JP2773217B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JP2773217B2
JP2773217B2 JP1088862A JP8886289A JP2773217B2 JP 2773217 B2 JP2773217 B2 JP 2773217B2 JP 1088862 A JP1088862 A JP 1088862A JP 8886289 A JP8886289 A JP 8886289A JP 2773217 B2 JP2773217 B2 JP 2773217B2
Authority
JP
Japan
Prior art keywords
lead wire
foil
anode
cathode
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1088862A
Other languages
Japanese (ja)
Other versions
JPH0380523A (en
Inventor
和生 関谷
明広 重城
弘幸 徳舛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1088862A priority Critical patent/JP2773217B2/en
Publication of JPH0380523A publication Critical patent/JPH0380523A/en
Application granted granted Critical
Publication of JP2773217B2 publication Critical patent/JP2773217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器に利用される電解コンデンサに
関するものである。
Description: TECHNICAL FIELD The present invention relates to an electrolytic capacitor used for various electronic devices.

従来の技術 近年、電子機器の軽薄短小化に伴って、それに使用さ
れる電解コンデンサも低背化径小化に対する要望が強く
なっている。このため、従来は、電解コンデンサのもつ
小形大容量と言う特徴を生かし、僅かな面積の陽極箔と
陰極箔にそれぞれ引出しリード線を接続し、そして前記
陽極箔と陰極箔をその間にセパレータを介在させて巻回
することによりコンデンサ素子を構成し、さらにこのコ
ンデンサ素子に電解液を含浸させ、その後、このコンデ
ンサ素子を収納したケースの開口部を封口して電解コン
デンサが用いられてきた。
2. Description of the Related Art In recent years, as electronic devices have become lighter and thinner, there has been a strong demand for electrolytic capacitors used therein to have a smaller height and a smaller diameter. For this reason, conventionally, taking advantage of the small and large capacity of the electrolytic capacitor, lead wires are respectively connected to the anode foil and the cathode foil having a small area, and a separator is interposed between the anode foil and the cathode foil. The capacitor element is formed by winding the capacitor element, and the electrolytic solution is impregnated in the capacitor element. Thereafter, an opening of a case accommodating the capacitor element is sealed to use an electrolytic capacitor.

発明が解決しようとする課題 しかしながら、陽極箔と陰極箔にそれぞれ接続された
引出しリード線の表面は平滑であるため、その実効表面
積は投影面積と等しいことから小さく、その結果、製品
の静電容量に対しては、引出しリード線部分は寄与しな
い。また、陽極側の引出しリード線は、陽極箔と共に陽
極酸化を行ってその表面に陽極酸化皮膜を形成するが、
熱衝撃試験を行うと、引出しリード線の表面の陽極酸化
皮膜に熱ストレスにより亀裂が生じ、漏れ電流が著しく
増大すると言う2つの大きい欠点があった。
However, since the surfaces of the lead wires connected to the anode foil and the cathode foil are smooth, the effective surface area thereof is small because it is equal to the projected area, and as a result, the capacitance of the product is reduced. , The lead wire portion does not contribute. In addition, the lead wire on the anode side is anodized together with the anode foil to form an anodic oxide film on the surface,
The thermal shock test has two major drawbacks: cracks occur in the anodic oxide film on the surface of the lead wire due to thermal stress, and the leakage current increases significantly.

本発明はこのような従来の欠点を解決するもので、引
出しリード線の部分の静電容量を陽極箔の静電容量に付
加することができ、しかも漏れ電流が増大することもな
く、小形大容量で漏れ電流の安定した特性を有する電解
コンデンサを提供することを目的とするものである。
The present invention solves such a conventional drawback, and can add the capacitance of the lead wire to the capacitance of the anode foil. An object of the present invention is to provide an electrolytic capacitor having a capacitance and a stable characteristic of a leakage current.

課題を解決するための手段 上記目的を達成するために本発明の電解コンデンサ
は、エッチングによりアルミニウム箔の表面積を拡大さ
せた後、その表面に陽極酸化を行って陽極酸化皮膜を形
成した陽極箔と、エッチングによりアルミニウム箔の表
面積を拡大させた陰極箔と、前記陽極箔に接続される陽
極引出しリード線と、前記陰極箔に接続される陰極引出
しリード線とを備え、前記陽極引出しリード線の表面を
エッチングにより粗面化して表面積を拡大させるととも
に、その表面に陽極酸化を行って陽極酸化皮膜を形成
し、かつ前記陰極引出しリード線の表面もエッチングに
より粗面化して表面積を拡大させたものである。
Means for Solving the Problems To achieve the above object, the electrolytic capacitor of the present invention is characterized in that after increasing the surface area of the aluminum foil by etching, the anode foil is formed by anodic oxidation on the surface to form an anodic oxide film. A cathode foil having a surface area of an aluminum foil enlarged by etching, an anode lead wire connected to the anode foil, and a cathode lead wire connected to the cathode foil; and a surface of the anode lead wire. In addition to roughening the surface by etching to increase the surface area, anodic oxidation is performed on the surface to form an anodic oxide film, and the surface of the cathode lead wire is also roughened by etching to increase the surface area. is there.

作用 上記構成によれば、陽極箔に接続される陽極引出しリ
ード線の表面をエッチングにより粗面化して表面積を拡
大させるとともに、その表面に陽極酸化を行って陽極酸
化皮膜を形成し、かつ陰極箔に接続される陰極引出しリ
ード線の表面もエッチングにより粗面化して表面積を拡
大させているため、この引出しリード線の表面積を拡大
させた分だけ引出しリード線の静電容量は大きくなり、
これにより、引出しリード線の部分の静電容量を陽極箔
および陰極箔の静電容量に付加することができるため、
製品全体の静電容量を大きくすることができ、また熱衝
撃試験を行った場合に、陽極引出しリード線の素材と表
面の陽極酸化皮膜の線膨脹率の違いがあっても、陽極引
出しリード線の表面をエッチングにより粗面化して表面
積を拡大させているため、この粗面化によるバッファー
効果が得られ、これにより、陽極酸化皮膜に熱ストレス
により亀裂が生じることはなくなるため、漏れ電流が増
大することはなく、その結果、小形大容量で漏れ電流の
安定した特性を有する電解コンデンサを得ることができ
るものである。
According to the above configuration, the surface of the anode lead wire connected to the anode foil is roughened by etching to increase the surface area, and the surface is anodized to form an anodized film, and the cathode foil is formed. The surface of the cathode lead wire connected to the cathode lead is also roughened by etching to increase the surface area, so that the capacitance of the lead lead wire increases as much as the surface area of the lead lead wire is increased,
Thereby, since the capacitance of the portion of the lead wire can be added to the capacitance of the anode foil and the cathode foil,
The capacitance of the entire product can be increased, and even if there is a difference in the linear expansion coefficient between the material of the anode lead wire and the anodic oxide film on the surface when a thermal shock test is performed, the anode lead wire The surface of the surface is roughened by etching to increase the surface area, so that the buffer effect is obtained by this surface roughening, whereby cracks do not occur in the anodic oxide film due to thermal stress, and the leakage current increases. As a result, it is possible to obtain an electrolytic capacitor having a small size, a large capacity, and a stable characteristic of leakage current.

実施例 以下、従来例および本発明の実施例を添付の図面を用
いて説明する。
Embodiments Hereinafter, conventional examples and embodiments of the present invention will be described with reference to the accompanying drawings.

まず、従来の電解コンデンサは第1図に示すように構
成されているもので、すなわち、この第1図において、
1はアルミニウムよりなるケースであり、このケース1
にはコンデンサ素子2が収納されている。このコンデン
サ素子2は、エッチングによりアルミニウム箔の表面積
を拡大させた後、その表面に陽極酸化を行って陽極酸化
皮膜を形成した陽極箔3に、陽極酸化を行って表面に陽
極酸化皮膜を形成した陽極引出しリード線4を接続し、
さらにエッチングによりアルミニウム箔の表面積を拡大
させた陰極箔5に陰極引出しリード線6を接続した後、
前記陽極箔3と陰極箔5をその間に紙などのセパレータ
7を介在させて巻回することにより構成している。そし
てこのコンデンサ素子2は電解液を含浸させた後、ケー
ス1内に収納し、その後、ケース1の開口部を封口体8
で封着することにより電解コンデンサは構成されてい
る。
First, a conventional electrolytic capacitor is configured as shown in FIG. 1, that is, in FIG.
Reference numeral 1 denotes a case made of aluminum.
Houses a capacitor element 2. In the capacitor element 2, after the surface area of the aluminum foil was enlarged by etching, the anode foil 3 having its surface anodized to form an anodized film was anodized to form an anodized film on the surface. Connect the anode lead wire 4,
Further, after connecting the cathode lead wire 6 to the cathode foil 5 whose surface area of the aluminum foil was enlarged by etching,
The anode foil 3 and the cathode foil 5 are wound by interposing a separator 7 such as paper between them. After the capacitor element 2 is impregnated with the electrolytic solution, it is housed in the case 1, and then the opening of the case 1 is
Thus, an electrolytic capacitor is formed by sealing.

一方、本発明の実施例による電解コンデンサは、第1
図における陽極引出しリード線4および陰極引出しリー
ド線6の表面をエッチングにより粗面化して表面積を拡
大させた構成としたもので、その他の部品材料および電
解コンデンサの作り方は、従来例と全く同じである。
On the other hand, the electrolytic capacitor according to the embodiment of the present invention has the first
In the drawing, the surface of the anode lead wire 4 and the cathode lead wire 6 is roughened by etching to increase the surface area, and the other component materials and the method of manufacturing the electrolytic capacitor are exactly the same as the conventional example. is there.

上記した本発明の実施例による陽極引出しリード線4
と陰極引出しリード線6を用いると、第2図の中のClA
およびClCがエッチングにより粗面化して表面積を拡大
させた分だけ大きくなり、これにより、引出しリード線
4,6の部分の静電容量を陽極箔3および陰極箔5の静電
容量に付加することができるため、製品全体の静電容量
も大きくなる。また、熱衝撃試験を行った場合に、陽極
引出しリード線4の素材と表面の陽極酸化皮膜の線膨脹
率の違いがあっても、陽極引出しリード線4の表面をエ
ッチングにより粗面化して表面積を拡大させているた
め、この粗面化によるバッファー効果が得られ、これに
より、陽極酸化皮膜に熱ストレスにより亀裂が生じるこ
とはなくなるため、第2図のRlが小さくなることはなく
安定した漏れ電流特性を引出すことが可能となるもので
ある。
Anode lead wire 4 according to the embodiment of the present invention described above.
When the cathode lead wire 6 is used, Cl A in FIG.
And Cl C are roughened by etching, and the surface area is increased by the amount corresponding to the surface area.
Since the capacitance of the portions 4 and 6 can be added to the capacitance of the anode foil 3 and the cathode foil 5, the capacitance of the whole product also increases. Also, when a thermal shock test is performed, even if there is a difference in the linear expansion coefficient between the material of the anode lead wire 4 and the anodic oxide film on the surface, the surface of the anode lead wire 4 is roughened by etching to obtain a surface area. As a result, a buffer effect is obtained by this surface roughening, and as a result, cracks do not occur in the anodic oxide film due to thermal stress, so that Rl in FIG. This makes it possible to draw out current characteristics.

一方、従来の陽極引出しリード線と陰極引出しリード
線を用いた場合、その表面は平滑となっているため、第
2図のClAとClCはきわめて小さく、これらは、陽極箔お
よび陰極箔の静電容量と比較すると0に等しく、その結
果、製品全体の静電容量は陽極箔および陰極箔の静電容
量で示されるものである。また、熱衝撃試験を行うと、
陽極引出しリード線4の素材と表面の陽極酸化皮膜の線
膨脹率の違いによって陽極酸化皮膜には熱ストレスによ
る亀裂が生じるため、第2図のRlは小さくなり、これに
より、漏れ電流が増大して不安定な製品特性となるもの
である。
On the other hand, when the conventional anode lead wire and cathode lead wire are used, their surfaces are smooth, so Cl A and Cl C in FIG. 2 are extremely small. Compared to the capacitance, it is equal to 0, so that the capacitance of the whole product is indicated by the capacitance of the anode foil and the cathode foil. When a thermal shock test is performed,
The crack in the anodic oxide film due to thermal stress occurs due to the difference in the linear expansion coefficient between the material of the anode lead wire 4 and the anodic oxide film on the surface, so that Rl in FIG. 2 becomes small, thereby increasing the leakage current. And unstable product characteristics.

以上のように本発明の電解コンデンサは、製品の静電
容量を増大させることができるとともに、安定した漏れ
電流特性を実現できるものである。
As described above, the electrolytic capacitor of the present invention can increase the capacitance of a product and can realize stable leakage current characteristics.

以下、本発明による具体例について述べる。 Hereinafter, specific examples according to the present invention will be described.

(実施例1) 陽極引出しリード線および陰極引出しリード線を正り
ん酸2%で、かつ液温が80℃の水溶液中に1分間浸漬し
て脱脂を行い、かつ水洗いをした後、塩酸10%で、かつ
液温が25℃の水溶液中で5Hzの正弦波交流を0.1A/cm2
電流密度で3分間印加してエッチングを行い、その後、
硫酸5%で、かつ液温が60℃の水溶液中に1分間浸漬
し、塩素分を取り除き、そして水洗い、乾燥を行った
後、それぞれ、陽極箔と陰極箔に接続し、50(V)1
(μF)(φ3×5)の定格で内部のコンデンサ素子
を巻取り、そしてこのコンデンサ素子に電解液を含浸さ
せて、組み立て、かつエージング処理を施して電解コン
デンサを作製した。
(Example 1) An anode lead wire and a cathode lead wire were degreased by immersion in an aqueous solution of orthophosphoric acid 2% and a liquid temperature of 80 ° C for 1 minute, and after washing with water, hydrochloric acid 10% In a solution having a liquid temperature of 25 ° C., a sine wave alternating current of 5 Hz is applied at a current density of 0.1 A / cm 2 for 3 minutes to perform etching.
After being immersed in an aqueous solution of sulfuric acid 5% at a temperature of 60 ° C. for 1 minute to remove the chlorine content, washed with water and dried, they were connected to an anode foil and a cathode foil, respectively, to obtain 50 (V) 1.
The internal capacitor element was wound up at a rating of (μF) (φ3 × 5), and the capacitor element was impregnated with an electrolytic solution, assembled, and subjected to an aging treatment to produce an electrolytic capacitor.

(実施例2) 陽極引出しリード線および陰極引出しリード線を正り
ん酸2%で、かつ液温が80℃の水溶液中に1分間浸漬し
て脱脂を行い、かつ水洗いをした後、塩酸10%で、かつ
液温が30℃の水溶液中で15Hzの正弦波交流を0.2A/cm2
電流密度で1分30秒間印加してエッチングを行い、その
後、硫酸5%で、かつ液温が60℃の水溶液中に1分間浸
漬し、塩素分を取り除き、そして水洗い、乾燥を行った
後、実施例1と同じ方法で電解コンデンサを作製した。
(Example 2) Anode lead wires and cathode lead wires were degreased by immersion in an aqueous solution of orthophosphoric acid 2% and a liquid temperature of 80 ° C for 1 minute, and after washing with water, hydrochloric acid 10% Etching is performed by applying a 15 Hz sine wave alternating current at a current density of 0.2 A / cm 2 for 1 minute and 30 seconds in an aqueous solution having a liquid temperature of 30 ° C., and thereafter, sulfuric acid 5% and a liquid temperature of 60 After being immersed in an aqueous solution of 1 ° C. for 1 minute to remove chlorine content, washed with water and dried, an electrolytic capacitor was produced in the same manner as in Example 1.

(実施例3) 陽極引出しリード線および陰極引出しリード線を正り
ん酸2%で、かつ液温が80℃の水溶液中に1分間浸漬し
て脱脂を行い、かつ水洗いをした後、塩酸10%で、かつ
液温が55℃の水溶液中で120Hzの正弦波交流を0.8A/cm2
の電流密度で20秒間印加してエッチングを行い、その
後、硫酸5%で、かつ液温が60℃の水溶液中に1分間浸
漬し、塩素分を取り除き、そして水洗い、乾燥を行った
後、実施例1と同じ方法で電解コンデンサを作製した。
(Example 3) The anode lead wire and the cathode lead wire were immersed in an aqueous solution of 2% orthophosphoric acid and a solution temperature of 80 ° C for 1 minute to perform degreasing, washed with water, and then washed with 10% hydrochloric acid. And a sinusoidal alternating current of 120 Hz in an aqueous solution with a liquid temperature of 55 ° C is 0.8 A / cm 2
Etching is performed by applying a current density of 20 seconds for 20 seconds, and then immersed in an aqueous solution of sulfuric acid 5% at a liquid temperature of 60 ° C. for 1 minute to remove chlorine content, and then washed with water and dried. An electrolytic capacitor was manufactured in the same manner as in Example 1.

(従来例) 陽極引出しリード線および陰極引出しリード線を正り
ん酸2%で、かつ液温が80℃の水溶液中に1分間浸漬し
て脱脂を行い、そして水洗い、乾燥を行った後、陽極引
出しリード線および陰極引出しリード線の表面が平滑な
状態で実施例1と同じ方法で電解コンデンサを作製し
た。
(Conventional example) An anode lead wire and a cathode lead wire are immersed in an aqueous solution of 2% orthophosphoric acid and having a liquid temperature of 80 ° C. for 1 minute to perform degreasing, and then washed with water and dried. An electrolytic capacitor was produced in the same manner as in Example 1 with the surfaces of the lead wires and the cathode lead wires being smooth.

実施例1〜3および従来例で用いた電解コンデンサの
静電容量、損失角の正接、漏れ電流の初期特性を第1表
に示す。また、−55〜+105(℃)の熱衝撃試験後の静
電容量、損失角の正接、漏れ電流の測定結果を第2表に
示す。
Table 1 shows the initial characteristics of the capacitance, the loss tangent, and the leakage current of the electrolytic capacitors used in Examples 1 to 3 and the conventional example. Table 2 shows the measurement results of the capacitance, the tangent of the loss angle, and the leakage current after the thermal shock test at −55 to +105 (° C.).

以上の結果からも明らかなように、実施例1,2,3は従
来例に比べ、初期の静電容量が大きく、熱衝撃試験後の
漏れ電流も初期特性に対しては劣化は小さく、優れた特
性を示すことは明らかである。
As is clear from the above results, Examples 1, 2, and 3 have a larger initial capacitance and a smaller leakage current after the thermal shock test with respect to the initial characteristics as compared with the conventional example. It is evident that it exhibits the following characteristics.

発明の効果 以上のように本発明の電解コンデンサは、陽極箔に接
続される陽極引出しリード線の表面をエッチングにより
粗面化して表面積を拡大させるとともに、その表面に陽
極酸化を行って陽極酸化皮膜を形成し、かつ陰極箔に接
続される陰極引出しリード線の表面もエッチングにより
粗面化して表面積を拡大させているため、この引出しリ
ード線の表面積を拡大させた分だけ引出しリード線の静
電容量は大きくなり、これにより、引出しリード線の部
分の静電容量を陽極箔および陰極箔の静電容量に付加す
ることができるため、製品全体の静電容量を大きくする
ことができ、また熱衝撃試験を行った場合に、陽極引出
しリード線の素材と表面の陽極酸化皮膜の線膨脹率の違
いがあっても、陽極引出しリード線の表面をエッチング
により粗面化して表面積を拡大させているため、この粗
面化によるバッファー効果が得られ、これにより、陽極
酸化皮膜に熱ストレスにより亀裂が生じることはなくな
るため、漏れ電流が増大することはなく、その結果、小
形大容量で漏れ電流の安定した特性を有する電解コンデ
ンサを得ることができるものである。
Effects of the Invention As described above, the electrolytic capacitor of the present invention has a surface area of an anode lead wire connected to an anode foil, which is roughened by etching to increase the surface area, and anodized on the surface by performing anodization. And the surface of the cathode lead wire connected to the cathode foil is roughened by etching to increase the surface area, so that the surface area of the lead wire is increased by an amount corresponding to the increased surface area. The capacitance increases, and the capacitance of the lead wire portion can be added to the capacitance of the anode foil and the cathode foil, so that the capacitance of the entire product can be increased and the heat can be increased. Even if there is a difference in the linear expansion coefficient between the material of the anode lead wire and the anodic oxide film on the surface in the impact test, the surface of the anode lead wire is roughened by etching. Since the surface is enlarged to increase the surface area, a buffer effect is obtained by this roughening, and thereby, cracks are not generated due to thermal stress in the anodic oxide film, so that the leakage current does not increase, and As a result, it is possible to obtain a small and large-capacity electrolytic capacitor having a stable characteristic of leakage current.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による電解コンデンサの構造
を示す斜視図、第2図は電解コンデンサの等価回路図で
ある。 1……ケース、2……コンデンサ素子、3……陽極箔、
4……陽極引出しリード線、5……陰極箔、6……陰極
引出しリード線、7……セパレータ、8……封口体。
FIG. 1 is a perspective view showing the structure of an electrolytic capacitor according to one embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of the electrolytic capacitor. 1 ... case, 2 ... capacitor element, 3 ... anode foil,
4 Anode lead wire, 5 Cathode foil, 6 Cathode lead wire, 7 Separator, 8 Sealing body.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭57−91233(JP,U) 実開 昭56−96671(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01G 9/008 H01G 4/228──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-91233 (JP, U) JP-A-56-96671 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01G 9/008 H01G 4/228

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エッチングによりアルミニウム箔の表面積
を拡大させた後、その表面に陽極酸化を行って陽極酸化
皮膜を形成した陽極箔と、エッチングによりアルミニウ
ム箔の表面積を拡大させた陰極箔と、前記陽極箔に接続
される陽極引出しリード線と、前記陰極箔に接続される
陰極引出しリード線とを備え、前記陽極引出しリード線
の表面をエッチングにより粗面化して表面積を拡大させ
るとともに、その表面に陽極酸化を行って陽極酸化皮膜
を形成し、かつ前記陰極引出しリード線の表面もエッチ
ングにより粗面化して表面積を拡大させたことを特徴と
する電解コンデンサ。
An anode foil having an aluminum oxide having a surface area enlarged by etching and then anodizing the surface of the aluminum foil to form an anodic oxide film thereon, a cathode foil having an aluminum foil having an increased surface area by etching, and An anode lead wire connected to the anode foil and a cathode lead wire connected to the cathode foil are provided, and the surface of the anode lead wire is roughened by etching to increase the surface area, and the surface is enlarged. An electrolytic capacitor characterized by forming an anodized film by performing anodization and roughening the surface of the cathode lead wire by etching to increase the surface area.
JP1088862A 1989-04-07 1989-04-07 Electrolytic capacitor Expired - Fee Related JP2773217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088862A JP2773217B2 (en) 1989-04-07 1989-04-07 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088862A JP2773217B2 (en) 1989-04-07 1989-04-07 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0380523A JPH0380523A (en) 1991-04-05
JP2773217B2 true JP2773217B2 (en) 1998-07-09

Family

ID=13954811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088862A Expired - Fee Related JP2773217B2 (en) 1989-04-07 1989-04-07 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2773217B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513121A (en) * 1993-01-11 1996-04-30 Olympus Optical Co., Ltd. Optical head
FR2788877B1 (en) 1999-01-27 2001-11-09 Nichicon Corp ELECTROLYTIC ALUMINUM CAPACITOR
WO2000075942A1 (en) * 1999-06-04 2000-12-14 Matsushita Electric Industrial Co., Ltd. Capacitor and method of producing same
JP4878967B2 (en) * 2006-09-07 2012-02-15 三洋電機株式会社 Electrolytic capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696671U (en) * 1979-12-25 1981-07-31
JPS5791233U (en) * 1980-11-26 1982-06-04

Also Published As

Publication number Publication date
JPH0380523A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
TWI416558B (en) Solid electrolytic capacitor and manufacturing method thereof
JP2773217B2 (en) Electrolytic capacitor
JP2011193035A (en) Solid electrolytic capacitor element, method for manufacturing the same, and solid electrolytic capacitor
US3234628A (en) Capacitor manufacture
JP3550232B2 (en) Method of manufacturing tab terminal for electrolytic capacitor
US3270254A (en) Electrical capacitors and method of making the same
JPH0354811A (en) Solid electrolytic capacitor
JP3467827B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
US3245888A (en) Method of electroforming an electrolytic capacitor electrode
JPH0513286A (en) Solid electrolytic capacitor
JP2532492B2 (en) Electrolytic capacitor
JP3483681B2 (en) Method of manufacturing tab terminal for electrolytic capacitor
JPS6065516A (en) Method of treating electrode lead for aluminum electrolytic condenser
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JP2960088B2 (en) Solid electrolytic capacitors
JPH06140289A (en) Manufacture of electrolytic capacitor tab terminal
JPH06132172A (en) Manufacture of tab terminal for electrolytic capacitor
JPH06132174A (en) Manufacture of tab terminal for electrolytic capacitor
JPH06132170A (en) Tab terminal for electrolytic capacitor and it manufacture
JPS6016414A (en) Method of producing solid electrolytic condenser
JPH0684712A (en) Manufacture of chip type solid electrolytic capacitor
JPS60195921A (en) Aluminum electrolytic condenser
JPH06132173A (en) Manufacture of tab terminal for electrolytic capacitor
JPH0513285A (en) Solid electrolytic capacitor
JPH09219343A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees