JP2776847B2 - Information recording thin film and information recording / reproducing method - Google Patents

Information recording thin film and information recording / reproducing method

Info

Publication number
JP2776847B2
JP2776847B2 JP63306052A JP30605288A JP2776847B2 JP 2776847 B2 JP2776847 B2 JP 2776847B2 JP 63306052 A JP63306052 A JP 63306052A JP 30605288 A JP30605288 A JP 30605288A JP 2776847 B2 JP2776847 B2 JP 2776847B2
Authority
JP
Japan
Prior art keywords
recording
film
layer
information recording
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63306052A
Other languages
Japanese (ja)
Other versions
JPH02151481A (en
Inventor
礼仁 田村
元康 寺尾
靖 宮内
圭吉 安藤
哲也 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP63306052A priority Critical patent/JP2776847B2/en
Priority to EP89118519A priority patent/EP0362852B1/en
Priority to DE68925331T priority patent/DE68925331T2/en
Publication of JPH02151481A publication Critical patent/JPH02151481A/en
Application granted granted Critical
Publication of JP2776847B2 publication Critical patent/JP2776847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing
    • G11B7/00557Erasing involving phase-change media
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明はレーザ光、電子線等の記録用ビームによっ
て、たとえば映像や音声などのアナログ信号をFM変調し
たものや、たとえば電子計算機のデータや、ファクシミ
リ信号やディジタルオーディオ信号などのディジタル情
報を、リアルタイムで記録することが可能な情報の記録
用薄膜に関するものである。
The present invention uses a recording beam such as a laser beam or an electron beam to FM-modulate, for example, an analog signal such as video or audio, or digital data such as computer data, facsimile signal or digital audio signal in real time. The present invention relates to a thin film for recording information that can be recorded by the above method.

【従来の技術】[Prior art]

レーザ光によって薄膜に記録を行う記録原理は種々あ
るが、膜材料の相転移(相変化とも呼ばれる)、フォト
ダークニングなどの原子配列変化による記録は、膜の変
形をほとんど併わないので、2枚のディスクを直接貼り
合わせた両面ディスクができるという長所を持ってい
る。また、組成を適当に選べば記録の書き換えを行うこ
ともできる。この種の記録に関する発明は多数出願され
ており、最も早いものは特公昭47−26897号公報に開示
されている。ここではTe−Ge系、As−Te−Ge系、Te−O
系など多くの薄膜について述べられている。また、特開
昭54−41902号公報にもGe20Tl5Sb5Se70など種々の組成
が述べられている。また、特開昭57−24039には、Sb25T
e12.5Se62.5、Cd14Te14Se72、Bi2Se3、Sb2Se3、In20Te
20Se60、Bi25Te12.5Se62.5、CuSe、及びTe33Se67の薄膜
が述べられている。
There are various recording principles of recording on a thin film by laser light. However, recording by a phase transition (also called phase change) of a film material or an atomic arrangement change such as photodarkening hardly involves deformation of the film. It has the advantage that a double-sided disc can be created by directly attaching two discs. If the composition is appropriately selected, the recording can be rewritten. Many inventions relating to this type of recording have been filed, and the earliest one is disclosed in Japanese Patent Publication No. 47-26897. Here, Te-Ge system, As-Te-Ge system, Te-O
Many thin films, such as systems, are described. Further, various compositions are set forth, such as Ge 20 Tl 5 Sb 5 Se 70 in JP-A-54-41902. Japanese Patent Application Laid-Open No. 57-24039 discloses Sb 25 T
e 12.5 Se 62.5 , Cd 14 Te 14 Se 72 , Bi 2 Se 3 , Sb 2 Se 3 , In 20 Te
Thin films of 20 Se 60 , Bi 25 Te 12.5 Se 62.5 , CuSe, and Te 33 Se 67 have been described.

【発明が解決しようとする課題】[Problems to be solved by the invention]

上記従来技術の薄膜はいずれも一回書き込み可能ある
いは書き換え可能な相転移記録膜として用いる場合に結
晶化の速度が遅い、半導体レーザ光の吸収が少なく感度
が悪い、再生信号強度が充分でない、再生波形の歪みが
大きい、あるいは非晶質状態の安定性が悪い、耐酸化性
が不充分である、消え残りが大きいなどの欠点があり、
実用化が困難である。 したがって本発明の目的は上記した従来技術の欠点を
無くし、記録・再生特性が良好で感度が高く、安定性の
良い情報記録用薄膜を提供することに有る。
When any of the above prior art thin films is used as a once-writable or rewritable phase change recording film, the crystallization speed is low, the semiconductor laser light absorption is low and the sensitivity is low, the reproduction signal intensity is not sufficient, There are drawbacks such as large waveform distortion, poor stability of the amorphous state, insufficient oxidation resistance, and a large disappearance.
Practical application is difficult. Accordingly, an object of the present invention is to eliminate the above-mentioned disadvantages of the prior art and to provide an information recording thin film having good recording / reproducing characteristics, high sensitivity and good stability.

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成するために本発明の情報の記録用薄
膜においては、情報記録用薄膜の膜厚方向の平均組成を
一般式SbxTeyAzBαCβDγで表されるものとする。 ただし、x,y,z,α,β,γはそれぞれ原子パーセント
で5≦x≦70,10≦y≦85,3≦z≦50,0≦α≦20,0≦β
≦30,0≦γ≦30の範囲の値であり、AはSn,Bi,Pb,Ga,Au
及びInのうちの少なくとも一元素、BはTl,Iなどのハロ
ゲン元素及びNaなどのアルカリ金属のうちの少なくとも
一元素である。これらの元素は、TeやSeを含む材料中で
TeやSeの鎖状原子配列を切断し、結晶化速度を速くする
効果を持つ。ただし、結晶化温度の低下を伴うので、結
晶化温度の高材料に添加しないと非晶質の安定性を損な
うことになる。CはAg,Cu,Pd,Ta,W,Ir,Sc,Y,Ti,Zr,V,N
b,Cr,Mo,Mn,Fe,Ru,Co,Rh及びNiのうち少なくとも一元
素、DはSb,Te,A,B,Cで表される元素以外の元素、たと
えばHg,Se,S,As,Al,B,C,Si,N,P,O,ランタニド元素、ア
クチニド元素、アルカリ土類金属元素、不活性ガス元素
などのうちの少なくとも一元素である。ただし、A,B及
びCで表される元素のうちの一元素または複数元素も、
各群の別の元素が既に使われている場合、D群の元素と
考えることができる。たとえばSb−Te−Sn−Co系に対し
てNiを、30原子%未満でNi含有量とCo含有量の和がC群
元素含有量の上限30原子%以下となる範囲で添加する場
合が考えられた。これらのうちAl,Hg,アルカリ土類金属
元素、不活性ガス元素は含有量10原子%未満とする方が
好ましい。本発明の記録用薄膜は膜厚方向の平均組成が
上記の範囲内に有れば膜厚方向に組成が変化していても
よい。ただし、組成の変化は不連続的でないほうがより
好ましい。 記録は原子配列変化(たとえば1つの相から他の相へ
の変化)を起こさせることができ、かつ記録膜に大きな
変形を生じさせることのない照射時間及びパワーのエネ
ルギービームで行う。
In order to achieve the above object, in the information recording thin film of the present invention, the average composition in the thickness direction of the information recording thin film is represented by the general formula SbxTeyAzBαCβDγ. Here, x, y, z, α, β, and γ are 5 ≦ x ≦ 70, 10 ≦ y ≦ 85, 3 ≦ z ≦ 50, 0 ≦ α ≦ 20, 0 ≦ β in atomic percent, respectively.
≦ 30, 0 ≦ γ ≦ 30, where A is Sn, Bi, Pb, Ga, Au
B is at least one element of a halogen element such as Tl and I and an alkali metal such as Na. These elements are found in materials containing Te and Se
It has the effect of cutting the chain atom arrangement of Te and Se, thereby increasing the crystallization rate. However, since the crystallization temperature is lowered, the stability of the amorphous is impaired unless it is added to a material having a high crystallization temperature. C is Ag, Cu, Pd, Ta, W, Ir, Sc, Y, Ti, Zr, V, N
b, Cr, Mo, Mn, Fe, Ru, Co, Rh and at least one element of Ni, D is an element other than the element represented by Sb, Te, A, B, C, for example, Hg, Se, S, As, Al, B, C, Si, N, P, O, a lanthanide element, an actinide element, an alkaline earth metal element, an inert gas element and the like are at least one element. However, one or more of the elements represented by A, B and C are also
If another element of each group is already in use, it can be considered a group D element. For example, a case is considered in which Ni is added to an Sb-Te-Sn-Co system in a range in which the total of the Ni content and the Co content is less than 30 atomic% and the upper limit of the content of the C group element is 30 atomic% or less. Was done. Of these, Al, Hg, alkaline earth metal elements, and inert gas elements are preferably less than 10 atomic%. The composition of the recording thin film of the present invention may vary in the film thickness direction as long as the average composition in the film thickness direction is within the above range. However, the change in the composition is more preferably not discontinuous. Recording is performed with an energy beam of irradiation time and power that can cause an atomic arrangement change (for example, change from one phase to another phase) and does not cause large deformation of the recording film.

【作用】[Action]

上記の各群元素の役割は下記のとおりである。 Sb,Te及びBで表されるSnなどの元素とは、適当な比
率で共存することによって非晶質状態を安定に保持し、
かつ記録・消去時の結晶化を高速で行うことができるよ
うにする。Cで表されるCoなどの元素は、半導体レーザ
光などの長波長光の吸収を容易にして記録感度を高める
効果を持ち、また、高速結晶化を可能にするものであ
る。Bで表されるTlなどの元素は、結晶化速度を向上さ
せ、かつ、非晶質状態の安定性も向上させる効果を持
つ。B群元素とC群元素が共存すれば、高速結晶化が可
能で、かつ非晶質状態の安定性が高く、記録感度も高く
なる。B群元素とC群元素のいずれか一方を添加する場
合、B群元素を添加した方が、膜形成の容易さの面で好
ましいが、耐酸化性は低下する。Dで表されるArなどの
元素は、添加によって特に顕著な効果はないが、添加量
が少なければ大きな悪影響は無いものである。なお、こ
れらのうち希土類元素などは、1〜20%添加すると再生
信号強度を大きくする、結晶化温度を高めるなどの役割
を果たさせ得る。また、Se及びSは他の元素の比率を一
定に保って1〜20%添加することによって耐酸化性向上
効果がある。ただし、耐熱性はやや低下する。消去特性
の点でもSe含有量1〜3%が好ましい。 上記の組成範囲にある本発明の情報記録用薄膜は優れ
た記録・再生特性を持ち、記録及び消去に用いるレーザ
光のパワーが低くてよい。また、安定性も優れている。 x,y,z,α,β及びγのより好ましい範囲は下記のとお
りである。 10≦x≦45 35≦y≦80 5≦z≦30 0≦α≦15 0≦β≦20 0≦γ≦20 の範囲。 x,y,z,α,β及びγの特に好ましい範囲は下記のとお
りである。 13≦x≦40 47≦y≦70 7≦z≦23 0≦α≦10 0≦β≦10 0≦γ≦10 の範囲。ただし、Aで表される元素がAuである場合、Te
含有量が少ないと記録感度が低いので、 60≦y≦70とするのが特に好ましい。 上記の各範囲において、γ≒0であれば膜作製が容易
である。1≦α+β≦20であればさらに消え残りが小さ
くなり、記録保持時間が長くなる。1≦α≦10かつ1≦
β≦10であれば、さらに信号変調度が大きくなる。 Bで表される元素のうち特に好ましいのはTl,ついで
好ましいのはI,ついでClなどの他のハロゲン元素が好ま
しい。Dで表される元素のうちでは希土類元素が好まし
い。Aで表される元素のうちPb,Ga及びInは耐酸化性を
やや低下させる。ただしInは記録・消去特性が優れる。
Auは記録感度を低下させる耐酸化性は向上させる。 各元素の含有量の膜厚方向の変化は通常は小さいが、
任意のパターンの変化が存在しても差し支えない。Sb,S
e及びSについては、記録用薄膜のいずれか一方の界面
付近(他の層との界面である場合も有る)において、そ
の内側よりも多いのがよい。 本発明の記録膜の少なくとも一方の面は他の物質で密
着して保護されているのが好ましい。両側が保護されて
いればさらに好ましい。これらの保護層は、たとえばア
クリル樹脂、ポリカーボネート、ポリオレフィン、エポ
キシ樹脂、ポリイミド、ポリアミド、ポリスチレン、ポ
リエチレン、ポリエチレンテレフタレート、ポリ4フッ
化エチレン(テフロン)などのフッ素樹脂、などの有機
物より形成されていてもよく、これらは基板であっても
よい。また、紫外線硬化法で形成されていてもよい。酸
化物、弗化物、窒化物、硫化物、セレン化物、炭化物、
ホウ化物、ホウ素、炭素、あるいは金属などを主成分と
する無機物より形成されていてもよい。また、これらの
複合材料でもよい。ガラス、石英、サファイア、鉄、チ
タン、あるいはアルミニウムを主成分とする基板も一方
の無機物保護層として働き得る。有機物、無機物のうち
は無機物と密着している方が耐熱性の面で好ましい。し
かし無機物層(基板の場合を除く)を厚くするのは、ク
ラック発生、透過率低下、感度低下のうちの少なくとも
1つを起こしやすいので上記無機物層は薄くし、無機物
層の記録膜と反対の側には、機械的強度を増すために厚
い有機物層が密着している方が好ましい。この有機物層
は基板であってもよい。これによって変形も起こりにく
くなる。有機物としては、例えば、ポリスチレン、ポリ
4フッ化エチレン(テフロン)、ポリイミド、アクリル
樹脂、ポリオレフィン、ポリエチレンテレフタレート、
ポリカーボネート、エポキシ樹脂、ホットメルト接着剤
として知られているエチレン−酢酸ビニル共重合体な
ど、および粘着剤などが用いられる。紫外線硬化樹脂で
もよい。無機物よりなる保護層の場合は、そのままの形
で電子ビーム蒸着、スパッタリング等で形成してもよい
が、反応性スパッタリングや、金属、半金属、半導体の
少なくとも一元素よりなる膜を形成したのち、酸素、硫
黄、窒素のうちの少なくとも一者と反応させるようにす
ると製造が容易である。無機物保護層の例を挙げると、
Ce,La,Si,In,Al,Ge,Pb,Sn,Bi,Te,Ta,Sc,Y,Ti,Zr,V,Nb,C
r及びWよりなる群より選ばれた少なくとも一元素の酸
化物、Cd,Zn,Ga,In,Sb,Ge,Sn,Pbよりなる群より選ばれ
た少なくとも一元素の硫化物、またはセレン化物、Mg,C
e,Caなどの弗化物、Si,Al,Ta,Bなどの窒化物、ホウ素、
炭素より成るものであって、たとえば主成分がCeO2,La2
O3,SiO,SiO2,In2O3,Al2O3,GeO,GeO2,PbO,SnO,SnO2,Bi2O
3,TeO2,WO2,WO3,Ta2O5,Sc2O3,Y2O3,TiO2,ZrO2,CdS,ZnS,
CdSe,ZnSe,In2S3,In2Se3,Sb2S3,Sb2Se3,Ga2S3,Ga2Se3,M
gF2,CeF3,CaF2,GeS,GeSe,GaSe2,SnS,SnS2,SnSe,SnSe2,P
bS,PbSe,Bi2Se3,Bi2S3,TaN,Si3N4,AlN,Si,TiB2,B4C,Si
C,B,Cのうちの一者に近い組成をもったもの及びこれら
の混合物である。これらのうち、硫化物ではZnSに近い
ものが、屈折率が適当な大きさで膜が安定である点で好
ましい。窒化物では表面反射率があまり高くなく、膜が
安定であり、強固である点で、TaN,Si3N4またはAlN(窒
化アルミニウム)に近い組成のものが好ましい。酸化物
で好ましいのはY2O3,Sc2O3,CeO2,TiO2,ZrO2,SiO,Ta2O5,
In2O3,Al2O3,SnO2またはSiO2に近い組成のものである。
Siの水素を含む非晶質も好ましい。保護膜を多層にすれ
ばさらに保護効果が高まる。例えば厚さ100〜500nmのSi
O2に近い組成の膜を記録膜から遠い側に形成し、厚さ80
〜130nmのZnSに近い組成の膜を記録膜に近い側に形成
と、記録・消去特性、多数回書き換え特性ともに良好で
ある。 上記のような保護膜の形成によって記録書き換え時の
記録膜の変形によるノイズ増加を防止することができ
る。 相転移(変化)によって記録を行う場合、記録膜の全
面をあらかじめ結晶化させておくのが好ましいが、基板
に有機物を用いている場合には基板を高温にすることが
できないので、他の方法で結晶化させる必要がある。そ
の場合、スポット径2μm以下まで集光してレーザ光の
照射、キセノンランプ、水銀ランプなどの紫外線照射と
加熱、フラッシュランプよりの光の照射、高出力ガスレ
ーザからの大きな光スポットによる光の照射、あるいは
加熱とレーザ光照射との組み合わせなどを行うのが好ま
しい。ガスレーザからの光の照射の場合、光スポット径
(半値幅)5μm以上5mm以下とすると能率が良い。結
晶化は記録トラック上のみで起こらせ、トラック間は非
晶質のままとしてもよい。記録トラック間のみ結晶化さ
せる方法も有る。一方たとえばSn,Sb及びTeを主成分と
する薄膜を、複数の蒸発源からの回転蒸着によって形成
した場合、蒸着直後にはSn,Sb及びTeがほとんど結合し
ていない場合が多い。また、スパッタリングによって形
成した場合も原子配列が極めて乱れた状態となる。この
ような場合は、まず、高いパワー密度のレーザ光を記録
トラック上に照射して、場合によっては膜を融解させる
のがよい。さらに記録トラック上に低いパワー密度のレ
ーザ光を照射し、結晶化させるのとトラック一周にわた
っての反射率が均一になりやすい。結晶化するパワーレ
ベルと非晶質に近い状態にするパワーレベルとの間でパ
ワー変調したレーザ光で記録することは上記のような初
期化後の状態がどのような状態であっても可能である。 一般に薄膜に光を照射すると、その反射光は薄膜表面
からの反射光と薄膜裏面からの反射光との重ね合わせに
なるため干渉をおこす。反射率の変化で信号を読みとる
場合には、記録膜に近接して光反射(吸収)層を設ける
ことにより、干渉の効果を大きくし、読みだし信号を大
きくできる。干渉の効果をより大きくするためには記録
膜と反射(吸収)層の間に中間層を設けるのが好まし
い。中間層は記録書き換え時に記録膜と反射層との相互
拡散が起こるのを防止する効果も有する。しかし中間層
の材質の選び方によっては、例えば中間層をセレン化物
とすると、記録膜の少なくとも一部の元素を中間層中へ
拡散させる、あるいは中間層の少なくとも一部の元素を
記録膜または反射層中へ拡散させることにより記録の少
なくとも一部を担わせることができる。上記中間層の膜
厚は3nm以上、600nm以下で、かつ、記録状態または消去
状態において読み出し光の波長付近で記録用部材の反射
率が極小値に近くなる膜厚とするのが好ましい。反射層
は記録膜と基材との間、及びその反射側のうちのいずれ
の側に形成してもよい。中間層の特に好ましい膜厚範囲
は中間層の屈折率をNとしたとき60/Nnm以上160/Nnm以
下及び470/Nnm以上570/Nnm以下の範囲である。反射層の
中間層の反対の側にも上記の無機物よりなる保護層を形
成するのが好ましい。これら3層(中間層、反射層、保
護層)は全体として単層の保護層より強固な保護層とな
る。 反射層としては、金属、半金属及び半導体が使用可能
であるが、Au,Ag,Cu,Ni,Fe,Al,Co,Cr,Ti,Pd,Pt,W,Ta,Mo
あるいはこれら同志の合金の層、これらと酸化物などの
他の物質との複合層などが好ましい。反射層としてAuな
どの、熱伝導率が2.0W/cm・deg以上の高熱伝導率材料を
主成分とするものを用いると、熱伝導率を高め、高速結
晶化する記録膜を用いても高パワーレーザ光を照射した
ときには確実に非晶質化するようにする効果ももつ。こ
の場合は中間層にも熱伝導率の高いAl2O3,AlN,Si3N4,Zn
Sなどに近い組成の材料を用いるか、SiO2などの熱伝導
率が中程度(0.02W/cm・deg以上0.1W/cm・deg以下)の
材料を用い、中間層を薄くするのが特に好ましい。 本発明の記録膜は、共蒸着や共スパッタリングなどに
よって、保護膜として使用可能と述べた酸化物、弗化
物、窒化物、有機物など、あるいは炭素または炭化物の
中に分散させた形態としてもよい。そうすることによっ
て光吸収係数を調節し、再生信号強度を大きくすること
ができる場合が有る。混合比率は、酸素、弗素、窒素、
炭素が膜全体で占める割合が40%以下が好ましい。この
ような複合膜化を行うことにより、結晶化の速度が低下
し、感度が低下するのが普通である。ただし有機物との
複合膜化では感度が向上する。 各成分の膜厚の好ましい範囲は下記のとおりである。 記録膜 反射層を用いない場合 15nm以上500nm以下25nm以上300nm以下の範囲が再生信
号強度及び記録感度の点で特に好ましい。 反射層との2層以上の構造の場合 15nm以上150nm以下 無機物保護層 5nm以上500nm以下ただし無機物基板自体
で保護する時は、0.1〜20mm 有機物保護層 500nm以上10nm以下 中間層 3nm以上600nm以下 光反射層 5nm以上300nm以下 光反射層に隣接した無機物保護層 50nm以上500nm以下 上記のような記録膜以外の各層の材質や膜厚は本発明
の記録膜に限らず他の相変化記録膜、光磁気記録膜、相
互拡散型記録膜などにも有効である。 以上の各層の形成方法は、真空蒸着、ガス中蒸着、ス
パッタリング、イオンビーム蒸着、イオンプレーティン
グ、電子ビーム蒸着、射出成形、キャスティング、回転
塗布、プラズマ重合などのうちのいずれかを適宜選ぶも
のである。保護層、記録膜、中間層、反射層、及び反射
層に隣接した保護層は、すべてスパッタリングにより形
成するのが最も好ましい。 本発明の記録膜は必ずしも非晶質状態と結晶状態の間
の変化を記録に利用する必要は無く、膜の形状変化をほ
とんど伴わないなんらかの原子配列変化によって光学的
性質の変化を起こさせればよい。たとえば結晶粒径や結
晶形の変化、結晶と準安定状態(π,γなど)との間の
変化などでもよい。非晶質状態と結晶状態の変化でも、
非晶質は完全な非晶質でなく、結晶部分が混在していて
もよい。また、記録層と保護層、中間層のうちの少なく
とも一者との間で、これらの層を構成する原子のうちの
一部が移動(拡散、化学反応などによる)することによ
り、あるいは移動と相変化の両方により記録されてもよ
い。 本発明の記録用部材は、ディスク状としてばかりでは
なく、テープ状、カード状などの他の形態でも使用可能
である。
The role of each of the above group elements is as follows. With elements such as Sn represented by Sb, Te and B, the amorphous state is stably maintained by coexisting at an appropriate ratio,
In addition, crystallization at the time of recording / erasing can be performed at high speed. Elements such as Co represented by C have the effect of facilitating the absorption of long-wavelength light such as semiconductor laser light to increase the recording sensitivity, and also enable high-speed crystallization. Elements such as Tl represented by B have the effect of improving the crystallization rate and also improving the stability of the amorphous state. When the group B element and the group C element coexist, high-speed crystallization is possible, the stability of the amorphous state is high, and the recording sensitivity is high. When one of the group B element and the group C element is added, it is preferable to add the group B element in terms of easiness of film formation, but the oxidation resistance is reduced. Elements such as Ar represented by D do not have a particularly remarkable effect when added, but there is no significant adverse effect if the added amount is small. Of these, rare earth elements and the like, when added in an amount of 1 to 20%, can play roles such as increasing the reproduction signal intensity and increasing the crystallization temperature. Se and S have an effect of improving oxidation resistance by adding 1 to 20% while keeping the ratio of other elements constant. However, the heat resistance is slightly reduced. From the viewpoint of erasing characteristics, the Se content is preferably 1 to 3%. The information recording thin film of the present invention having the above composition range has excellent recording / reproducing characteristics, and the power of the laser beam used for recording and erasing may be low. Also, the stability is excellent. More preferred ranges of x, y, z, α, β and γ are as follows. 10 ≦ x ≦ 45 35 ≦ y ≦ 80 5 ≦ z ≦ 300 0 ≦ α ≦ 15 0 ≦ β ≦ 200 0 ≦ γ ≦ 20. Particularly preferred ranges of x, y, z, α, β and γ are as follows. 13 ≦ x ≦ 40 47 ≦ y ≦ 70 7 ≦ z ≦ 23 0 ≦ α ≦ 10 0 ≦ β ≦ 10 0 ≦ γ ≦ 10. However, when the element represented by A is Au,
Since the recording sensitivity is low when the content is small, it is particularly preferable to satisfy 60 ≦ y ≦ 70. In each of the above ranges, if γ ≒ 0, film production is easy. If 1 ≦ α + β ≦ 20, the erasure remaining is further reduced, and the recording retention time is prolonged. 1 ≦ α ≦ 10 and 1 ≦
If β ≦ 10, the signal modulation is further increased. Among the elements represented by B, particularly preferred is Tl, then preferred is I, and then another halogen element such as Cl. Of the elements represented by D, rare earth elements are preferred. Of the elements represented by A, Pb, Ga, and In slightly reduce oxidation resistance. However, In has excellent recording / erasing characteristics.
Au improves the oxidation resistance which lowers the recording sensitivity. The change in the content of each element in the film thickness direction is usually small,
Any pattern change may be present. Sb, S
As for e and S, it is preferable that there are more near the interface of one of the recording thin films (there may be an interface with another layer) than the inside thereof. It is preferable that at least one surface of the recording film of the present invention is tightly protected by another substance. More preferably, both sides are protected. These protective layers may be formed of an organic material such as a fluororesin such as acrylic resin, polycarbonate, polyolefin, epoxy resin, polyimide, polyamide, polystyrene, polyethylene, polyethylene terephthalate, and polytetrafluoroethylene (Teflon). Often, these may be substrates. Further, it may be formed by an ultraviolet curing method. Oxides, fluorides, nitrides, sulfides, selenides, carbides,
It may be formed of an inorganic substance mainly composed of boride, boron, carbon, metal or the like. Further, these composite materials may be used. A substrate mainly composed of glass, quartz, sapphire, iron, titanium, or aluminum can also serve as one inorganic protective layer. Of the organic and inorganic substances, those that are in close contact with the inorganic substance are preferable in terms of heat resistance. However, increasing the thickness of the inorganic layer (excluding the case of the substrate) is likely to cause at least one of crack generation, transmittance reduction, and sensitivity reduction. It is preferable that a thick organic material layer adheres to the side to increase the mechanical strength. This organic layer may be a substrate. This makes deformation less likely to occur. Examples of the organic substance include polystyrene, polytetrafluoroethylene (Teflon), polyimide, acrylic resin, polyolefin, polyethylene terephthalate,
A polycarbonate, an epoxy resin, an ethylene-vinyl acetate copolymer known as a hot melt adhesive, an adhesive, and the like are used. UV curable resin may be used. In the case of a protective layer made of an inorganic material, it may be formed as it is by electron beam evaporation, sputtering, or the like, but after reactive sputtering, a metal, a metalloid, and a film made of at least one element of a semiconductor, Production is facilitated by reacting with at least one of oxygen, sulfur and nitrogen. To give an example of the inorganic protective layer,
Ce, La, Si, In, Al, Ge, Pb, Sn, Bi, Te, Ta, Sc, Y, Ti, Zr, V, Nb, C
oxide of at least one element selected from the group consisting of r and W, Cd, Zn, Ga, In, Sb, Ge, Sn, sulfide of at least one element selected from the group consisting of Pb, or selenide, Mg, C
e, Fluoride such as Ca, nitride such as Si, Al, Ta, B, boron,
Composed of carbon, for example, whose main components are CeO 2 and La 2
O 3 , SiO, SiO 2 , In 2 O 3 , Al 2 O 3 , GeO, GeO 2 , PbO, SnO, SnO 2 , Bi 2 O
3, TeO 2, WO 2, WO 3, Ta 2 O 5, Sc 2 O 3, Y 2 O 3, TiO 2, ZrO 2, CdS, ZnS,
CdSe, ZnSe, In 2 S 3 , In 2 Se 3 , Sb 2 S 3 , Sb 2 Se 3 , Ga 2 S 3 , Ga 2 Se 3 , M
gF 2, CeF 3, CaF 2 , GeS, GeSe, GaSe 2, SnS, SnS 2, SnSe, SnSe 2, P
bS, PbSe, Bi 2 Se 3 , Bi 2 S 3 , TaN, Si 3 N 4 , AlN, Si, TiB 2 , B 4 C, Si
One having a composition close to one of C, B, and C, and a mixture thereof. Among these, sulfides that are close to ZnS are preferable because the refractive index is appropriate and the film is stable. A nitride having a composition close to TaN, Si 3 N 4 or AlN (aluminum nitride) is preferable in that the surface reflectance is not so high and the film is stable and strong. Preferred oxides are Y 2 O 3 , Sc 2 O 3 , CeO 2 , TiO 2 , ZrO 2 , SiO, Ta 2 O 5 ,
It has a composition close to In 2 O 3 , Al 2 O 3 , SnO 2 or SiO 2 .
Amorphous containing hydrogen of Si is also preferable. If the protective film is made into a multilayer, the protective effect is further enhanced. For example, 100-500nm thick Si
The film having a composition close to the O 2 to form a recording layer farther, 80 thickness
A film having a composition close to ZnS of about 130 nm is formed on the side close to the recording film, and the recording / erasing characteristics and the multi-time rewriting characteristics are excellent. By forming the protective film as described above, it is possible to prevent an increase in noise due to deformation of the recording film at the time of recording / rewriting. When performing recording by phase transition (change), it is preferable to crystallize the entire surface of the recording film in advance, but if an organic substance is used for the substrate, the substrate cannot be heated to a high temperature. Need to be crystallized. In that case, the laser beam is irradiated by focusing to a spot diameter of 2 μm or less, ultraviolet irradiation and heating of a xenon lamp, a mercury lamp, etc., irradiation of light from a flash lamp, irradiation of light by a large light spot from a high-power gas laser, Alternatively, it is preferable to perform a combination of heating and laser beam irradiation. In the case of irradiation with light from a gas laser, efficiency is good when the light spot diameter (half width) is 5 μm or more and 5 mm or less. Crystallization may occur only on the recording tracks, and the space between the tracks may remain amorphous. There is also a method of crystallizing only between recording tracks. On the other hand, for example, when a thin film containing Sn, Sb and Te as main components is formed by rotary evaporation from a plurality of evaporation sources, Sn, Sb and Te are often hardly bonded immediately after the evaporation. Also, when formed by sputtering, the atomic arrangement is extremely disturbed. In such a case, it is preferable to first irradiate the recording track with a laser beam having a high power density to melt the film in some cases. Further, when the recording track is irradiated with a laser beam having a low power density to be crystallized, the reflectance over the track circumference tends to be uniform. It is possible to record with a laser beam whose power has been modulated between the power level at which it crystallizes and the power level at which it approaches an amorphous state, regardless of the state after initialization as described above. is there. Generally, when light is applied to a thin film, the reflected light is superimposed on the reflected light from the front surface of the thin film and the reflected light from the back surface of the thin film, and causes interference. When a signal is read by a change in reflectance, a light reflection (absorption) layer is provided close to the recording film, so that the effect of interference can be increased and the read signal can be increased. In order to further increase the effect of interference, it is preferable to provide an intermediate layer between the recording film and the reflection (absorption) layer. The intermediate layer also has the effect of preventing the interdiffusion between the recording film and the reflective layer from occurring during recording rewriting. However, depending on how the material of the intermediate layer is selected, for example, when the intermediate layer is made of selenide, at least a part of the element of the recording film is diffused into the intermediate layer, or at least a part of the element of the intermediate layer is transferred to the recording film or the reflective layer. By diffusing in, at least a portion of the recording can be carried. It is preferable that the thickness of the intermediate layer be 3 nm or more and 600 nm or less, and that the reflectance of the recording member be close to the minimum value near the wavelength of the reading light in the recording state or the erasing state. The reflection layer may be formed between the recording film and the substrate and on any of the reflection sides thereof. Particularly preferred thickness ranges of the intermediate layer are 60 / Nnm or more and 160 / Nnm or less and 470 / Nnm or more and 570 / Nnm when the refractive index of the intermediate layer is N. It is preferable to form a protective layer made of the above-mentioned inorganic substance on the side of the reflective layer opposite to the intermediate layer. These three layers (intermediate layer, reflective layer, and protective layer) form a stronger protective layer as a whole than a single protective layer. As the reflective layer, metals, metalloids and semiconductors can be used, but Au, Ag, Cu, Ni, Fe, Al, Co, Cr, Ti, Pd, Pt, W, Ta, Mo
Alternatively, a layer of these alloys or a composite layer of these with another substance such as an oxide is preferable. When a reflective layer made of a material having a high thermal conductivity of at least 2.0 W / cm-deg, such as Au, as the main component, is used, the thermal conductivity is increased, and even if a recording film that crystallizes at a high speed is used, the reflective layer becomes high. When irradiated with power laser light, it also has the effect of ensuring that the laser beam becomes amorphous. In this case, Al 2 O 3 , AlN, Si 3 N 4 , Zn
In particular, use a material with a composition close to that of S, or use a material with a medium thermal conductivity such as SiO 2 (0.02 W / cm · deg or more and 0.1 W / cm · deg or less), and make the intermediate layer thin. preferable. The recording film of the present invention may be in the form of an oxide, a fluoride, a nitride, an organic material, or the like described as usable as a protective film, or dispersed in carbon or carbide by co-evaporation or co-sputtering. By doing so, there are cases where the light absorption coefficient can be adjusted and the reproduction signal intensity can be increased. The mixing ratio is oxygen, fluorine, nitrogen,
The proportion of carbon in the whole film is preferably 40% or less. The formation of such a composite film usually lowers the crystallization speed and lowers the sensitivity. However, the sensitivity is improved by forming a composite film with an organic substance. The preferred range of the film thickness of each component is as follows. Recording film In the case where the reflective layer is not used, the range of 15 nm or more and 500 nm or less and 25 nm or more and 300 nm or less is particularly preferable in view of the reproduction signal intensity and recording sensitivity. In the case of a structure with two or more layers with a reflective layer 15 nm or more and 150 nm or less Inorganic protective layer 5 nm or more and 500 nm or less However, when protecting with the inorganic substrate itself, 0.1 to 20 mm Organic protective layer 500 nm or more and 10 nm or less Intermediate layer 3 nm or more and 600 nm or less Layer 5 nm or more and 300 nm or less Inorganic protective layer adjacent to the light reflection layer 50 nm or more and 500 nm or less The material and film thickness of each layer other than the recording film as described above are not limited to the recording film of the present invention, and other phase change recording films, magneto-optical It is also effective for a recording film, a mutual diffusion type recording film and the like. The method of forming each of the above layers is a method of appropriately selecting any one of vacuum deposition, vapor deposition in gas, sputtering, ion beam deposition, ion plating, electron beam deposition, injection molding, casting, spin coating, plasma polymerization and the like. is there. Most preferably, the protective layer, the recording film, the intermediate layer, the reflective layer, and the protective layer adjacent to the reflective layer are all formed by sputtering. The recording film of the present invention does not necessarily need to utilize the change between the amorphous state and the crystalline state for recording, and may change the optical properties by any atomic arrangement change that hardly accompanies the change in the film shape. . For example, a change in crystal grain size or crystal form, a change between a crystal and a metastable state (π, γ, or the like) may be used. Even in the change between the amorphous state and the crystalline state,
The amorphous is not completely amorphous, and may have a mixture of crystal parts. In addition, some of the atoms constituting these layers move (diffusion, chemical reaction, etc.) between the recording layer and at least one of the protective layer and the intermediate layer, or It may be recorded by both phase changes. The recording member of the present invention can be used not only in a disk shape but also in other forms such as a tape shape and a card shape.

【実施例】【Example】

以下に本発明を実施例によって詳細に説明する。 直径13cm,厚さ1.2mmのディスク状化学強化ガラス板の
表面に紫外線硬化樹脂によって保護層を兼ねるトラッキ
ング用の溝のレプリカを形成し、一周を32セクターに分
割し、各セクターの始まりで、溝と溝の中間の山の部分
に凹凸ピットの形でトラックアドレスやセクターアドレ
スなどを入れた(この部分をヘッダー部と呼ぶ)基板1
上にマグネトロンスパッタリングによってまず保護層で
ある厚さ約300nmのSiO2層2を形成した。このSiO2層は
基板との屈折率差が小さいので、膜厚に多少ムラやバラ
ツキがあってもよい。次に、このディスクを複数のター
ゲットをもち、順次積層膜を形成でき、また、膜厚の均
一性、再現性のよいスパッタリング装置に移し、ZnSを
約110nmの厚さにスパッタして層3とした。次にZnS層3
上に同一スパッタ装置でSn14.3Sb28.6Te57.1の組成の記
録膜4を約30nmの膜厚に形成した。続いて同一スパッタ
装置内でZnSの保護層5を約50nmの膜厚に形成した。さ
らに、この上に同一スパッタリング装置内でAuの反射層
6を約50nmの膜厚に形成し、次にZnS保護層7を150nm形
成した。同様にしてもう一枚の同様な基板1′上にSiO2
層2′,ZnS層3′,Sn14.3Sb28.6Te57.1の組成の記録膜
4′,ZnS層5′Au反射層6′ZnS層7′を順次形成し
た。このようにして得た2枚のディスクを層7及び7′
側を内側にして接着剤層8によって貼り合わせを行っ
た。この時、全面を接着すれば書き換え可能回数を多く
でき、記録領域には接着剤を着けなければ少し記録感度
が高くなった。 上記のようにして作製したディスクには次のようにし
て記録・再生・消去を行った。ディスクを1800rpmで回
転させ、半導体レーザ(波長830nm)の光を記録が行わ
れないレベルに保って、記録ヘッド中のレンズで集光し
て基板を通して一方の記録膜に照射し、反射光を検出す
ることによって、トラッキング用の溝と溝の中間に光ス
ポットの中心が常に一致するようにヘッドを駆動した。
溝と溝の中間を記録トラックとすることによって溝から
発生するノイズの影響を避けることができる。このよう
にトラッキグを行いながら、さらに記録膜上に焦点が来
るように自動焦点合わせを行い、まず、パワー密度の高
いレーザ光を連続的に照射することによって記録トラッ
ク上の記録膜を加熱し、各元素を反応、結晶化させた。 非晶質化するのに適当なレーザパワーの範囲は、結晶
化するパワーより高く、強い変形を生じたり穴があくよ
りも低い範囲である。結晶化するのに適当なレーザパワ
ーの範囲は、結晶化が起こる程度に高く、非晶質化が起
こるより低い範囲である。 光ディスクドライブ(記録・再生装置)における記録
は次のようにして行った。ディスクを1800rpmで回転さ
せ、半導体レーザ(波長830nm)の光を記録が行われな
いレベル(約1mW)に保って、記録ヘッド中のレンズで
集光して基板を通して一方の記録膜に照射し、反射光を
検出することによって、トラッキング用の溝と溝の中間
に光スポットの中心が常に一致するようにヘッドを駆動
した。こうすることによって溝から発生するノイズの影
響を避けることができる。このようにトラッキングを行
いながら、さらに記録膜上に焦点が来るように自動焦点
合わせを行い、記録を行う部分では、レーザパワーを中
間パワーレベル11mWと高いパワーレベル18mWとの間で第
2図に示したように変化させることにより記録を行っ
た。高いパワーレベルと中間パワーレベルとのパワーの
比は1:0.4〜1:0.8の範囲が特に好ましい。また、この他
に短時間ずつ他のパワーレベルにしてもよい。記録され
た部分の非晶質に近い部分を記録点と考える。記録を行
う部分を通り過ぎれば、レーザパワーを1mWに下げてト
ラッキング及び自動焦点合わせを続けた。なお、記録中
もトラッキング及び自動焦点合わせは継続される。この
ような記録方法は、既に記録されている部分に対して行
っても記録されていた情報が新たに記録した情報に書き
換えられる。すなわち単一の円形光スポットによるオー
バーライトが可能である。このようにオーバーライトが
できるのが、本実施例で述べる本発明の記録膜材料の特
長である。しかし、記録書き換え時の最初の1回転また
は複数回転で、上記のレーザパワー変調の高い方のパワ
ーである18mWに近いパワー、たとえば16mWの連続光を照
射して一旦消去した後、次の1回転で11mWと18mWの間で
情報信号に従ってパワー変調したレーザ光を照射して記
録すれば、前に書かれていた情報の消え残りが少なく、
高い搬送波対雑音比が得られる。この場合に最初に照射
する連続光のパワーは、上記の高いパワーレベルを1と
したとき0.8〜1.1の範囲で良好な書き換えが行えた。こ
の方法は本発明の記録膜ばかりでなく他の記録膜にも有
効である。 記録・消去は105回以上で繰返し可能であった。記録
膜の上下に形成するZnS層を省略した場合は、数回の記
録・消去で多少の雑音増加が起こった。 読み出しは次のようにして行った。ディスクを1800rp
mで回転させ、記録時と同じようにトラッキングと自動
焦点合わせを行いながら、記録及び消去が行われない低
パワーの半導体レーザ光で反射光の強弱を検出し、情報
を再生した。本実施例では約100mVの信号出力が得られ
た。本実施例の記録膜は耐酸化性が優れており、ZnS保
護膜を形成しないものを60℃相対湿度95%の条件下に置
いてもほとんど酸化されなかった。 上記のSn−Sb−Te形記録膜において、他の元素の相対
的比率を一定に保って、Te含有量を変化させたとき、消
去の必要照射時間は次のように変化した。 消去の必要照射時間 Sn31Sb62Te7 5.0μsec Sn30Sb60Te10 1.0μsec Sn21.7Sb43.3Te35 0.5μsec Sn17.7Sb35.3Te47 0.1μsec Sn10Sb20Te70 0.1μsec Sn6.7Sb13.3Te80 0.5μsec Sn5Sb10Te85 1.0μsec Sn4Sb8Te88 5.0μsec 他の元素の相対的比率を一定に保って、Sb含有量を変
化させたとき、消去の必要照射時間は次のように変化し
た。 消去の必要照射時間 Sn19.4Sb3Te77.6 5.0μsec Sn19Sb5Te76 1.0μsec Sn18Sb10Te72 0.5μsec Sn17.4Sb13Te69.4 0.1μsec Sn12Sb40Te48 0.1μsec Sn11Sb45Te44 0.5μsec Sn6Sb70Te24 1.0μsec Sn5Sb75Te20 5.0μsec 他の元素の相対的比率を一定に保って、Sn含有量を変
化させたとき、記録に必要なレーザ光のパワー及び消去
の必要照射時間は次のように変化した。 記録レーザパワー Sn1Sb33Te66 16mW Sn3Sb32.3Te64.7 16mW Sn5Sb31.7Te63.3 16mW Sn7Sb31Te62 16mW Sn23Sb25.7Te51.3 16mW Sn30Sb23.3Te46.7 18mW Sn50Sb16.7Te33.3 20mW Sn55Sb15Te30 記録できず 消去の必要照射時間 Sn1Sb33Te66 2.0μsec Sn3Sb32.3Te64.7 1.0μsec Sn5Sb31.7Te63.3 0.5μsec Sn7Sb31Te62 0.1μsec Sn23Sb25.7Te51.3 0.1μsec Sn30Sb23.3Te46.7 0.5μsec Sn50Sb16.7Te33.3 0.5μsec Sn55Sb15Te30 0.5μsec Sn−Sb−Te3元相図のSb2Te3と SnTeを結ぶ直線上で組成を変化させたとき、消去の必
要照射時間及び一定速度で昇温した場合の結晶化温度は
次のように変化した。 消去の必要照射時間 Sn2Sb38.5Te59.6 2.0μsec Sn3Sb37.6Te59.4 1.0μsec Sn5Sb36Te59 0.5μsec Sn7Sb34.4Te58.6 0.1μsec Sn23Sb21.6Te55.4 0.1μsec Sn30Sb16Te54 0.1μsec Sn43.8Sb5Te51.2 0.1μsec Sn45Sb4Te51 0.1μsec 結晶化温度 Sn2Sb38.5Te59.6 220℃ Sn3Sb37.6Te59.4 220℃ Sn5Sb36Te59 200℃ Sn7Sb34.4Te58.6 180℃ Sn23Sb21.6Te55.4 180℃ Sn30Sb16Te54 160℃ Sn43.8Sb5Te51.2 140℃ Sn45Sb4Te51 120℃ 他の元素の相対的比率を一定に保って、Tl含有量を変
化させたとき、消去の必要照射時間は次のように変化し
た。 消去の必要照射時間 α= 0 0.1μsec α= 1 0.05μsec α=10 0.05μsec α=15 0.05μsec Tlが上記含有量より多いと、60℃95%中における透過
率20%上昇までの時間が短い。 他の元素の相対的比率を一定に保って、Co含有量を変
化させたとき、一定速度で昇温した場合の結晶化温度及
び記録に必要なレーザ光のパワーは次のように変化し
た。 結晶化温度 β= 0 180℃ β= 1 280℃ β=10 300℃ β=20 300℃ β=30 300℃ β=35 300℃ 記録レーザパワー β= 0 16mW β= 1 16mW β=10 16mW β=20 18mW β=30 20mW β=35 記録できず 他の元素の相対的比率を一定に保って、Tl及びCoを同
時に添加することによって信号変調度が大きくなる効果
が有る。 この他、他の元素の相対的比率を一定に保ったGdなど
の希土類元素の30%以下の添加によって結晶化温度が上
昇する効果が有る。20%以下が好ましい。10%以下が特
に好ましい。 Dで表される他の元素も添加によって若干の感度向
上、耐酸化性向上などの効果が有る。 中間層の膜厚は中間層の屈折率をNとしたときに60/N
nm以上160/Nnm以下の範囲が消去比が大きいという点で
好ましい。膜厚は薄い領域の方がレーザ照射後の冷却速
度が大きく、非晶質化が確実に行える。ただし、3nm以
上600nm以下の範囲でも、記録・再生は可能である。 Snの一部または全部を置換してBi、Pb、Ga、Au及びIn
のうち少なくとも一元素を添加してもよく似た特性がえ
られる。このうち、SnをAuで置換したAu14.3Sb28.6Te
57.1について、他の元素の比率を一定に保って、Te含有
量を変化させたとき、記録に必要なレーザパワーは次の
様に変化した。 記録レーザパワー y=47 20mW y=55 18mW y=60 16mW y=70 16mW Snの一部または全部をBiで置換し、ZnSの層をすべてS
b2Se3層にすると、Biの、隣接する層中への拡散が起こ
って、高い記録感度と、記録パワー対再生信号強度曲線
の鋭い立ち上がり特性が得られたが、書き換えの繰り返
しによる特性変化は大きくなった。 Tlの一部または全部を置換してハロゲン元素、アルカ
リ金属元素のうちの少なくとも一元素を添加してもよく
似た特性がえられる。Tlについで好ましいハロゲン元素
F,Cl,Br,Iのうちでは、Iが特に好ましく、ついでClが
好ましい。アルカリ金属元素、Li,Na,K,Rb,Csのうちで
はNaが特に好ましく、ついでKが好ましい。 Coの一部または全部を置換してCu,Ag,Sc,Y,Zr,V,Nb,C
r,Mo,Mn,Fe,Ru,Ti,Rh,Ta,W,Ir及びNiのうちの少なくと
も一元素を添加してもよく似た特性が得られる。これら
のうち、Ti,V,Cr,Mn,Zr及びNiのうちの少なくとも一元
素は、蒸着が容易であるという点で好ましい。 保護膜、中間層のうちの少なくとも一者に用いている
ZnSの代わりにSiO2,SiO,Y2O3やTaN,AlN,Si3N4などの酸
化物や窒化物、Sb2S3などの硫化物、SnSe2,SbSe2などの
セレン化物、CeF3などの弗化物、または非晶質Si,TiB2,
B4C,BCなど、あるいは上記のすべての材料のそれぞれに
近い組成のものを用いてもよい。これらの積層膜(2層
以上)も保護強度を上げるのに有効である。例えば記録
膜から遠い側に厚さ300nmのSiO2層、記録膜に近い側に
厚さ110nmのZnS層を配置した2層構造は書き換えによる
特性変化が少なく、良好であった。 反射層として、Auの一部または全部を置換してAg,Cu,
Ni,Fe,Al,Co,Cr,Ti,Pd,Pt,W,Ta,Moなどを用いてもよく
似た特性が得られた。 基板として、紫外線硬化樹脂層層を表面に形成した化
学強化ガラスの代わりに、表面に直接トラッキングガイ
ドなどの凹凸を形成したポリカーボネート、ポリオレフ
ィン、エポキシ、アクリル樹脂などを用いてもよい。
Hereinafter, the present invention will be described in detail with reference to Examples. A replica of a tracking groove that also serves as a protective layer is formed on the surface of a disk-shaped chemically strengthened glass plate 13 cm in diameter and 1.2 mm in thickness with an ultraviolet-curing resin, and one round is divided into 32 sectors. A substrate 1 having a track address, a sector address, and the like in the form of a concave / convex pit in a mountain portion between the grooves (referred to as a header portion).
First, an SiO 2 layer 2 having a thickness of about 300 nm as a protective layer was formed by magnetron sputtering. Since the SiO 2 layer has a small difference in refractive index from the substrate, the film thickness may have some unevenness or variation. Next, this disk has a plurality of targets and can be successively formed into a laminated film. The disk is transferred to a sputtering apparatus having good uniformity and reproducibility of the film thickness, and ZnS is sputtered to a thickness of about 110 nm to form a layer 3 with ZnS. did. Next, ZnS layer 3
A recording film 4 having a composition of Sn 14.3 Sb 28.6 Te 57.1 was formed to a thickness of about 30 nm on the same sputtering apparatus. Subsequently, a ZnS protective layer 5 was formed to a thickness of about 50 nm in the same sputtering apparatus. Further, an Au reflective layer 6 was formed thereon to a thickness of about 50 nm in the same sputtering apparatus, and then a ZnS protective layer 7 was formed to a thickness of 150 nm. In the same manner, another SiO 2
A layer 2 ', a ZnS layer 3', a recording film 4 'having a composition of Sn 14.3 Sb 28.6 Te 57.1 , a ZnS layer 5', an Au reflective layer 6 'and a ZnS layer 7' were formed in this order. The two disks obtained in this way are layered 7 and 7 '.
Lamination was performed with the adhesive layer 8 with the side facing inward. At this time, if the entire surface was adhered, the number of rewritable times could be increased, and if no adhesive was applied to the recording area, the recording sensitivity was slightly increased. Recording, reproduction, and erasure were performed on the disk manufactured as described above as follows. The disk is rotated at 1800 rpm, the light of the semiconductor laser (wavelength 830 nm) is kept at a level where recording is not performed, the light is focused by the lens in the recording head, and one of the recording films is irradiated through the substrate and the reflected light is detected. By doing so, the head was driven such that the center of the light spot always coincided with the middle of the tracking groove.
By setting the middle of the groove as the recording track, the influence of noise generated from the groove can be avoided. While performing tracking in this manner, automatic focusing is performed so that the focus is further on the recording film.First, the recording film on the recording track is heated by continuously irradiating a laser beam having a high power density, Each element was reacted and crystallized. The range of laser power suitable for amorphization is higher than the power for crystallization, but lower than the one that causes strong deformation or has holes. The range of laser power suitable for crystallization is high enough to cause crystallization but lower than where amorphization occurs. Recording in an optical disk drive (recording / reproducing device) was performed as follows. The disk is rotated at 1800 rpm, and the light of the semiconductor laser (wavelength 830 nm) is kept at a level (about 1 mW) at which recording is not performed. The light is focused by the lens in the recording head and irradiated on one recording film through the substrate. By detecting the reflected light, the head was driven such that the center of the light spot always coincided with the middle of the tracking groove. By doing so, the effect of noise generated from the groove can be avoided. In this way, while performing tracking, automatic focusing is performed so that the focal point is further on the recording film, and in the recording portion, the laser power is switched between the intermediate power level of 11 mW and the high power level of 18 mW as shown in FIG. Recording was performed by changing as indicated. The power ratio between the high power level and the intermediate power level is particularly preferably in the range from 1: 0.4 to 1: 0.8. In addition, other power levels may be set for each short time. A portion near the amorphous portion of the recorded portion is considered as a recording point. Once past the part to be recorded, the laser power was reduced to 1 mW and tracking and autofocusing continued. Note that tracking and automatic focusing are continued during recording. Even if such a recording method is performed on a part that has already been recorded, the recorded information is rewritten with newly recorded information. That is, overwriting with a single circular light spot is possible. Such overwriting is a feature of the recording film material of the present invention described in the present embodiment. However, during the first or multiple rotations at the time of recording / rewriting, a continuous light of a power close to 18 mW, for example, 16 mW, which is the higher power of the above laser power modulation, is irradiated to erase once, and then the next one rotation By irradiating and recording a laser beam power-modulated according to the information signal between 11 mW and 18 mW, the previously written information is less likely to be erased,
A high carrier-to-noise ratio is obtained. In this case, as for the power of the continuous light to be irradiated first, good rewriting could be performed in the range of 0.8 to 1.1 when the above high power level was 1. This method is effective not only for the recording film of the present invention but also for other recording films. Recording and erasing was possible repeat in more than 10 five times. When the ZnS layers formed above and below the recording film were omitted, a slight increase in noise occurred after several recording / erasing operations. Reading was performed as follows. 1800 rp disc
While rotating at m, tracking and automatic focusing were performed in the same manner as during recording, and the intensity of reflected light was detected with a low-power semiconductor laser beam that was not recorded or erased, and information was reproduced. In this embodiment, a signal output of about 100 mV was obtained. The recording film of this example was excellent in oxidation resistance, and was hardly oxidized even when a ZnS protective film was not formed at 60 ° C. and 95% relative humidity. In the above Sn—Sb—Te type recording film, when the relative content of other elements was kept constant and the Te content was changed, the required irradiation time for erasing was changed as follows. Irradiation time required for erasure Sn 31 Sb 62 Te 7 5.0μsec Sn 30 Sb 60 Te 10 1.0μsec Sn 21.7 Sb 43.3 Te 35 0.5μsec Sn 17.7 Sb 35.3 Te 47 0.1μsec Sn 10 Sb 20 Te 70 0.1μsec Sn 6.7 Sb 13.3 Te 80 0.5 μsec Sn 5 Sb 10 Te 85 1.0 μsec Sn 4 Sb 8 Te 88 5.0 μsec When the Sb content is changed while keeping the relative ratio of other elements constant, the required irradiation time for erasure is as follows. Changed to Irradiation required irradiation time Sn 19.4 Sb 3 Te 77.6 5.0μsec Sn 19 Sb 5 Te 76 1.0μsec Sn 18 Sb 10 Te 72 0.5μsec Sn 17.4 Sb 13 Te 69.4 0.1μsec Sn 12 Sb 40 Te 48 0.1μsec Sn 11 Sb 45 Te 44 0.5μsec Sn 6 Sb 70 Te 24 1.0μsec Sn 5 Sb 75 Te 20 5.0μsec When the relative content of other elements is kept constant and the Sn content is changed, the power of laser light required for recording and The required irradiation time for erasing varied as follows. Recording laser power Sn 1 Sb 33 Te 66 16mW Sn 3 Sb 32.3 Te 64.7 16mW Sn 5 Sb 31.7 Te 63.3 16mW Sn 7 Sb 31 Te 62 16mW Sn 23 Sb 25.7 Te 51.3 16mW Sn 30 Sb 23.3 Te 46.7 18mW Sn 50 Sb 16.7 Te 33.3 20mW Sn 55 Sb 15 Te 30 Cannot record and required erase time Ir 1 Sb 33 Te 66 2.0μsec Sn 3 Sb 32.3 Te 64.7 1.0μsec Sn 5 Sb 31.7 Te 63.3 0.5μsec Sn 7 Sb 31 Te 62 0.1μsec Sn 23 Sb 25.7 Te 51.3 0.1 μsec Sn 30 Sb 23.3 Te 46.7 0.5 μsec Sn 50 Sb 16.7 Te 33.3 0.5 μsec Sn 55 Sb 15 Te 30 0.5 μsec Sn-Sb-Te3 On the straight line connecting Sb 2 Te 3 and SnTe in the original phase diagram When the composition was changed, the required irradiation time for erasing and the crystallization temperature when the temperature was raised at a constant rate changed as follows. Irradiation required irradiation time Sn 2 Sb 38.5 Te 59.6 2.0 μsec Sn 3 Sb 37.6 Te 59.4 1.0 μsec Sn 5 Sb 36 Te 59 0.5 μsec Sn 7 Sb 34.4 Te 58.6 0.1 μsec Sn 23 Sb 21.6 Te 55.4 0.1 μsec Sn 30 Sb 16 Te 54 0.1μsec Sn 43.8 Sb 5 Te 51.2 0.1μsec Sn 45 Sb 4 Te 51 0.1μsec Crystallization temperature Sn 2 Sb 38.5 Te 59.6 220 ℃ Sn 3 Sb 37.6 Te 59.4 220 ℃ Sn 5 Sb 36 Te 59 200 ℃ Sn 7 Sb 34.4 Te 58.6 180 ° C Sn 23 Sb 21.6 Te 55.4 180 ° C Sn 30 Sb 16 Te 54 160 ° C Sn 43.8 Sb 5 Te 51.2 140 ° C Sn 45 Sb 4 Te 51 120 ° C Keeping the relative ratio of other elements constant, Tl When the content was changed, the required irradiation time for erasing changed as follows. Irradiation time required for erasure α = 0 0.1 μsec α = 1 0.05 μsec α = 10 0.05 μsec α = 15 0.05 μsec If Tl is more than the above content, the time until transmittance increases by 20% at 60 ° C 95% is short. . When the Co content was changed while keeping the relative proportions of the other elements constant, the crystallization temperature and the power of the laser beam required for recording when the temperature was raised at a constant rate changed as follows. Crystallization temperature β = 0 180 ° C β = 1 280 ° C β = 10 300 ° C β = 20 300 ° C β = 30 300 ° C β = 35 300 ° C Recording laser power β = 0 16mW β = 116mW β = 10 16mW β = 20 18 mW β = 30 20 mW β = 35 Cannot be recorded. By keeping the relative ratio of other elements constant and simultaneously adding Tl and Co, there is an effect of increasing the signal modulation degree. In addition, there is an effect that the crystallization temperature is increased by adding 30% or less of a rare earth element such as Gd while keeping the relative ratio of other elements constant. 20% or less is preferable. Particularly preferred is 10% or less. Addition of other elements represented by D also has effects such as a slight improvement in sensitivity and an improvement in oxidation resistance. The thickness of the intermediate layer is 60 / N when the refractive index of the intermediate layer is N.
The range of not less than nm and not more than 160 / Nnm is preferable in that the erase ratio is large. In a thinner region, the cooling rate after laser irradiation is higher in a region with a smaller thickness, so that the region can be surely made amorphous. However, recording / reproducing is possible even in the range of 3 nm or more and 600 nm or less. Bi, Pb, Ga, Au and In by substituting part or all of Sn
Similar characteristics can be obtained even if at least one element is added. Au 14.3 Sb 28.6 Te in which Sn was replaced with Au
With respect to 57.1 , when the content of Te was changed while keeping the ratio of other elements constant, the laser power required for recording changed as follows. Recording laser power y = 47 20 mW y = 55 18 mW y = 60 16 mW y = 70 16 mW Part or all of Sn is replaced with Bi, and all ZnS layers are replaced with S.
When the b 2 Se 3 layer was used, Bi diffused into the adjacent layer, resulting in high recording sensitivity and a sharp rising characteristic of the recording power vs. reproduction signal intensity curve. Has grown. Similar characteristics can be obtained by substituting at least one of a halogen element and an alkali metal element by substituting a part or all of Tl. Preferred halogen element after Tl
Among F, Cl, Br and I, I is particularly preferred, and then Cl is preferred. Among the alkali metal elements, Li, Na, K, Rb, and Cs, Na is particularly preferred, and K is more preferred. Substitute some or all of Co for Cu, Ag, Sc, Y, Zr, V, Nb, C
Similar characteristics can be obtained by adding at least one of r, Mo, Mn, Fe, Ru, Ti, Rh, Ta, W, Ir and Ni. Among them, at least one element of Ti, V, Cr, Mn, Zr and Ni is preferable in that the deposition is easy. Used for at least one of protective film and intermediate layer
SiO 2, SiO instead of ZnS, Y 2 O 3 and TaN, AlN, oxides and nitrides such as Si 3 N 4, sulfides such as Sb 2 S 3, a selenide such as SnSe 2, SbSe 2, CeF Fluoride such as 3 , or amorphous Si, TiB 2 ,
B 4 C, BC, or the like, or a material having a composition close to each of all the above materials may be used. These laminated films (two or more layers) are also effective for increasing the protection strength. For example, a two-layer structure in which a SiO 2 layer having a thickness of 300 nm is disposed farther from the recording film and a ZnS layer having a thickness of 110 nm is disposed closer to the recording film has little change in characteristics due to rewriting, and is excellent. As a reflective layer, Ag, Cu,
Similar characteristics were obtained using Ni, Fe, Al, Co, Cr, Ti, Pd, Pt, W, Ta, Mo, etc. As the substrate, instead of chemically strengthened glass having an ultraviolet-curable resin layer formed on the surface, polycarbonate, polyolefin, epoxy, acrylic resin, or the like having a surface directly formed with irregularities such as a tracking guide may be used.

【発明の効果】【The invention's effect】

以上説明したように、本発明によれば、記録・再生特
性がよく、かつ長期間安定な情報の記録用部材を得るこ
とができる。記録の書き換えも多数回可能である。
As described above, according to the present invention, it is possible to obtain an information recording member having good recording / reproducing characteristics and stable for a long period of time. Rewriting of the record is possible many times.

【図面の簡単な説明】[Brief description of the drawings]

第1図はそれぞれ本発明の実施例における記録用部材の
構造を示す断面図、第2図は本発明の実施例におけるオ
ーバーライト用記録レーザ波形を示す図である。 1,1′……基板、2,2′……SiO2層、 3,3′……ZnS層、4,4′……記録膜、 5,5′……ZnS層、6,6′……Au反射層、 7,7′……ZnS層、8,……有機接着剤層。
FIG. 1 is a sectional view showing the structure of a recording member according to an embodiment of the present invention, and FIG. 2 is a diagram showing a recording laser waveform for overwriting in the embodiment of the present invention. 1,1 '... substrate, 2,2' ... SiO 2 layer, 3,3 '... ZnS layer, 4,4' ... Recording film, 5,5 '... ZnS layer, 6,6' ... ... Au reflection layer, 7,7 '... ZnS layer, 8, ... Organic adhesive layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮内 靖 東京都国分寺市東恋ケ窪1丁目280号 株式会社日立製作所中央研究所内 (72)発明者 安藤 圭吉 東京都国分寺市東恋ケ窪1丁目280号 株式会社日立製作所中央研究所内 (72)発明者 西田 哲也 東京都国分寺市東恋ケ窪1丁目280号 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭62−208442(JP,A) 特開 昭63−76120(JP,A) 特開 昭62−208441(JP,A) 特開 昭63−187430(JP,A) 特開 昭63−263643(JP,A) 特開 昭63−237990(JP,A) 特開 昭63−251290(JP,A) 特開 昭63−261552(JP,A) 特開 平1−100748(JP,A) 特開 平1−220147(JP,A) 特開 平1−277338(JP,A) 特開 平1−303643(JP,A) 特開 平1−287834(JP,A) (58)調査した分野(Int.Cl.6,DB名) B41M 5/26──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasushi Miyauchi 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd. Central Research Laboratory (72) Inventor Keikichi Ando 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Hitachi Inside the Central Research Laboratory (72) Inventor Tetsuya Nishida 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-62-208442 (JP, A) JP-A-63-76120 ( JP, A) JP-A-62-208441 (JP, A) JP-A-63-187430 (JP, A) JP-A-63-263643 (JP, A) JP-A-63-237990 (JP, A) JP-A-63-251290 (JP, A) JP-A-63-261552 (JP, A) JP-A-1-100748 (JP, A) JP-A-1-220147 (JP, A) JP-A-1-277338 (JP) , A) JP-A-1-303364 (JP, A) JP-A-1-287834 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B41M 5/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に直接もしくは無機物及び有機物の
うち少なくとも一者からなる保護層を介して形成された
記録用ビームの照射を受けて原子配列変化を生ずる情報
記録用薄膜において、上記情報記録用薄膜はその膜厚方
向の平均組成が一般式SbxTeyAzBαCβDγ(ただし、
x,y,z,α,β及びγは原子パーセントでそれぞれ13≦x
≦40,47≦y≦70,7≦z≦23,0≦α≦10,0≦β≦10,0≦
γ≦10の範囲の値で、かつ、1≦α+β≦20であり、A
はIn、BはTl,ハロゲン元素及びアルカリ金属のうちの
少なくとも一元素、CはAg,Cu,Pd,Ta,W,Ir,Sc,Y,Ti,Zr,
V,Nb,Cr,Mo,Mn,Fe,Ru,Co,Rh及びNiのうち少なくとも一
元素、DはSb,Te,A,B,Cで表わされる元素以外の元素)
で表されることを特徴とする情報記録用薄膜。
An information recording thin film, which is formed on a substrate directly or via a protective layer made of at least one of an inorganic substance and an organic substance and which undergoes an atomic arrangement change upon irradiation with a recording beam, wherein the information recording The average composition in the thickness direction of the thin film for use has the general formula SbxTeyAzBαCβDγ (however,
x, y, z, α, β, and γ are 13 ≦ x in atomic percent, respectively.
≦ 40,47 ≦ y ≦ 70,7 ≦ z ≦ 23,0 ≦ α ≦ 10,0 ≦ β ≦ 10,0 ≦
A value in the range of γ ≦ 10 and 1 ≦ α + β ≦ 20;
Is In, B is at least one of Tl, a halogen element and an alkali metal, C is Ag, Cu, Pd, Ta, W, Ir, Sc, Y, Ti, Zr,
V, Nb, Cr, Mo, Mn, Fe, Ru, Co, Rh, and at least one element of Ni, and D is an element other than the elements represented by Sb, Te, A, B, and C)
A thin film for information recording, characterized by being represented by:
【請求項2】基板上に直接もしくは無機物及び有機物の
うち少なくとも一者からなる保護層を介して形成された
一般式SbxTeyAzBαCβDγ(ただし、x,y,z,α,β及
びγは原子パーセントでそれぞれ13≦x≦40,47≦y≦7
0,7≦z≦23,0≦α≦10,0≦β≦10,0≦γ≦10の範囲の
値で、かつ、1≦α+β≦20であり、AはIn、BはTl,
ハロゲン元素及びアルカリ金属のうちの少なくとも一元
素、CはAg,Cu,Pd,Ta,W,Ir,Sc,Y,Ti,Zr,V,Nb,Cr,Mo,Mn,
Fe,Ru,Co,Rh及びNiのうち少なくとも一元素、DはSb,T
e,A,B,Cで表される元素以外の元素)で表される情報記
録用薄膜に記録用ビームを照射し、該薄膜の照射部の原
子配列を変化させる工程及び上記薄膜に再生用ビームを
照射し、上記原子配列の変化を読み出す工程よりなるこ
とを特徴とする情報の記録再生方法。
2. The general formula SbxTeyAzBαCβDγ (where x, y, z, α, β, and γ are each expressed in atomic percent, formed directly on a substrate or via a protective layer made of at least one of an inorganic substance and an organic substance. 13 ≦ x ≦ 40,47 ≦ y ≦ 7
0,7 ≦ z ≦ 23,0 ≦ α ≦ 10,0 ≦ β ≦ 10,0 ≦ γ ≦ 10 and 1 ≦ α + β ≦ 20, A is In, B is Tl,
At least one of a halogen element and an alkali metal, C is Ag, Cu, Pd, Ta, W, Ir, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, Mn,
Fe, Ru, Co, Rh and at least one element of Ni, D is Sb, T
e) irradiating a recording beam onto the information recording thin film represented by elements other than the elements represented by e, A, B and C) to change the atomic arrangement of the irradiated portion of the thin film, A method for irradiating a beam and reading out the change in the atomic arrangement.
【請求項3】上記記録用ビームがレーザビームである特
許請求の範囲第2項記載の情報の記録再生方法。
3. The information recording / reproducing method according to claim 2, wherein said recording beam is a laser beam.
JP63306052A 1988-10-05 1988-12-05 Information recording thin film and information recording / reproducing method Expired - Fee Related JP2776847B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63306052A JP2776847B2 (en) 1988-12-05 1988-12-05 Information recording thin film and information recording / reproducing method
EP89118519A EP0362852B1 (en) 1988-10-05 1989-10-05 Information-recording thin film and method for recording and reproducing information
DE68925331T DE68925331T2 (en) 1988-10-05 1989-10-05 Information recording thin film and method for recording and reproducing information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306052A JP2776847B2 (en) 1988-12-05 1988-12-05 Information recording thin film and information recording / reproducing method

Publications (2)

Publication Number Publication Date
JPH02151481A JPH02151481A (en) 1990-06-11
JP2776847B2 true JP2776847B2 (en) 1998-07-16

Family

ID=17952472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306052A Expired - Fee Related JP2776847B2 (en) 1988-10-05 1988-12-05 Information recording thin film and information recording / reproducing method

Country Status (1)

Country Link
JP (1) JP2776847B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680388B2 (en) * 1988-12-22 1997-11-19 株式会社東芝 Information recording medium
JP2687900B2 (en) * 1993-12-27 1997-12-08 日本電気株式会社 Information recording medium
JP2002079757A (en) 2000-06-23 2002-03-19 Tdk Corp Optical recording medium

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208442A (en) * 1986-03-07 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Rewriting type optical recording medium
JPS62208441A (en) * 1986-03-07 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Recording medium for rewriting type optical disk
JPS6376120A (en) * 1986-09-19 1988-04-06 Nippon Telegr & Teleph Corp <Ntt> Erasable type optical recording medium
JPS63187430A (en) * 1987-01-30 1988-08-03 Toshiba Corp Information recording medium
JP2827202B2 (en) * 1987-03-27 1998-11-25 東レ株式会社 Optical recording medium
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof
JPS63261552A (en) * 1987-04-18 1988-10-28 Fujitsu Ltd Production of optical information recording medium
JPS63263643A (en) * 1987-04-22 1988-10-31 Hoya Corp Recording film material for reloadable phase change type optical memory
JPH01100748A (en) * 1987-10-13 1989-04-19 Toshiba Corp Information recording medium
JPH01220147A (en) * 1988-02-26 1989-09-01 Nippon Telegr & Teleph Corp <Ntt> Information recording medium
JPH01277338A (en) * 1988-04-28 1989-11-07 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium
JPH01287834A (en) * 1988-05-14 1989-11-20 Hoya Corp Rewritable phase change type optical memory medium
JPH01303643A (en) * 1988-06-01 1989-12-07 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium

Also Published As

Publication number Publication date
JPH02151481A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
JP2585520B2 (en) Phase change recording medium
US5479382A (en) Information recording medium comprising recording layer capable of recording under-exposure to recording laser beam
JPH08258418A (en) Information recording medium
JPH0461791B2 (en)
JPH0671828B2 (en) Information recording thin film
US5314734A (en) Information-recording medium
JPH01245440A (en) Thin film for information recording
JP2776847B2 (en) Information recording thin film and information recording / reproducing method
EP0362852B1 (en) Information-recording thin film and method for recording and reproducing information
JP2679995B2 (en) Thin film for information recording
JPH04226785A (en) Optical information recording medium and information recording production method
JP2713908B2 (en) Information storage medium
JP2664207B2 (en) Thin film for information recording
JPH0363178A (en) Data recording membrane and data recording and reproducing method
JPH08329521A (en) Optical recording medium
JPH04226784A (en) Optical information recording medium and information recording propuction method
JPS6247839A (en) Thin film for information recording
JP2647059B2 (en) Thin film for information recording
JPS6313785A (en) Information recording film
JPH0829616B2 (en) Information recording member
JPS62181189A (en) Information-recording thin film and recording and reproduction of information
JPS63263642A (en) Thin film for information recording
JP2663940B2 (en) Phase change recording medium
JPH0315589A (en) Information recording thin film
JP2592239B2 (en) Information recording medium and information recording and erasing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees