスを添加した窒素ガスを 1.2リットル/m
inの流速で通したところ、(1) においては初めから出口
ガス中に酸素ガスが検出され、(2)においては83分間
にわたって出口ガス中の酸素ガス濃度が0.01ppm 以下と
なり、(3) においては85分間にわたって出口ガス中の
酸素ガス濃度が0.01ppm 以下となった。
Next, in the above columns (1), (2) and (3), 2
1.2 liters / m of nitrogen gas to which 5 ppm oxygen gas has been added
When the gas was passed at a flow rate of in, oxygen gas was detected in the outlet gas from the beginning in (1), the oxygen gas concentration in the outlet gas became 0.01 ppm or less over 83 minutes in (2), and in (3) The oxygen gas concentration in the outlet gas became 0.01 ppm or less over 85 minutes.

【0028】検討例2(ヘリウムガス中の硫化水素ガス
の除去) 還元処理温度を種々変更して、鉄系材料の還元処理を行
った。 (1) 鉄系材料の一例としてのFe23 0.1gを外径6.
35mm×長さ25mmのカラムに充填し、水素ガスを110
ml/minの流速で流しながら、200℃で3時間加熱して
還元処理を行った。還元処理後は常温にまで放冷した。 (2) 還元処理条件を温度300℃×3時間としたほか
は、上記(1) の操作を繰り返した。 (3) 還元処理条件を温度400℃×3時間としたほか
は、上記(1) の操作を繰り返した。
Study Example 2 (Removal of hydrogen sulfide gas in helium gas) The reduction treatment of the iron-based material was performed by variously changing the reduction treatment temperature. (1) 0.1 g of Fe 2 O 3 as an example of an iron-based material was used.
Packed into a 35mm x 25mm long column and charged with 110% hydrogen gas
While flowing at a flow rate of ml / min, a reduction treatment was performed by heating at 200 ° C. for 3 hours. After the reduction treatment, it was allowed to cool to room temperature. (2) The above operation (1) was repeated, except that the conditions for the reduction treatment were a temperature of 300 ° C. × 3 hours. (3) The above operation (1) was repeated except that the reduction treatment conditions were a temperature of 400 ° C. × 3 hours.

【0029】次に、上記(1), (2), (3) のカラムに、 1
0.65ppm の硫化水素ガスを添加したヘリウムガスを16
0ml/minの流速で通したところ、(1) においては900
分間にわたって出口ガス中の硫化水素ガス濃度が 0.2pp
m 以下となり、(2) においては265分間にわたって出
口ガス中の硫化水素ガス濃度が0.2ppm以下となり、(3)
においては160分間にわたって出口ガス中の硫化水素
ガス濃度が0.2ppm以下となった。
Next, in the above columns (1), (2) and (3), 1
Helium gas to which 0.65 ppm of hydrogen sulfide gas was added
After passing at a flow rate of 0 ml / min, 900
0.2 pp concentration of hydrogen sulfide gas in outlet gas
m or less, and in (2), the hydrogen sulfide gas concentration in the outlet gas becomes 0.2 ppm or less over 265 minutes, and (3)
, The hydrogen sulfide gas concentration in the outlet gas became 0.2 ppm or less over 160 minutes.

【0030】〈検討例1および2のまとめ〉検討例1お
よび2の結果を次の表1にまとめて示す。また、そのと
きの還元温度と不純物除去量との関係を図1に示す。な
お、鉄系反応剤の単位重量当りの不純物の除去量は、次
の関係式に基いて求めた。 M=[(C1-C2)・10-6・v・t] /(22.4・103 ・w) M: 鉄系反応剤の単位重量当りの不純物除去量(mol/g) C1: 供給ガス中の不純物の濃度(ppm) C2: 出口ガス中の不純物の濃度(ppm) v: 流速(ml/min) t: C2濃度維持時間(min) w: 鉄系反応剤重量(還元処理前の鉄系材料重量)(g)
<Summary of Study Examples 1 and 2> The results of Study Examples 1 and 2 are summarized in Table 1 below. FIG. 1 shows the relationship between the reduction temperature and the impurity removal amount at that time. The removal amount of impurities per unit weight of the iron-based reactant was determined based on the following relational expression. M = [(C 1 -C 2 ) · 10 −6 · v · t] / (22.4 · 10 3 · w) M: impurity removal amount per unit weight of iron-based reactant (mol / g) C 1 : Concentration of impurities in feed gas (ppm) C 2 : Concentration of impurities in outlet gas (ppm) v: Flow rate (ml / min) t: C 2 concentration maintenance time (min) w: Iron-based reactant weight (reduction Iron-based material weight before treatment) (g)

【0031】[0031]

【表1】 還 元 温 度 200℃ 300℃ 400℃ O2ガス除去量 (mol/g) 0.00000 0.00056 0.00057 H2S ガス除去量 (mol/g) 0.00067 0.00020 0.00012 [Table 1] Reduction temperature 200 ℃ 300 ℃ 400 ℃ O 2 gas removal (mol / g) 0.00000 0.00056 0.00057 H 2 S gas removal (mol / g) 0.00067 0.00020 0.00012

【0032】表1および図1から、200℃での還元処
理では硫化水素は除去できるものの、酸素は全く除去で
きないこと、300℃での還元処理では酸素は除去でき
るが、硫化水素の除去量は相当程度減少すること、40
0℃での還元処理では酸素は除去できるが、硫化水素の
除去量はさらに減少することがわかる。従って、対象ガ
ス中の酸素と硫化水素の濃度比を考慮して、最適の温度
で還元処理したものを鉄系反応剤として用いればよいこ
とがわかる。
From Table 1 and FIG. 1, it can be seen that the reduction treatment at 200 ° C. can remove hydrogen sulfide but cannot remove oxygen at all, and the reduction treatment at 300 ° C. can remove oxygen, but the amount of hydrogen sulfide removed is A considerable reduction, 40
It can be seen that in the reduction treatment at 0 ° C., oxygen can be removed, but the amount of hydrogen sulfide removed further decreases. Therefore, it is understood that what has been subjected to reduction treatment at an optimum temperature in consideration of the concentration ratio of oxygen and hydrogen sulfide in the target gas may be used as the iron-based reactant.

【0033】検討例3〜5 気状水素化物の種類を種々変更して、対象ガス(気状水
素化物またはこれを稀釈用ガスで稀釈したガス)中に含
まれる酸素ガスの除去性を調べる予備実験を行った。
Examination Examples 3 to 5 Preliminary examination of the removability of oxygen gas contained in the target gas (gaseous hydride or a gas obtained by diluting it with a diluting gas) by changing the type of gaseous hydride in various ways An experiment was performed.

【0034】検討例3(ホスフィン中の酸素ガスの除
去) Fe23 0.1gを外径6.35mm×長さ25mmのカラムに
充填し、水素ガスを110ml/minの流速で流しながら、
300℃で3時間加熱して還元処理を行った。還元処理
後は常温にまで放冷した。
Study Example 3 (Removal of Oxygen Gas from Phosphine) 0.1 g of Fe 2 O 3 was packed in a column having an outer diameter of 6.35 mm and a length of 25 mm, and hydrogen gas was supplied at a flow rate of 110 ml / min.
The reduction treatment was performed by heating at 300 ° C. for 3 hours. After the reduction treatment, it was allowed to cool to room temperature.

【0035】次に上記のカラムに、25ppm の酸素ガス
を添加したホスフィン10%を含むヘリウムガスを 1.2
リットル/minの流速で通したところ、出口ガス中の酸素
ガス濃度は0.01ppm 以下となった。
Next, helium gas containing 10% of phosphine to which 25 ppm of oxygen gas was added was added to the above-mentioned column.
When the solution was passed at a flow rate of liter / min, the oxygen gas concentration in the outlet gas became 0.01 ppm or less.

【0036】検討例4(アルシン中の酸素ガスの除去) Fe23 0.3gを外径6.35mm×長さ25mmのカラムに
充填し、水素ガスを110ml/minの流速で流しながら、
300℃で3時間加熱して還元処理を行った。還元処理
後は常温にまで放冷した。
Study Example 4 (Removal of Oxygen Gas in Arsine) A column having an outer diameter of 6.35 mm and a length of 25 mm was packed with 0.3 g of Fe 2 O 3 , and hydrogen gas was supplied at a flow rate of 110 ml / min.
The reduction treatment was performed by heating at 300 ° C. for 3 hours. After the reduction treatment, it was allowed to cool to room temperature.

【0037】次に上記のカラムに、25ppm の酸素ガス
を添加したアルシン10%を含むヘリウムガスを 1.2リ
ットル/minの流速で通したところ、出口ガス中の酸素ガ
ス濃度は0.01ppm 以下となった。
Next, when helium gas containing 10% of arsine to which 25 ppm of oxygen gas was added was passed through the above column at a flow rate of 1.2 liter / min, the concentration of oxygen gas in the outlet gas became 0.01 ppm or less. .

【0038】検討例5(モノシラン中の酸素ガスの除
去) Fe23 0.3gを外径6.35mm×長さ25mmのカラムに
充填し、水素ガスを110ml/minの流速で流しながら、
300℃で3時間加熱して還元処理を行った。還元処理
後は常温にまで放冷した。
Study Example 5 (Removal of oxygen gas in monosilane) 0.3 g of Fe 2 O 3 was packed in a column having an outer diameter of 6.35 mm and a length of 25 mm, and hydrogen gas was supplied at a flow rate of 110 ml / min.
The reduction treatment was performed by heating at 300 ° C. for 3 hours. After the reduction treatment, it was allowed to cool to room temperature.

【0039】次に上記のカラムに、25ppm の酸素ガス
を添加したモノシランガスを 1.2リットル/minの流速で
通したところ、出口ガス中の酸素ガス濃度は0.01ppm 以
下となった。
Next, when a monosilane gas to which 25 ppm of oxygen gas was added was passed through the column at a flow rate of 1.2 liter / min, the oxygen gas concentration in the outlet gas became 0.01 ppm or less.

【0040】〈検討例3および5のまとめ〉検討例3〜
5から、酸素ガスを含む種々の気状水素化物またはこれ
を稀釈用ガスで稀釈したガスを用いた場合、酸素ガスは
有効に除去されることがわかる。
<Summary of Examination Examples 3 and 5> Examination Examples 3 to
5 shows that when various gaseous hydrides containing oxygen gas or a gas obtained by diluting the same with a diluting gas are used, the oxygen gas is effectively removed.

【0041】検討例6〜8 母ガス(気状水素化物)そのものが鉄系反応剤と反応す
るかどうかを調べる予備実験を行った。
Examination Examples 6 to 8 Preliminary experiments were conducted to determine whether the mother gas (gaseous hydride) itself reacted with the iron-based reactant.

【0042】検討例6(母ガスとの反応の有無) Fe23 1.0gを外径12.7mm×長さ100mmのカラム
に充填し、水素ガスを110ml/minの流速で流しなが
ら、300℃で3時間加熱して還元処理を行った。還元
処理後は常温にまで放冷した。
Study Example 6 (Presence or absence of reaction with mother gas) 1.0 g of Fe 2 O 3 was packed in a column having an outer diameter of 12.7 mm and a length of 100 mm, and hydrogen gas was supplied at a flow rate of 110 ml / min. For 3 hours to perform a reduction treatment. After the reduction treatment, it was allowed to cool to room temperature.

【0043】次に上記のカラムに、ホスフィン10%を
含むヘリウムガスを45ml/minの流速で通して出口ガス
中のホスフィンの濃度を測定したが、ホスフィン濃度は
10%で安定しており、鉄系反応剤の発熱なども見られ
なかった。
Next, helium gas containing 10% of phosphine was passed through the above column at a flow rate of 45 ml / min, and the concentration of phosphine in the outlet gas was measured. No exothermicity of the system reactant was observed.

【0044】検討例7(母ガスとの反応の有無) Fe23 0.3gを外径6.35mm×長さ100mmのカラム
に充填し、水素ガスを110ml/minの流速で流しなが
ら、300℃で3時間加熱して還元処理を行った。還元
処理後は常温にまで放冷した。
Study Example 7 (Presence or absence of reaction with mother gas) 0.3 g of Fe 2 O 3 was packed in a column having an outer diameter of 6.35 mm and a length of 100 mm, and hydrogen gas was supplied at a flow rate of 110 ml / min. For 3 hours to perform a reduction treatment. After the reduction treatment, it was allowed to cool to room temperature.

【0045】次に上記のカラムにアルシン10%を含む
ヘリウムガスを45ml/minの流速で通して出口ガス中の
アルシンの濃度を測定したが、アルシン濃度は10%で
安定しており、鉄系反応剤の発熱なども見られなかっ
た。
Next, a helium gas containing 10% of arsine was passed through the above column at a flow rate of 45 ml / min, and the concentration of arsine in the outlet gas was measured. The arsine concentration was stable at 10%. No exotherm of the reactants was observed.

【0046】検討例8(母ガスとの反応の有無) Fe23 0.3gを外径6.35mm×長さ100mmのカラム
に充填し、水素ガスを110ml/minの流速で流しなが
ら、300℃で3時間加熱して還元処理を行った。還元
処理後は常温にまで放冷した。
Study Example 8 (Presence or absence of reaction with mother gas) 0.3 g of Fe 2 O 3 was packed in a column having an outer diameter of 6.35 mm and a length of 100 mm, and hydrogen gas was supplied at a flow rate of 110 ml / min. For 3 hours to perform a reduction treatment. After the reduction treatment, it was allowed to cool to room temperature.

【0047】次に上記のカラムに、モノシラン10%を
含むヘリウムガスを45ml/minの流速で通して出
口ガス中のモノシランの濃度を測定したが、モノシラン
濃度は10%で安定しており、鉄系反応剤の発熱なども
見られなかった。
Next, helium gas containing 10% of monosilane was passed through the column at a flow rate of 45 ml / min to measure the concentration of monosilane in the outlet gas. The monosilane concentration was stable at 10%. No exothermicity of the iron-based reactant was observed.

【0048】〈検討例6および8のまとめ〉検討例6〜
8から、母ガス(気状水素化物)そのものは鉄系反応剤
と反応しないことがわかる。
<Summary of Examination Examples 6 and 8> Examination Examples 6 to
8, it can be seen that the mother gas (gaseous hydride) itself does not react with the iron-based reactant.

【0049】実施例1〜3 実施例1 〈気状水素化物中の酸素ガスおよび硫化水素ガスの除
去〉Fe23 0.3gを外径6.35mm×長さ25mmのカラ
ムに充填し、水素ガスを110ml/minの流速で流しなが
ら、300℃で3時間加熱して還元処理を行った。還元
処理後は常温にまで放冷した。
Examples 1 to 3 Example 1 <Removal of oxygen gas and hydrogen sulfide gas in gaseous hydride> 0.3 g of Fe 2 O 3 was packed in a column having an outer diameter of 6.35 mm and a length of 25 mm. Was heated at 300 ° C. for 3 hours while flowing at a flow rate of 110 ml / min to perform a reduction treatment. After the reduction treatment, it was allowed to cool to room temperature.

【0050】次に上記のカラムに、20ppm の酸素ガス
と3.2ppmの硫化水素ガスとを添加したホスフィン5%を
含むヘリウムガスを 1.0リットル/minの流速で通したと
ころ、出口ガス中の酸素ガス濃度は0.01ppm 以下、硫化
水素ガス濃度は0.2ppm以下となった。
Next, helium gas containing 5% of phosphine added with 20 ppm of oxygen gas and 3.2 ppm of hydrogen sulfide gas was passed through the column at a flow rate of 1.0 liter / min. The concentration was 0.01 ppm or less, and the concentration of hydrogen sulfide gas was 0.2 ppm or less.

【0051】実施例2 〈気状水素化物中の酸素ガスおよび硫化水素ガスの除
去〉Fe23 0.3gを外径6.35mm×長さ25mmのカラ
ムに充填し、水素ガスを110ml/minの流速で流しなが
ら、300℃で3時間加熱して還元処理を行った。還元
処理後は常温にまで放冷した。
Example 2 <Removal of oxygen gas and hydrogen sulfide gas in gaseous hydride> 0.3 g of Fe 2 O 3 was packed in a column having an outer diameter of 6.35 mm and a length of 25 mm, and hydrogen gas was supplied at a flow rate of 110 ml / min. While flowing at a flow rate, the mixture was heated at 300 ° C. for 3 hours to perform a reduction treatment. After the reduction treatment, it was allowed to cool to room temperature.

【0052】次に上記のカラムに、20ppm の酸素ガス
と3.2ppmの硫化水素ガスとを添加したアルシン5%を含
むヘリウムガスを 1.0リットル/minの流速で通したとこ
ろ、出口ガス中の酸素ガス濃度は0.01ppm 以下、硫化水
素ガス濃度は0.2ppm以下となった。
Next, a helium gas containing 5% of arsine to which 20 ppm of oxygen gas and 3.2 ppm of hydrogen sulfide gas had been passed at a flow rate of 1.0 liter / min through the above column. The concentration was 0.01 ppm or less, and the concentration of hydrogen sulfide gas was 0.2 ppm or less.

【0053】実施例3 〈気状水素化物中の酸素ガスおよび硫化水素ガスの除
去〉Fe23 0.3gを外径6.35mm×長さ25mmのカラ
ムに充填し、水素ガスを110ml/minの流速で流しなが
ら、300℃で3時間加熱して還元処理を行った。還元
処理後は常温にまで放冷した。
Example 3 <Removal of oxygen gas and hydrogen sulfide gas in gaseous hydride> A column having an outer diameter of 6.35 mm and a length of 25 mm was filled with 0.3 g of Fe 2 O 3 , and hydrogen gas was supplied at a flow rate of 110 ml / min. While flowing at a flow rate, the mixture was heated at 300 ° C. for 3 hours to perform a reduction treatment. After the reduction treatment, it was allowed to cool to room temperature.

【0054】次に上記のカラムに、20ppm の酸素ガス
と3.2ppmの硫化水素ガスとを添加したモノシラン5%を
含むヘリウムガスを 1.0リットル/minの流速で通したと
ころ、出口ガス中の酸素ガス濃度は0.01ppm 以下、硫化
水素ガス濃度は0.2ppm以下となった。
Next, a helium gas containing 5% of monosilane added with 20 ppm of oxygen gas and 3.2 ppm of hydrogen sulfide gas was passed through the column at a flow rate of 1.0 liter / min. The concentration was 0.01 ppm or less, and the concentration of hydrogen sulfide gas was 0.2 ppm or less.

【0055】[0055]

【発明の効果】作用の項でも述べたように、本発明の方
法によれば、不純物として酸素ガスおよび硫化水素ガス
を含む気状水素化物またはそれを稀釈用ガスで稀釈した
対象ガスを、鉄系反応剤を充填したカラムを通過させる
だけで、酸素ガスと硫化水素ガスとを同時に除去するこ
とができる。
According to the method of the present invention, a gaseous hydride containing oxygen gas and hydrogen sulfide gas as impurities or a target gas obtained by diluting the gaseous hydride with a diluting gas, as described in the operation section, can be obtained by the method according to the present invention. The oxygen gas and the hydrogen sulfide gas can be simultaneously removed simply by passing through a column filled with the system reactant.

【0056】このように、対象ガスを充填したボンベの
吐出口に鉄系反応剤を充填したカラムを接続するだけ
で、高純度の対象ガスを使用個所に供給することが可能
となるので、微量の不純物が問題となっている半導体製
造分野等に貢献することができる。
As described above, by simply connecting the column filled with the iron-based reactant to the discharge port of the cylinder filled with the target gas, it becomes possible to supply the high-purity target gas to the point of use. Can contribute to the field of semiconductor manufacturing and the like, in which impurities are problematic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】検討例1〜2における還元温度と不純物除去量
との関係を示したグラフである。
FIG. 1 is a graph showing a relationship between a reduction temperature and an impurity removal amount in Study Examples 1 and 2.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−46001(JP,A) 特開 昭52−28472(JP,A) 特開 昭60−220140(JP,A) 特開 昭53−110990(JP,A) 特開 昭53−37582(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 6/34 B01D 53/14 B01D 53/14 ZAB B01J 20/06──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-46001 (JP, A) JP-A-52-28472 (JP, A) JP-A-60-220140 (JP, A) JP-A-53-28 110990 (JP, A) JP-A-53-37582 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01B 6/34 B01D 53/14 B01D 53/14 ZAB B01J 20/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】母ガスとしての気状水素化物またはそれを
稀釈用ガスで稀釈したガスを、その母ガスを消耗するこ
となく精製する方法であって、不純物として酸素ガスお
よび硫化水素ガスの双方を含む気状水素化物またはそれ
を稀釈用ガスで稀釈した対象ガスを、鉄系反応剤を充填
した単一のカラムを通過させることにより、前記対象ガ
ス中に含まれる酸素ガスおよび硫化水素ガスの双方を同
時に除去することを特徴とする気状水素化物またはそれ
を稀釈したガスの精製方法。
1. A gaseous hydride as a mother gas or a gaseous hydride
The gas diluted with the diluting gas may be consumed by its mother gas.
A gaseous hydride containing both oxygen gas and hydrogen sulfide gas as impurities or a target gas diluted with a diluting gas is converted to a single column filled with an iron-based reactant. A method for purifying a gaseous hydride or a gas obtained by diluting the gaseous hydride, wherein both the oxygen gas and the hydrogen sulfide gas contained in the target gas are simultaneously removed by passing the gas.
【請求項2】鉄系反応剤が、鉄系材料を水素ガス中で温
度210〜400℃にて還元処理したものである請求項
1記載の精製方法。
2. The purification method according to claim 1, wherein the iron-based reactant is obtained by reducing an iron-based material in hydrogen gas at a temperature of 210 to 400 ° C.
JP5254963A 1993-09-16 1993-09-16 Method for purifying gaseous hydride or gas diluted therefrom Expired - Fee Related JP2778905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254963A JP2778905B2 (en) 1993-09-16 1993-09-16 Method for purifying gaseous hydride or gas diluted therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254963A JP2778905B2 (en) 1993-09-16 1993-09-16 Method for purifying gaseous hydride or gas diluted therefrom

Publications (2)

Publication Number Publication Date
JPH0781901A JPH0781901A (en) 1995-03-28
JP2778905B2 true JP2778905B2 (en) 1998-07-23

Family

ID=17272304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254963A Expired - Fee Related JP2778905B2 (en) 1993-09-16 1993-09-16 Method for purifying gaseous hydride or gas diluted therefrom

Country Status (1)

Country Link
JP (1) JP2778905B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241955B1 (en) 1998-10-02 2001-06-05 Aeronex, Inc. Method and apparatus for purification of hydride gas streams
CN108025255A (en) 2015-09-17 2018-05-11 积水化学工业株式会社 Gas processing method
US20180250626A1 (en) * 2015-09-17 2018-09-06 Sekisui Chemical Co., Ltd. Gas treatment method and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228472A (en) * 1975-08-29 1977-03-03 Hitachi Ltd Process for removal of hydrogen sulfides contained in reducing gas use d in iron making apparatus
JPS5337582A (en) * 1976-09-20 1978-04-06 Babcock Hitachi Kk Removing method for hydrogen sulfide
JPS53110990A (en) * 1977-03-11 1978-09-28 Hitachi Ltd Hot gas purifying method
JPS60220140A (en) * 1984-04-16 1985-11-02 Mitsubishi Heavy Ind Ltd Desulfurization agent
JPH0446001A (en) * 1990-06-13 1992-02-17 Cosmo Eng Kk Method for recovering high purity hydrogen from waste gas

Also Published As

Publication number Publication date
JPH0781901A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
CN1078871C (en) Process for removing oxygen from ammonia at room temperature
IL110156A (en) Process and composition for purifying semiconductor process gases to remove lewis acid and oxidant impurities therefrom
US5489327A (en) Process for purifying hydrogen gas
JP3214698B2 (en) Removal method of gaseous hydride
US4800189A (en) Mass for removal, through chemical sorption, of homogeneously dissolved impurities, particularly oxygen, from gases or liquids
JP2778905B2 (en) Method for purifying gaseous hydride or gas diluted therefrom
US6017502A (en) Hydrogen purification using metal hydride getter material
EP0484301B1 (en) Process for the purification of ammonia
EP0361386B1 (en) Method for purifying gaseous hydrides
JPH05170405A (en) Method for removing impurity from hydrogenated gas
JPH04318920A (en) Vapor crystal growth device
JPH09142833A (en) Removal of moisture in ammonia and device therefor
JPH02273511A (en) Method for detoxifying halides of nitrogen or carbon
JP3554390B2 (en) Oxidation of decaborane gas
JP3359928B2 (en) Ammonia purification method
JP2998002B2 (en) Organometallic compound abatement agent and harmful gas abatement method
JP2700412B2 (en) Hydride gas purification method
JPH08192024A (en) Processing agent for waste gas and treatment of the gas
JP3673006B2 (en) Silane gas removal method
JPH057216Y2 (en)
JP3154340B2 (en) Method for purifying germanium hydride
Baker et al. Tritium purification via zirconium-manganese-iron alloy getter st 909 in flow processes
JPH06319945A (en) Removing agent and detecting agent of harmful component
JP2971093B2 (en) Purification method of acid gas
JP2837201B2 (en) Purification method of acid gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980422

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees