JP2774277B2 - Multicolor phosphor screen forming method - Google Patents

Multicolor phosphor screen forming method

Info

Publication number
JP2774277B2
JP2774277B2 JP62274007A JP27400787A JP2774277B2 JP 2774277 B2 JP2774277 B2 JP 2774277B2 JP 62274007 A JP62274007 A JP 62274007A JP 27400787 A JP27400787 A JP 27400787A JP 2774277 B2 JP2774277 B2 JP 2774277B2
Authority
JP
Japan
Prior art keywords
phosphor
color
screen
phosphor screen
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62274007A
Other languages
Japanese (ja)
Other versions
JPH01115027A (en
Inventor
徹 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP62274007A priority Critical patent/JP2774277B2/en
Publication of JPH01115027A publication Critical patent/JPH01115027A/en
Application granted granted Critical
Publication of JP2774277B2 publication Critical patent/JP2774277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカラープラズマディスプレイなどに用いられ
る平面ガラス基板の電極面上に多色蛍光面を形成する方
法に関する。 〔従来の技術〕 近年平板ディスプレイとしてカラープラズマディスプ
レイが開発され、一部実用に供され始めている。カラー
プラズマディスプレイにはAC駆動型とDC駆動型があり、
AC駆動型はX電極及びY電極とも背面パネル上に形成さ
れ、誘電体層を介して放電空間が設けられたものであ
り、DC駆動型は背面パネル上に陰極を、前面パネル上に
陽極をそれぞれ有し、その間に放電空間が形成されたも
のである。いずれも前面パネルには蛍光体の層が形成さ
れている。 カラープラズマディスプレイにおいては、カラーブラ
ウン管(CRT)と同様に赤,青及び緑の三色の蛍光体が
塗り分けられている。このようなカラープラズマディス
プレイの多色蛍光面の形成方法としては、CRTの蛍光面
形成方法として一般に用いられているフォトプロセスに
よる方法を用いて、ガラス平板上に3色蛍光面を形成す
る方法が知られている。 この方法は、蛍光体をフォトレジストに分散させてス
ラリー液としたものをパネルに均一の厚さでコーティン
グした後、所定のパターン形状のマスクを用いて露光・
現像するという工程を、赤,緑,青の3色についてそれ
ぞれくり返すことにより、蛍光面を得るものである。 この従来の方法を具体的に示すと、第3図の通りとな
る。すなわち、(a)ガラス基板1を用意し、(b)そ
の上に蛍光体を分散させたフォトレジストのスラリー液
2を均一に塗布し、乾燥させた後、(c)第一の蛍光体
(例えば赤色)に応じたマスク3を用いて露光し、硬化
させ、(d)未硬化部分を温水による現像によって取り
除いて、第一の蛍光体のパターン4を形成する。次に
(e)第二の蛍光体を分散させたフォトレジストのスラ
リー液5を均一に塗布し、乾燥させた後、(f)第二の
蛍光体に応じたマスク6を用いて露光し、硬化させ、
(g)未硬化部分を温水による現像によって除去し、第
二の蛍光体のパターン7を形成する。同様にして(h)
第3の蛍光体を分散させたフォトレジストのスラリー液
8を均一に塗布し、乾燥させた後、(i)第二の蛍光体
に応じたマスク9を用いて露光し、硬化させ、(j)未
硬化部分を温水による現像によって除去し、第三の蛍光
体のパターン10を形成する。 〔発明が解決しようとする問題点〕 上記の従来技術においては、赤,緑,青のスラリー液
をそれぞれ均一にコーティングするために、材料が多量
に必要であり、かつ、塗布後除去した蛍光体の回収工程
にコストがかかる。また回収段階での材料ロスが発生す
るという問題もある。また各蛍光体ごとに露光・現像の
工程をとるために工程数が多く、特に現像の工程では多
量の温水を必要とするためコスト的にも問題がある。 また通常の場合ガラス基板に蛍光体スラリー液を均一
に塗布する方法として回転塗布法が用いられているが、
大型基板の場合基板を回転させる装置が必要であるばか
りでなく、中央部と端部での塗布厚の違いが生じるとい
う問題が生ずる。 さらに特性面を考えると、従来技術では各蛍光体スラ
リーを全面にコーティングするため、乾燥条件と現像条
件によっては未露光部に蛍光体が付着したままかぶりと
して残留し、混色の原因となるという問題もある。その
上3色蛍光体の位置関係についても、アライメント精度
が悪いとズレてしまうという問題がある。 従って、本発明の目的は煩雑な工程を経ることなくプ
ラズマディスプレイパネルの多色蛍光体を精度よくかつ
簡単に形成することができる方法を提供することであ
る。 〔問題点を解決するための手段〕 上記問題点に鑑み鋭意研究の結果、本発明者は、各色
蛍光体を分散させたフォトレジストのスラリー液をプラ
ズマディスプレイの平面ガラス基板の電極面のほぼ所定
の位置にほぼ所定の形状に粗く印刷し、ガラス基板の裏
面にマスクを設けて一度に露光し、現像すると、前記電
極もマスクとして作用し、前記電極のすぐ隣に各色の蛍
光体層が正確に形成されることを発見し、本発明に想到
した。 すなわちプラズマディスプレイの平面ガラス基板の電
極面上に多色蛍光面を形成する本発明の方法は、(a)
各色蛍光体をフォトレジストに分散させたスラリー液を
調製し、(b)前記スラリー液をそれぞれほぼ所定の形
状及び位置に互いに実質的に重ならないように印刷して
粗い形状の蛍光面を形成し、次いで(c)全色分の蛍光
体の所定の形状及び位置に対応する開口部を有するマス
クを前記ガラス基板の電極面の反対側に設けて一度に露
光・現像し、もって前記電極もマスクとして利用するこ
とにより前記電極のすぐ隣に各色の蛍光体層を形成する
ことを特徴とする。 〔作用〕 各色蛍光体を分散させたフォトレジストのスラリー液
を所定の形状及び位置に印刷し、ガラス基板の電極面の
反対側に設けたマスクを介して一度に露光し、現像する
ので、他色の位置に蛍光体が付着することがなく、蛍
光体感光液層の形成・露光及び現像を順々に行う従来の
方法にみられる蛍光体のかぶり(非露光部に残留した蛍
光体粉末)を防止することができ、もって混色のない多
色蛍光面を得ることができるだけでなく、電極上に塗
布された蛍光体は露光・硬化されずに除去されるので、
電極のすぐ隣に各色の蛍光体層が正確に形成される。 〔実施例〕 第1図はDC型プラズマディスプレイの典型的な構造を
示す。蛍光体22は陽極23の両サイドにパターンニングさ
れる。陽極23と直交する陰極24との間で放電され放出さ
れた紫外線により蛍光体が励起され発光する。この際放
電ギャップを決定するのが個々のセルを形成するセル障
壁25である。ここでは、蛍光体が陽極23に重なると抵抗
となり、放電電圧の上昇をひきおこす。一方陽極23から
遠ざかるとプラズマ状態のイオン場から離れるため、発
光効率の低下をひきおこす。ゆえに陽極23のすぐ隣に蛍
光面を形成することが必要になる。 第2図は陽極23があらかじめ形成されているガラス基
板1上に多色蛍光面を形成する方法の例を示す。まずガ
ラス基板1の電極面上の所定の位置に蛍光体を分散させ
たフォトレジストのスラリー液を所定の形状にスクリー
ン印刷方式等により塗布し、乾燥する(工程(a))。
この場合スクリーン印刷法等により形成する蛍光体のパ
ターン11は、スクリーン版の伸びや2色目、3色目の印
刷時のアライメント精度、マスクとのアライメント精度
を考えてマスク14の開口部サイズよりも大きくしなくて
はならない。但し、大きくしても2色目、3色目のパタ
ーンと重ならない程度の大きさにすることが重要であ
る。従って、第一の蛍光体層11がマスク14の対応する開
口部よりも一回り程大きくなるように第一の蛍光体のス
ラリー液を塗布することが必要である。同様に2色目1
2、3色目13もガラス基板上に印刷する(工程(b)〜
(c))。次に3色蛍光体11,12,13を所定の形状及び位
置に塗り分けたガラス基板1の裏面上に各色用の開口部
を具備したマスク14を設置し、3色とも一度に露光し、
硬化させる(工程(d))。 露光の際、マスク14のみならず陽極23もマスクとして
作用し、未露光部の蛍光体層は硬化されずに除去され
る。このようにして陽極23のすぐ隣にぴったりと各色の
蛍光体層11,12,13が形成される。なおマスク14はガラス
基板1の反対側の面上に設置されるので、ガラス基板1
の厚さだけ蛍光体との距離があき、光の乱反射等により
パターンの解像度が低下するが、各色蛍光体層11,12,13
を一度に露光・現像するので混色のおそれがない。これ
に対して、各色蛍光体の塗布・露光・現像を順に行う従
来の方法では以上の理由で混色は避けられない。 最後に温水等により現像し、未露光部分を除去する
(工程(e))。このようにして、1回の露光現像によ
り3色蛍光面を得ることができる。 これに対して、従来の方法では蛍光体スラリー液を全
面に均一塗布するため、乾燥条件や現像条件によっては
未露光部分に蛍光体が付着残留し、その部分に他色の蛍
光体が形成されることによる混色が引き起こされるおそ
れがある。本発明による蛍光面形成方法では、最初に
赤,緑,青の蛍光体をスクリーン印刷により塗り分ける
ことによって混色のおそれは全くない。 蛍光体スラリー液の塗布については、従来方式では回
転塗布法により蛍光体スラリー液の塗布を行なっていた
が、大型基板の場合、装置の問題があるとともに、基板
の中央部と端部の膜厚の均一性がくずれてくるため(端
部がうすくなる)良好な蛍光面を得ることができない。
これに対し、本発明の方法では、スクリーン印刷法等に
より印刷することができるので、スクリーン印刷機サイ
ズまでは塗布可能である。現在市販のスクリーン印刷機
は1m×1m以上のものもあり、大型基板に対応可能であ
る。さらに膜厚制御については、スラリー液が一旦スク
リーン版において乳剤厚によって決まる量に計量され、
そのスラリー液が基板に転写される方式をとるため、端
部と中央部でも膜厚は変わらず、均一で良好な蛍光面を
得ることができる。 以上においてスクリーン印刷による方法を述べてきた
が、スクリーン版に当たるものをマスクとし、印刷する
かわりにスプレーを用いて蛍光体スラリー液の塗布を行
なってもよい。スプレーを用いると、膜厚の均一性の制
御はスクリーン印刷に比べて幾分困難になるが、大型化
に対応するのは容易になる。 本発明の方法に使用する蛍光体としては、(Y,Gd)BO
3:Eu3+,Zn2SiO4:Mn,BaMgAl14O23:Eu2+等を使用すること
ができる。また蛍光体を分散させるフォトレジストとし
てはPVA−ジアゾニウム塩やPVA−ADC等を使用すること
ができる。そのスラリー液中の溶媒としては水やアルコ
ール類等を使用することができる。スラリー液中の蛍光
体の濃度は一般に5〜40重量%であり、ビヒクルの濃度
は0.3〜8重量%である。 〔発明の効果〕 従来の方法では、3色の蛍光体を塗り分ける場合露光
・現像工程を3回繰返していたが、本発明の方法による
と1回ですみ、工程の減少および現像に使用する温水の
節減が得られる。また露光の際に、従来の方法ではマス
クとのアライメントを3回とるため、精度によってズレ
が生じる。しかし、本発明では露光は一回のみであるの
で、簡単であるのみならずズレが生じないという利点を
有する。 従来の方法では蛍光体スラリー液を全面に均一塗布す
るため、乾燥条件や現像条件によっては、未露光部分に
蛍光体が付着残留し、その部分に他色の蛍光体が形成さ
れることによる混色がひきおこされるおそれがある。し
かし本発明による蛍光面形成方法では、最初に赤・緑・
青の蛍光体を塗り分け、一度に露光するため、混色のお
それは全くない。 その上、ガラス基板の裏面から一度に露光・現像する
ので、電極はマスクとして作用し、電極上に蛍光体層が
残ることはない。そのため電極のすぐ隣に各色の蛍光体
層が正確に形成されるという利点を有する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a multicolor phosphor screen on an electrode surface of a flat glass substrate used for a color plasma display or the like. [Related Art] In recent years, a color plasma display has been developed as a flat panel display, and a part thereof has begun to be put to practical use. There are two types of color plasma displays: AC drive type and DC drive type.
In the AC drive type, both the X and Y electrodes are formed on the back panel, and a discharge space is provided through a dielectric layer. In the DC drive type, a cathode is provided on the back panel and an anode is provided on the front panel. And a discharge space is formed between them. In each case, a phosphor layer is formed on the front panel. In a color plasma display, phosphors of three colors, red, blue, and green, are painted on similarly to a color cathode ray tube (CRT). As a method of forming a multicolor phosphor screen of such a color plasma display, a method of forming a three-color phosphor screen on a glass flat plate using a method by a photo process generally used as a phosphor screen forming method of a CRT is used. Are known. According to this method, a phosphor is dispersed in a photoresist to form a slurry liquid, a panel is coated with a uniform thickness, and then exposed and exposed using a mask having a predetermined pattern shape.
The process of developing is repeated for each of the three colors of red, green, and blue to obtain a phosphor screen. FIG. 3 shows the conventional method in detail. That is, (a) a glass substrate 1 is prepared, and (b) a slurry 2 of a photoresist in which a phosphor is dispersed is uniformly applied thereon and dried, and then (c) a first phosphor ( Exposure is performed by using a mask 3 corresponding to red (for example, red), and curing is performed. (D) An uncured portion is removed by development with warm water to form a first phosphor pattern 4. Next, (e) a photoresist slurry liquid 5 in which the second phosphor is dispersed is uniformly applied and dried, and then (f) exposed using a mask 6 corresponding to the second phosphor, Cured,
(G) The uncured portion is removed by development with warm water to form a second phosphor pattern 7. Similarly (h)
A photoresist slurry liquid 8 in which a third phosphor is dispersed is uniformly applied and dried, and then (i) exposed and cured using a mask 9 corresponding to the second phosphor, and (j) 3.) The uncured portion is removed by development with warm water to form a third phosphor pattern 10. [Problems to be Solved by the Invention] In the above-mentioned prior art, a large amount of material is required to uniformly coat the red, green, and blue slurries, and the phosphor removed after the application is applied. The cost of the recovery process is high. There is also a problem that material loss occurs in the recovery stage. In addition, since the exposure and development steps are performed for each phosphor, the number of steps is large. In particular, the development step requires a large amount of warm water, which is problematic in terms of cost. Also, in a normal case, a spin coating method is used as a method of uniformly applying a phosphor slurry liquid to a glass substrate,
In the case of a large-sized substrate, not only a device for rotating the substrate is required, but also a problem arises in that a difference in the coating thickness occurs between the central portion and the end portion. Considering further the characteristics, in the conventional technology, since each phosphor slurry is coated on the entire surface, depending on the drying conditions and the developing conditions, the phosphor remains on the unexposed portion as a fog and causes color mixing. There is also. In addition, there is a problem that the positional relationship between the three-color phosphors is shifted if the alignment accuracy is poor. Accordingly, an object of the present invention is to provide a method capable of accurately and easily forming a multicolor phosphor of a plasma display panel without going through complicated steps. [Means for Solving the Problems] In view of the above problems, as a result of diligent research, the present inventor has found that a slurry solution of a photoresist in which phosphors of each color are dispersed is applied to a substantially predetermined electrode surface of a flat glass substrate of a plasma display. When roughly printed in a predetermined shape at the position, a mask is provided on the back surface of the glass substrate and exposed at one time and developed, the electrodes also act as masks, and the phosphor layers of each color are accurately positioned immediately adjacent to the electrodes. And found the present invention. That is, the method of the present invention for forming a multicolor phosphor screen on the electrode surface of a flat glass substrate of a plasma display comprises the steps of (a)
A slurry liquid in which the phosphors of each color are dispersed in a photoresist is prepared, and (b) the slurry liquids are printed in substantially predetermined shapes and positions so as not to substantially overlap each other to form a rough fluorescent screen. Then, (c) a mask having openings corresponding to predetermined shapes and positions of the phosphors for all colors is provided on the opposite side of the electrode surface of the glass substrate, and is exposed and developed at one time. The phosphor layer of each color is formed immediately adjacent to the electrode by using the phosphor layer. [Action] A slurry liquid of a photoresist in which the phosphors of each color are dispersed is printed in a predetermined shape and position, and is exposed and developed at a time through a mask provided on the opposite side of the electrode surface of the glass substrate. Phosphor fogging (phosphor powder remaining in unexposed areas) observed in the conventional method of forming, exposing, and developing a phosphor photosensitive liquid layer in order without the phosphor adhering to the color position Not only can obtain a multicolor phosphor screen without color mixture, but also the phosphor applied on the electrode is removed without being exposed and cured,
A phosphor layer of each color is formed exactly next to the electrode. Embodiment FIG. 1 shows a typical structure of a DC plasma display. Phosphor 22 is patterned on both sides of anode 23. The phosphor is excited and emits light by the ultraviolet rays discharged and emitted between the anode 23 and the cathode 24 orthogonal to the cathode 23. At this time, it is the cell barrier 25 that forms the individual cells that determines the discharge gap. Here, when the phosphor overlaps the anode 23, it becomes a resistance, causing an increase in the discharge voltage. On the other hand, when the distance from the anode 23 increases, the distance from the ion field in the plasma state increases. Therefore, it is necessary to form a phosphor screen immediately adjacent to the anode 23. FIG. 2 shows an example of a method for forming a multicolor fluorescent screen on the glass substrate 1 on which the anode 23 has been formed in advance. First, a slurry liquid of a photoresist in which a phosphor is dispersed at a predetermined position on the electrode surface of the glass substrate 1 is applied in a predetermined shape by a screen printing method or the like, and dried (step (a)).
In this case, the phosphor pattern 11 formed by the screen printing method or the like is larger than the opening size of the mask 14 in consideration of the elongation of the screen plate, the alignment accuracy when printing the second color and the third color, and the alignment accuracy with the mask. I have to do it. However, it is important to make the size such that it does not overlap the patterns of the second color and the third color even if it is enlarged. Therefore, it is necessary to apply the slurry of the first phosphor so that the first phosphor layer 11 is slightly larger than the corresponding opening of the mask 14. Similarly 2nd color 1
The second and third colors 13 are also printed on the glass substrate (step (b)-
(C)). Next, a mask 14 having openings for each color is placed on the back surface of the glass substrate 1 in which three-color phosphors 11, 12, and 13 are separately applied in a predetermined shape and position, and all three colors are exposed at once.
It is cured (step (d)). At the time of exposure, not only the mask 14 but also the anode 23 acts as a mask, and the unexposed phosphor layer is removed without being cured. In this manner, the phosphor layers 11, 12, and 13 of each color are formed just next to the anode 23. Since the mask 14 is provided on the surface opposite to the glass substrate 1, the glass substrate 1
The distance from the phosphor is increased by the thickness of the phosphor, and the resolution of the pattern is reduced due to irregular reflection of light.
Are exposed and developed at once, so there is no risk of color mixing. On the other hand, in the conventional method of sequentially applying, exposing, and developing the phosphors of each color, color mixing cannot be avoided for the above reasons. Finally, development is performed with warm water or the like to remove unexposed portions (step (e)). In this way, a three-color phosphor screen can be obtained by one exposure and development. On the other hand, in the conventional method, since the phosphor slurry liquid is uniformly applied to the entire surface, the phosphor adheres and remains on the unexposed portion depending on the drying conditions and the developing conditions, and a phosphor of another color is formed on the portion. This may cause color mixing. In the phosphor screen forming method according to the present invention, the red, green and blue phosphors are first applied separately by screen printing, so that there is no fear of color mixing. In the conventional method, the phosphor slurry liquid is applied by a spin coating method in the conventional method. However, in the case of a large substrate, there is a problem with the apparatus and the film thickness at the center and the end of the substrate is increased. Since the uniformity of the image is degraded (the edges become thinner), it is not possible to obtain a good phosphor screen.
On the other hand, according to the method of the present invention, printing can be performed by a screen printing method or the like, so that application is possible up to the size of a screen printing machine. At present, some screen printing machines on the market have a size of 1m x 1m or more, and can handle large substrates. Further, regarding the film thickness control, the slurry liquid is once measured on the screen plate to an amount determined by the emulsion thickness,
Since the slurry liquid is transferred to the substrate, the film thickness does not change at the end and the center, and a uniform and good phosphor screen can be obtained. Although the method using screen printing has been described above, the phosphor slurry liquid may be applied using a spray instead of printing using a mask that hits the screen plate. The use of a spray makes it more difficult to control the uniformity of the film thickness than screen printing, but makes it easier to cope with an increase in size. The phosphor used in the method of the present invention includes (Y, Gd) BO
3 : Eu 3+ , Zn 2 SiO 4 : Mn, BaMgAl 14 O 23 : Eu 2+ or the like can be used. PVA-diazonium salt, PVA-ADC, or the like can be used as a photoresist in which the phosphor is dispersed. As the solvent in the slurry liquid, water, alcohols and the like can be used. The concentration of the phosphor in the slurry liquid is generally 5 to 40% by weight, and the concentration of the vehicle is 0.3 to 8% by weight. [Effect of the Invention] In the conventional method, when the phosphors of three colors are separately applied, the exposure and development steps are repeated three times. However, according to the method of the present invention, only one time is required, and the number of steps is reduced and used for development. Hot water savings are obtained. In addition, at the time of exposure, since alignment with a mask is performed three times in the conventional method, a deviation occurs due to accuracy. However, according to the present invention, since exposure is performed only once, there is an advantage that not only simplicity but also no deviation occurs. In the conventional method, since the phosphor slurry liquid is uniformly applied on the entire surface, depending on the drying conditions and the developing conditions, the phosphor adheres to the unexposed portion and remains, and the color mixture due to the formation of another color phosphor on the portion. May be caused. However, in the phosphor screen forming method according to the present invention, red, green, and
Since the blue phosphor is separately applied and exposed at once, there is no possibility of color mixing. In addition, since exposure and development are performed at once from the back surface of the glass substrate, the electrode functions as a mask, and the phosphor layer does not remain on the electrode. Therefore, there is an advantage that the phosphor layer of each color is formed accurately right next to the electrode.

【図面の簡単な説明】 第1図は本発明の方法を適用し得るプラズマディスプレ
イパネルの一例を示す概略断面図であり、 第2図は本発明の一実施例による多色蛍光面形成方法を
示す概略図であり、 第3図は従来の多色蛍光面形成方法を示す概略図であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing an example of a plasma display panel to which the method of the present invention can be applied, and FIG. 2 shows a method for forming a multicolor phosphor screen according to an embodiment of the present invention. FIG. 3 is a schematic view showing a conventional multicolor phosphor screen forming method.

Claims (1)

(57)【特許請求の範囲】 1.プラズマディスプレイの平面ガラス基板の電極面上
に多色蛍光面を形成する方法において、(a)各色蛍光
体をフォトレジストに分散させたスラリー液を調製し、
(b)前記スラリー液をそれぞれほぼ所定の形状及び位
置に互いに実質的に重ならないように印刷して粗い形状
の蛍光面を形成し、次いで(c)全色分の蛍光体の所定
の形状及び位置に対応する開口部を有するマスクを前記
ガラス基板の電極面の反対側に設けて一度に露光・現像
し、もって前記電極もマスクとして利用することにより
前記電極のすぐ隣に各色の蛍光体層を形成することを特
徴とする多色蛍光面形成方法。 2.特許請求の範囲第1項に記載の多色蛍光面形成方法
において、前記蛍光体分散スラリー液の印刷をスクリー
ン印刷法により行うことを特徴とする方法。 3.特許請求の範囲第1項又は第2項に記載の多色蛍光
面形成方法において、前記多色蛍光面を赤,緑及び青の
3色の蛍光体を塗り分けることにより形成することを特
徴とする方法。 4.特許請求の範囲第1項〜第3項のいずれかに記載の
多色蛍光面形成方法において、前記フォトレジストが硬
化剤としてジアゾニウム塩を含有することを特徴とする
方法。
(57) [Claims] In a method of forming a multicolor phosphor screen on an electrode surface of a flat glass substrate of a plasma display, (a) preparing a slurry liquid in which each color phosphor is dispersed in a photoresist,
(B) printing each of the slurry liquids in substantially predetermined shapes and positions so as not to substantially overlap each other to form a rough fluorescent screen; A mask having an opening corresponding to the position is provided on the opposite side of the electrode surface of the glass substrate and exposed and developed at a time, so that the electrode is also used as a mask, so that a phosphor layer of each color is immediately adjacent to the electrode. Forming a multicolor phosphor screen. 2. 2. The method for forming a multicolor phosphor screen according to claim 1, wherein the printing of the phosphor dispersion slurry liquid is performed by a screen printing method. 3. 3. The multicolor phosphor screen forming method according to claim 1, wherein the multicolor phosphor screen is formed by applying phosphors of three colors of red, green and blue. how to. 4. The method for forming a multicolor phosphor screen according to any one of claims 1 to 3, wherein the photoresist contains a diazonium salt as a curing agent.
JP62274007A 1987-10-28 1987-10-28 Multicolor phosphor screen forming method Expired - Fee Related JP2774277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274007A JP2774277B2 (en) 1987-10-28 1987-10-28 Multicolor phosphor screen forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274007A JP2774277B2 (en) 1987-10-28 1987-10-28 Multicolor phosphor screen forming method

Publications (2)

Publication Number Publication Date
JPH01115027A JPH01115027A (en) 1989-05-08
JP2774277B2 true JP2774277B2 (en) 1998-07-09

Family

ID=17535652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274007A Expired - Fee Related JP2774277B2 (en) 1987-10-28 1987-10-28 Multicolor phosphor screen forming method

Country Status (1)

Country Link
JP (1) JP2774277B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785565A1 (en) 1996-01-22 1997-07-23 Hitachi Chemical Co., Ltd. Phosphor pattern, processes for preparing the same and photosensitive element to be used for the same
EP0872870A3 (en) 1997-04-14 1999-05-06 Hitachi Chemical Co., Ltd. Fluorescent pattern, process for preparing the same, organic alkali developing solution for forming the same, emulsion developing solution for forming the same and back plate for plasma display using the same
EP0887833B1 (en) 1997-05-22 2006-08-16 Hitachi Chemical Co., Ltd. Process for preparing phosphor pattern for field emission panel and photosensitive element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386565A (en) * 1977-01-10 1978-07-31 Hitachi Ltd Manufacture of fluorescent screen for color braun tube

Also Published As

Publication number Publication date
JPH01115027A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
JP2774277B2 (en) Multicolor phosphor screen forming method
US5009972A (en) Blank plates for forming multi-color fluorescent planes and methods for forming multi-color fluorescent planes
JP2671126B2 (en) Multicolor phosphor screen forming method
KR100766509B1 (en) Method for forming phosphor screen for display
JP2006018263A (en) Photo development apparatus and method for fabricating color filter substrate using photo development apparatus
EP0739024B1 (en) Process for manufacturing fluorescent film of color Braun tube
JP2639965B2 (en) Plasma display
JP3367081B2 (en) Manufacturing method of color filter
JP2007019028A (en) Black top green sheet, plasma display panel, and method for manufacturing the same
JP2004342348A (en) Manufacturing method of plasma display panel
JP2732251B2 (en) Multicolor phosphor screen forming method
JPH08236019A (en) Manufacture of color cathode ray tube
JPH08222135A (en) Manufacture of plasma display panel
KR100350652B1 (en) Method for forming barrier rib and fluorescent layer of plasma display panel
JPH07272630A (en) Formation of phosphor screen for plasma display panel
JPH11306990A (en) Ac color plasma display panel and its manufacture
JP2002072507A (en) Method for forming pattern, method for manufacturing plasma display panel, the plasma display panel and plasma display device
JPH01246549A (en) Formation of multicolor fluorescent face
JPH01246551A (en) Formation of multicolor fluorescent face
JP2639964B2 (en) Phosphor screen formation method
JPH01313840A (en) Formation of fluorescent screen
JP2002216640A (en) Gas discharge device and manufacturing method of the same
JP2634895B2 (en) Plasma display and method of manufacturing the same
JPH01246550A (en) Formation of multicolor fluorescent face
JPH05134110A (en) Formation of photosensitive resin pattern

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees