JP2772378B2 - Water purification equipment for closed water bodies - Google Patents

Water purification equipment for closed water bodies

Info

Publication number
JP2772378B2
JP2772378B2 JP13487989A JP13487989A JP2772378B2 JP 2772378 B2 JP2772378 B2 JP 2772378B2 JP 13487989 A JP13487989 A JP 13487989A JP 13487989 A JP13487989 A JP 13487989A JP 2772378 B2 JP2772378 B2 JP 2772378B2
Authority
JP
Japan
Prior art keywords
water
area
closed
surrounding
biofilm contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13487989A
Other languages
Japanese (ja)
Other versions
JPH03196A (en
Inventor
千明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP13487989A priority Critical patent/JP2772378B2/en
Publication of JPH03196A publication Critical patent/JPH03196A/en
Application granted granted Critical
Publication of JP2772378B2 publication Critical patent/JP2772378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、入り江、湾、港湾、湖沼等のような比較
的汚染度の高い水域またはその水域に面した内陸に設け
られた閉鎖性水域内の水質を浄化する閉鎖性水域の水質
浄化設備に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a closed water area provided in a relatively polluted water area such as a bay, a bay, a harbor, a lake or the like, or inland facing the water area. The present invention relates to a water purification system for a closed water body for purifying water in a building.

「従来の技術」 近年、大都市近辺の港湾は埋め立てが進み、水辺は人
工的な直立護岸で囲われ、産業優先、機能優先の海辺が
形成されてきた。
"Conventional technology" In recent years, ports near large cities have been reclaimed, watersides have been surrounded by artificial upright revetments, and seashores with priority on industry and functions have been formed.

例えば東京湾などでは、海岸線のうち直立護岸が占め
る割合が全体の65%にも達し、自然の干潟は僅か1〜2
ケ所を留めるに過ぎない。一方、こうした背景下で自然
を取り戻し、水と親しめる親水空間、アメニティーゾー
ン(快適で、生活を楽しくするような地域)を造成して
生活に潤いを取り戻そうといった社会ニーズは日増しに
高まりつつある。
For example, in Tokyo Bay, upright seawalls account for 65% of the coastline, and natural tidal flats are only 1-2%.
It just keeps the place. On the other hand, social needs are increasing every day to restore nature and create a hydrophilic space and amenity zone (comfortable and enjoyable life) to get close to water and restore life. .

ところで、例えば周辺海域から完全に閉鎖された閉鎖
水域の場合には、潮汐による周期的な水位変動がないた
め、干潟に生息するような種々の生物により水質が浄化
されるということはあまり期待することができず、その
閉鎖水域内の水を長期間滞留させたままとしておいた場
合には、プランクトンの増殖等により水質が悪化してい
く恐れがある。
By the way, for example, in the case of a closed water area completely closed from the surrounding sea area, there is no periodic water level fluctuation due to tide, so it is expected that the water quality will be purified by various organisms such as tidal flats If the water in the closed water area is kept for a long period of time, the water quality may deteriorate due to plankton multiplication or the like.

一方、水質浄化にあたって、特に微生物膜による場合
には、微生物の付着する表面積を広くして微生物膜量
を多くとること、浄化対象とする水と微生物膜を効果
的に接触させるために接触速度をある程度以上とるこ
と、好気性微生物による浄化に際して一定以上の溶存
酸素濃度を得ることが必要である。
On the other hand, when purifying water, especially when using a microbial membrane, increase the surface area to which microorganisms are attached to increase the amount of the microbial membrane, and increase the contact speed to effectively contact the water to be purified with the microbial membrane. It is necessary to take a certain level or more, and to obtain a certain or higher dissolved oxygen concentration during purification by aerobic microorganisms.

「発明が解決しようとする課題」 しかしながら、海岸線において自然を取り戻して生活
に潤いを取り戻そうといった社会ニーズの最も大きな大
都市圏の港湾海域などでは、特に水質が悪いため、海水
浴その他の海洋レジャーには適さない場合が多い。そし
て、このような大都市圏の周辺海域においては、埋め立
てが進んでいるため、遊休化して水質が悪化した運河な
ども数多く見られる。
"Problems to be solved by the invention" However, in the seaport areas of metropolitan areas where social needs are the greatest, such as the need to restore nature and restore life on the coastline, the water quality is particularly poor, so sea bathing and other marine leisure activities are difficult. Is often not suitable. In the sea area surrounding such metropolitan areas, landfills are advancing, and there are many canals whose water quality has deteriorated due to idleness.

その上、このような運河等の海水を浄化する場合に
は、一般の排水と比べて比較的汚染度の低い水を大量に
浄化することになるので、水質浄化にあたって特に溶存
酸素を増加させる手段を必要としないが、微生物膜と適
当な接触速度をとるための流動エネルギーが必要とな
る。このため、運河等の水質を浄化する場合には、大量
の海水を低コストで浄化する技術がなければ採算が合わ
なくなり、そのために十分な流動エネルギーをできる限
り低コストで確保する必要がある。
In addition, when purifying seawater such as canals, a large amount of water with relatively low pollution compared to general wastewater is to be purified. Is not required, but fluid energy is required to obtain an appropriate contact speed with the microbial membrane. Therefore, when purifying the water quality of a canal or the like, it is not profitable if there is no technology for purifying a large amount of seawater at low cost, and it is necessary to secure sufficient flow energy at the lowest possible cost.

また、海水性の閉鎖性水域の場合、その閉鎖性水域内
の水を周辺海域の海水と周期的に交換することによって
その閉鎖性水域内の水質改善を図ることも考えられる
が、その場合にも、閉鎖性水域内の水質が周辺海域の水
質以上には改善されないため、周辺海域の水質が悪い場
合には、閉鎖性水域に海水交換機能を持たせたとしても
その閉鎖性水域内の水質を適正な水質に改善することが
できる。
In the case of a closed seawater area, it is also conceivable to improve the water quality in the closed water area by periodically exchanging the water in the closed water area with seawater in the surrounding sea area. However, since the water quality in the closed water area is not improved more than the water quality in the surrounding sea area, if the water quality in the surrounding sea area is poor, even if the closed water area has a seawater exchange function, the water quality in the closed water area will not be improved. Can be improved to an appropriate water quality.

そこで、最近では、対象とする閉鎖性水域の水と周辺
海域との水の交換を必要最小限にして実質的に行わず、
かつその閉鎖性水域内において適当な接触速度を生じさ
せるために十分な流動エネルギーを低コストで確保する
技術の開発が望まれていた。
Therefore, recently, the exchange of water between the target closed water area and the surrounding sea area has been minimized and practically not performed.
Further, there has been a demand for the development of a technique for ensuring sufficient flow energy at low cost to generate an appropriate contact speed in the closed water area.

この発明は、上記事情に鑑みてなされたもので、海域
等の周辺水域から閉鎖された閉鎖性水域の水質浄化を行
なう際に、基本的に周辺水域との水の交換を行わず、か
つ自然エネルギーを利用して効率的に水質浄化を行なう
ことのできる閉鎖性水域の水質浄化設備を提供すること
を目的としている。
The present invention has been made in view of the above circumstances, and basically does not exchange water with a surrounding water area when purifying water in a closed water area closed from a surrounding water area such as a sea area, and naturally. It is an object of the present invention to provide a water purification system for closed water bodies that can efficiently purify water using energy.

「課題を解決するための手段」 この発明の閉鎖性水域の水質浄化設備は、周辺水域か
ら閉鎖された閉鎖性水域内に、その閉鎖性水域を複数の
領域に隔離する透水性の生物膜接触領域が設けられ、か
つ上記領域のうち少なくとも一つの領域に、上記周辺水
域と連通する開口部が設けられていると共に、その領域
内に、上記開口部に連結されて上記周辺水域からの水の
導入量に応じて体積変化する膨縮材が水没状態で設けら
れているものである。
[Means for Solving the Problems] The water purification system for closed water bodies according to the present invention includes a water-permeable biofilm that separates the closed water area into a plurality of areas in a closed water area closed from a surrounding water area. A region is provided, and in at least one of the regions, an opening communicating with the peripheral water region is provided, and in the region, water from the peripheral water region is connected to the opening. An expanding / contracting material whose volume changes according to the amount of introduction is provided in a submerged state.

「作用」 この発明の閉鎖性水域の水質浄化設備では、周辺水域
から閉鎖された閉鎖性水域内に、その閉鎖性水域を複数
の領域に隔離する透水性の生物膜接触領域を設け、かつ
上記領域のうち少なくとも一つの領域に、上記周辺水域
と連通する開口部を設けると共に、その領域内に、上記
開口部に連結されて上記周辺水域からの水の導入量に応
じて体積変化する膨縮材を水没状態で設けたことによっ
て、下記のように、周辺水域の潮汐力によって閉鎖性水
域内に流動エネルギーを生じさせ、かつその流動エネル
ギーにより該閉鎖性水域内の水を流動させて生物膜接触
領域を通過させる。そして、その際、生物膜接触領域内
に固定化された微生物膜と水との接触速度を適正な速度
に保つことによって、その生物膜接触領域を通過する水
を微生物膜の有機物分解作用により浄化する。
[Operation] In the water purification apparatus for closed water bodies of the present invention, a water-permeable biofilm contact area for isolating the closed water area into a plurality of areas is provided in the closed water area closed from the surrounding water area, and An opening communicating with the peripheral water area is provided in at least one of the areas, and in the area, expansion and contraction that is connected to the opening and changes in volume according to the amount of water introduced from the peripheral water area. By providing the material in the submerged state, as described below, the tidal force of the surrounding water generates flow energy in the closed water area, and the flow energy causes the water in the closed water area to flow, thereby causing the biofilm. Pass through the contact area. At this time, the water passing through the biofilm contact area is purified by the organic matter decomposition action of the microbial membrane by maintaining the contact speed between the microorganism membrane immobilized in the biofilm contact area and water at an appropriate speed. I do.

すなわち、周辺水域の水位が干潮時から満潮時にかけ
て上げ潮により上昇していく際には、その周辺水域と閉
鎖性水域との間に水位差が生じ、その水位差による位置
エネルギーによって周辺水域から開口部を通って閉鎖性
水域へ向かう水の流れが生じ、それによって周辺水域の
水が開口部を通過して膨縮材の内部に導入されることと
なる。このようにして膨縮材の内部に水が導入されてい
くと、該閉鎖性水域内の上記膨縮材が設けられている領
域の水位が上昇してその領域と生物膜接触領域との間に
水位差が生じ、同時にその水位差によってその領域の水
が生物膜接触領域へ流入することによりその生物膜接触
領域の水位が上昇し、これによりその生物膜接触領域と
該生物膜接触領域により上記領域から隔離された反対側
の領域との間に水位差が生じ、さらにその水位差によっ
て生物膜接触領域の水が上記領域と反対側の領域へ流出
してその領域の水位も上昇していくこととなる。この場
合、上記生物膜接触領域中を通過する水は、その生物膜
接触領域内に固定化された微生物膜と適度な接触速度を
確保しながら通過していくことによって、微生物膜の有
機物分解作用により効果的に浄化されていく。そして、
このようにして、周辺水域が満潮になった時に、該閉鎖
性水域内の全ての領域の水位が周辺水域の水位と同一水
位まで上昇することとなる。
In other words, when the water level in the surrounding water area rises due to rising tide from low tide to high tide, a water level difference occurs between the surrounding water area and the closed water area, and the potential energy due to the water level difference causes an opening from the surrounding water area. A flow of water through the section towards the closed body of water occurs, thereby causing water in the surrounding body of water to pass through the opening and into the interior of the expansion and contraction material. When water is introduced into the expanding / contracting material in this manner, the water level of the region where the expanding / contracting material is provided in the closed water area rises, and the water level between the region and the biofilm contact region is increased. A difference in water level occurs at the same time, and at the same time the water level in the biofilm contact area rises due to the water in the area flowing into the biofilm contact area due to the water level difference, whereby the biofilm contact area and the biofilm contact area A water level difference occurs between the opposite area isolated from the area, and the water level difference causes the water in the biofilm contact area to flow out to the area opposite to the area and the water level in the area also rises. It will go. In this case, the water that passes through the biofilm contact area passes through the biofilm contact area with the microbial membrane immobilized in the biofilm contact area while securing an appropriate contact speed, thereby decomposing the organic matter of the microbial membrane. It will be more effectively purified. And
In this way, when the surrounding water area becomes high tide, the water levels of all areas in the closed water area rise to the same water level as the water level of the surrounding water area.

また、周辺水域の水位が満潮から干潮にかけて引き潮
により下降していく際には、その周辺水域と閉鎖性水域
との間に水位差が生じ、その水位差による位置エネルギ
ーによって閉鎖性水域から開口部を通って周辺水域へ向
かう水の流れが生じ、それによって閉鎖性水域内に設け
られている膨縮材の内部の水が開口部を通過して周辺水
域へ流出していくこととなる。このようにして膨縮材の
内部の水が周辺水域へ流出していくと、該閉鎖性水域内
の上記膨縮材が設けられている領域の水位が下降してそ
の領域と生物膜接触領域との間に水位差が生じ、同時に
その水位差によってその領域に生物膜接触領域の水が流
入することによりその生物膜接触領域の水位が下降し、
これによりその生物膜接触領域と該生物膜接触領域によ
り上記領域から隔離された反対側の領域との間に水位差
が生じ、さらにその水位差によって上記領域と反対側の
領域の水が生物膜接触領域に流入してその領域の水位も
上昇していくこととなる。この場合にも、上記生物膜接
触領域中を通過する水は、その生物膜接触領域内に固定
化された微生物膜と適度な接触速度を確保しながら通過
していくことによって、微生物膜の有機物分解作用によ
り効果的に浄化されることになる。そして、このように
して、周辺水域が干潮になった時に、該閉鎖性水域内の
全ての領域の水位が周辺水域の水位と同一水位まで下降
することとなる。
In addition, when the water level of the surrounding water area descends due to ebb tide from high tide to low tide, a water level difference occurs between the surrounding water area and the closed water area, and the potential energy due to the water level difference causes the potential energy from the closed water area to the opening area. A flow of water is generated toward the surrounding water area through the opening, so that the water inside the expansion / contraction material provided in the closed water area flows through the opening to the surrounding water area. When the water inside the expansion / contraction material flows into the surrounding water area in this manner, the water level of the area in the closed water area where the expansion / contraction material is provided falls, and the area and the biofilm contact area And a water level difference is generated between the biofilm contact area and the water level in the biofilm contact area.
This causes a water level difference between the biofilm contact area and the opposite area isolated from the area by the biofilm contact area, and the water level difference causes the water in the area opposite to the area to be removed from the biofilm. After flowing into the contact area, the water level in that area also rises. In this case as well, the water passing through the biofilm contact area passes through the biofilm membrane immobilized in the biofilm contact area while maintaining an appropriate contact speed, whereby the organic matter of the microbial membrane is removed. It is effectively purified by the decomposition action. Then, in this way, when the surrounding water area becomes low tide, the water levels of all the areas in the closed water area fall to the same water level as the surrounding water area.

「実施例」 以下、この発明の第1実施例として、周辺水域が海域
である場合の閉鎖性水域の水質浄化設備を第1図ないし
第5図を参照して説明する。
"Embodiment" Hereinafter, as a first embodiment of the present invention, a water purification system for a closed water body when the surrounding water area is a sea area will be described with reference to FIGS. 1 to 5. FIG.

この実施例の閉鎖性水域の水質浄化設備は、第1図に
示すように、外壁1により四方を囲われて周辺海域2
(周辺水域)から閉鎖された長方形状の閉鎖性水域3内
の水質浄化を行なうものであって、互いに相対する一対
の外壁1から閉鎖性水域3内に延在して互いに平行に配
された二つの隔壁4、5が設けられ、これら隔壁4、5
間に挾まれた領域の中央部が一対の整流壁6、6により
その両端部が仕切られ、それら整流壁6、6の間に礫な
どの接触材が充填されて透水性の生物膜接触領域7が形
成されていると共に、この生物膜接触領域7によって隔
離された該閉鎖性水域3内の二つの領域8、9のうち一
方の領域8に袋体10(膨縮材)が水没状態で設けられ、
かつその一方の領域8を周辺海域2と仕切っている外壁
1に該周辺海域2と連通する開口部11が設けられ、この
開口部11に上記袋体10が連結されて構成されているもの
である。
As shown in FIG. 1, a water purification system for closed water bodies according to this embodiment has a surrounding sea area 2 surrounded by an outer wall 1 on all sides.
(Peripheral water area) for purifying water in the rectangular closed water area 3 closed from the surrounding water area, and extending in the closed water area 3 from a pair of outer walls 1 facing each other and arranged in parallel with each other. Two partitions 4 and 5 are provided, and these partitions 4 and 5 are provided.
The central portion of the region sandwiched between the two ends is partitioned by a pair of rectifying walls 6, 6, and a contact material such as gravel is filled between the rectifying walls 6, 6 to form a permeable biofilm contact region. 7 is formed, and the bag body 10 (expandable material) is submerged in one of the two regions 8 and 9 in the closed water body 3 separated by the biofilm contact region 7. Provided,
An opening 11 communicating with the surrounding sea area 2 is provided on the outer wall 1 that partitions one of the areas 8 from the surrounding sea area 2, and the bag body 10 is connected to the opening 11. is there.

上記整流壁6は、礫などの接触材を生物膜接触領域7
に保持しておくと共に、その両側の各領域8、9の水を
生物膜接触領域7内へ流出入させてその生物膜接触領域
7内を効果的に通過させる複数の通水孔12が設けられて
いるものであって、例えば適当な箇所に適当な数の通水
孔12が形成されたコンクリート壁、または金網等の網目
を有するメッシュ部材などからなるものである。
The rectifying wall 6 is provided with a biofilm contact area 7 for contact material such as gravel.
And a plurality of water passage holes 12 for allowing water in each of the regions 8 and 9 on both sides thereof to flow into and out of the biofilm contact region 7 to effectively pass through the biofilm contact region 7. It is made of, for example, a concrete wall having an appropriate number of water holes 12 formed at an appropriate location, or a mesh member having a mesh such as a wire mesh.

上記生物膜接触領域7は、例えば生物過を行なうよ
うな領域としても良いが、一般には、生物過の概念は
文字通りの過を意味し、比表面積が70m2/m3以上の
材を充填したものと考えられる。しかし、ここで用いる
生物膜接触領域7の場合には、単に通過する水を浄化す
るだけでなく、水が通過する際の圧損をなるべく少なく
することも必要なため、通常の接触曝気法などの接触酸
化に用いる接触材などを用いた方が良い。このような接
触材としては、上述の礫などのほか、抗火石、カキ殻ま
たはこれらを破砕したもの、あるいはセラミックスなど
を適当な大きさの塊状または粒状に成形している成形
体、またはプラスチックなどを比表面積の大きな形状
(例えば中空の球に一つまたは複数の穴をあけたような
形状)に成形してなるものなどがある。そして、このよ
うな接触材を適当に選択して上記生物膜接触領域7を構
成する際には、水が通過する際の目詰まりを考慮する必
要があるため、汚濁度の高い水を浄化する場合には比表
面積が小さく(20〜60m2/m3)なるようにし、比較的汚
濁度の低い水を浄化する場合には比表面積が大きく(60
m2/m3以上)なるようにすることが望ましい。また、上
記生物膜接触領域7を構成する場合には、整流壁6、6
付近の始端部および終端部を目の粗いものから構成し、
かつその間の中央部を目の細かいものから構成すること
によって、全体として圧損が小さくなるように工夫して
も良く、その場合には、例えば夏場などにおいて生物膜
接触領域7の内部生産が大きくなった場合にも目詰まり
を防止することができ、かつ十分な浄化性能を確保する
ことが可能である。
The biofilm contact region 7 may be, for example, a region that performs biological excess, but generally, the concept of biological excess means literally excess, and is filled with a material having a specific surface area of 70 m 2 / m 3 or more. It is considered something. However, in the case of the biofilm contact area 7 used here, it is necessary not only to purify the passing water but also to reduce the pressure loss when the water passes as much as possible. It is better to use a contact material used for catalytic oxidation. Examples of such a contact material include, in addition to the above-mentioned gravel, an anti-firestone, an oyster shell or a crushed material thereof, a molded article obtained by molding ceramics or the like into a lump or granule of an appropriate size, plastic, or the like. Is formed into a shape having a large specific surface area (for example, a shape in which one or a plurality of holes are formed in a hollow sphere). When the biofilm contact region 7 is formed by appropriately selecting such a contact material, it is necessary to consider clogging when the water passes through, and therefore, water having a high degree of contamination is purified. In this case, the specific surface area should be small (20-60 m 2 / m 3 ), and when purifying relatively low polluted water, the specific surface area should be large (60 m 2 / m 3 ).
m 2 / m 3 or more). When the biofilm contact area 7 is configured, the rectifying walls 6 and 6
The start and end of the neighborhood are made of coarse materials,
In addition, by forming the central portion between the fine portions, it may be possible to devise so as to reduce the pressure loss as a whole. In this case, for example, the internal production of the biofilm contact region 7 increases in summer or the like. In this case, clogging can be prevented and sufficient purification performance can be ensured.

上記袋体10は、例えばポリ塩化ビニル、ポリエチレン
ゴム等のような耐海水性の膜材などにより構成される
が、この袋体10にかかる引張力、圧縮力は極く僅かなも
のであり、かつその袋体10の内圧および外圧も微々たる
ものであるから、どのような膜材から構成しても差し支
えない。また、この袋体10の大きさ(内容積)は、周辺
海域2が大潮の時でもその袋体10が最大に膨張した状態
にはならないように、該周辺海域2と閉鎖性水域3との
間の最大水位差に応じた適正な大きさに設定される。
The bag body 10 is made of, for example, a seawater-resistant film material such as polyvinyl chloride or polyethylene rubber, but the tensile force and the compressive force applied to the bag body 10 are extremely small. In addition, since the internal pressure and the external pressure of the bag body 10 are very small, they may be made of any film material. The size (inner volume) of the bag 10 is determined by the distance between the surrounding sea area 2 and the closed water area 3 so that the bag body 10 does not expand to the maximum even when the surrounding sea area 2 is in spring tide. It is set to an appropriate size according to the maximum water level difference between them.

次に、この閉鎖性水域の水質浄化設備の作用を第2図
ないし第5図を参照して説明する。
Next, the operation of the water purification equipment for closed water areas will be described with reference to FIGS.

第2図に示すように、周辺海域2の水位が干潮時から
満潮時にかけて上げ潮により上昇していく際には、その
周辺海域2と閉鎖性水域3との間に水位差が生じ、その
水位差による位置エネルギーによって周辺海域2から開
口部11を通って閉鎖性水域3へ向かう海水の流れが生
じ、それによって周辺海域2の海水が開口部11を通過し
て袋体10の内部に導入されることとなる。このようにし
て袋体10の内部に海水が導入されていくと、該閉鎖性水
域3内の領域8の水位が上昇してその領域8と生物膜接
触領域7との間に水位差が生じ、同時にその水位差によ
ってその領域8の水が生物膜接触領域7へ流入すること
によりその生物膜接触領域7の水位が上昇し、これによ
りその生物膜接触領域7と該生物膜接触領域7により上
記領域8から隔離された反対側の領域9との間に水位差
が生じ、さらにその水位差によって生物膜接触領域7の
水が領域9へ流出してその領域9の水位も上昇していく
こととなる。なお、実際には、各領域8、7、9間の水
位差は第2図に示すほど顕著ではなく、僅かであり、そ
の僅かな導水勾配によって各領域8、7、9の水位がぽ
ぼ同時に上昇していく。また、この場合、上記生物膜接
触領域7中を通過する水は、その生物膜接触領域7内の
接触材表面に付着固定化された微生物膜と適度な接触速
度を確保しながら通過していくことによって、微生物膜
の有機物分解作用により効果的に浄化されていく。そし
て、このようにして、第3図に示すように、周辺海域2
が満潮になった時に、該閉鎖性水域3内の全ての領域
8、7、9の水位が周辺海域2の水位と同一水位まで上
昇することとなる。
As shown in FIG. 2, when the water level of the surrounding sea area 2 rises due to the rising tide from low tide to high tide, a water level difference occurs between the surrounding sea area 2 and the closed water area 3, and the water level increases. The potential energy due to the difference causes a flow of seawater from the surrounding sea area 2 to the closed water area 3 through the opening 11, whereby seawater in the surrounding sea area 2 is introduced into the bag body 10 through the opening 11. The Rukoto. When seawater is introduced into the bag body 10 in this manner, the water level of the region 8 in the closed water body 3 rises, and a water level difference occurs between the region 8 and the biofilm contact region 7. At the same time, due to the difference in water level, the water in the area 8 flows into the biofilm contact area 7 and the water level in the biofilm contact area 7 rises, whereby the biofilm contact area 7 and the biofilm contact area 7 A water level difference is generated between the area 8 and the opposite area 9 isolated from the area 8, and the water level difference causes water in the biofilm contact area 7 to flow out to the area 9 and the water level in the area 9 to rise. It will be. Actually, the water level difference between the areas 8, 7, 9 is not so remarkable as shown in FIG. 2 and is slight, and the water level of the areas 8, 7, 9 is small due to the slight water conveyance gradient. It rises at the same time. In this case, the water passing through the biofilm contact area 7 passes while maintaining an appropriate contact speed with the microorganism membrane adhered and immobilized on the surface of the contact material in the biofilm contact area 7. As a result, the microorganisms are effectively purified by the organic matter decomposing action. Then, in this way, as shown in FIG.
At high tide, the water levels of all the areas 8, 7, 9 in the closed water area 3 rise to the same water level as the water level of the surrounding sea area 2.

また、第4図に示すように、周辺海域2の水位が満潮
から干潮にかけて引き潮により下降していく際には、そ
の周辺海域2と閉鎖性水域3との間に水位差が生じ、そ
の水位差による位置エネルギーによって閉鎖性水域3か
ら開口部11を通って周辺海域2へ向かう海水の流れが生
じ、それによって閉鎖性水域3内に設けられている袋体
10の内部の海水が開口部11を通過して周辺海域2へ流出
していくこととなる。このようにして袋体10の内部の海
水が周辺海域2へ流出していくと、該閉鎖性水域3内の
領域8の水位が下降してその領域8と生物膜接触領域7
との間に水位差が生じ、同時にその水位差によってその
領域8に生物膜接触領域7の水が流入することによりそ
の生物膜接触領域7の水位が下降し、これによりその生
物膜接触領域7と該生物膜接触領域7により上記領域8
から隔離された反対側の領域9との間に水位差が生じ、
さらにその水位差によって領域9の水が生物膜接触領域
7に流入してその領域9の水位も下降していくこととな
る。なお、実際には、各領域8、7、9間の水位差は第
4図に示すほど顕著ではなく、僅かであり、その僅かな
導水勾配によって各領域8、7、9の水位がほぼ同時に
上昇していく。また、この場合にも、上記生物膜接触領
域7中を通過する水は、その生物膜接触領域7内の接触
材表面に付着固定化された微生物膜と適度な接触速度を
確保しながら通過していくことによって、微生物膜の有
機物分解作用により効果的に浄化されることになる。そ
して、このようにして、第5図に示すように、周辺海域
2が干潮になった時に、該閉鎖性水域3内の全ての領域
8、7、9の水位が周辺海域2の水位と同一水位まで下
降することとなる。
Further, as shown in FIG. 4, when the water level of the surrounding sea area 2 is lowered due to ebb tide from high tide to low tide, a water level difference occurs between the surrounding sea area 2 and the closed water area 3, and the water level is reduced. The potential energy due to the difference causes a flow of seawater from the closed water area 3 through the opening 11 to the surrounding sea area 2, whereby the bag provided in the closed water area 3 is formed.
The seawater inside 10 flows out to the surrounding sea area 2 through the opening 11. When the seawater inside the bag body 10 flows into the surrounding sea area 2 in this manner, the water level of the area 8 in the closed water area 3 falls, and the area 8 and the biofilm contact area 7
At the same time, the water level of the biofilm contact area 7 falls due to the flow of water in the biofilm contact area 7 into the area 8 due to the water level difference, whereby the biofilm contact area 7 And the biofilm contact area 7 and the area 8
Water level difference between the opposite area 9 isolated from the
Further, the water level difference causes the water in the area 9 to flow into the biofilm contact area 7 and the water level in the area 9 also decreases. Actually, the water level difference between the areas 8, 7, 9 is not so remarkable as shown in FIG. 4 and is slight, and the water level of the areas 8, 7, 9 is almost simultaneously due to the slight gradient of water conveyance. Going up. Also in this case, the water passing through the biofilm contact area 7 passes while maintaining an appropriate contact speed with the microorganism membrane adhered and immobilized on the surface of the contact material in the biofilm contact area 7. As a result, the microorganisms are effectively purified by the action of decomposing organic substances. Then, as shown in FIG. 5, when the surrounding sea area 2 becomes low tide, the water levels of all the areas 8, 7, and 9 in the closed water area 3 are the same as the water level of the surrounding sea area 2. It will fall to the water level.

このように、この閉鎖性水域の水質浄化設備では、周
辺海域2から閉鎖された閉鎖性水域3内に、その閉鎖性
水域3を二つの領域8、9に隔離する透水性の生物膜接
触領域7を設け、かつ一方の領域8に、周辺海域2と連
通する開口部11を設けると共に、その領域8内に、上記
開口部11に連結されて上記周辺海域2からの海水の導入
量に応じて体積変化する袋体10を水没状態で設けたの
で、周辺海域2の潮汐力によって閉鎖性水域3内の流動
エネルギーを生じさせることができ、かつその流動エネ
ルギーにより該閉鎖性水域3内の水を流動させて生物膜
接触領域7を通過させることができる。そして、その際
に、生物膜接触領域7内の接触材に付着固定化された微
生物膜と水との接触速度を適正な速度に保つことによっ
て、その生物膜接触領域7を通過する水を微生物膜の有
機物分解作用により浄化することができる。
As described above, in this closed water body water purification equipment, the water permeable biofilm contact area that separates the closed water body 3 into the two regions 8 and 9 in the closed water body 3 closed from the surrounding sea area 2. 7 and an opening 11 communicating with the surrounding sea area 2 is provided in one area 8, and in the area 8, the opening 11 is connected to the opening 11 according to the amount of seawater introduced from the surrounding sea area 2. Since the bag body 10 that changes in volume is provided in a submerged state, the tidal force of the surrounding sea area 2 can generate flow energy in the closed water area 3, and the flow energy can generate water in the closed water area 3. Can flow through the biofilm contact area 7. At this time, the water passing through the biofilm contact area 7 is maintained at a proper speed by maintaining the contact speed between the microbial membrane adhered and immobilized on the contact material in the biofilm contact area 7 and the water at an appropriate speed. It can be purified by the organic matter decomposition action of the membrane.

なお、この閉鎖性水域の水質浄化設備では、周辺海域
2の波力の影響を受けないように、必要に応じて開口部
11周辺の周辺海域2に防波堤などを設けても良く、ま
た、津波等が起こった場合などの緊急時に備えた種々の
対策を施せばさらに良い。
In addition, in this water purification system for closed water areas, openings are provided as necessary so as not to be affected by the wave power of the surrounding sea area 2.
A breakwater or the like may be provided in the surrounding sea area 2 around the area 11, and it is even better if various measures are taken in case of emergency such as when a tsunami occurs.

第6図は、この発明の第2実施例を示す図である。 FIG. 6 is a view showing a second embodiment of the present invention.

この実施例の閉鎖性水域の水質浄化設備は、第1実施
例の水質浄化設備と同様に構成されたものであるが、こ
の水質浄化設備では、該閉鎖性水域3内の生物膜接触領
域7により隔離された一方の領域8に袋体10が設けられ
ておらず、その代わりに、プラスチック材料などから構
成された蛇膜状の膨縮材13が設けられている。
The water purification equipment of the closed water area of this embodiment has the same configuration as the water purification equipment of the first embodiment. However, in this water purification equipment, the biofilm contact area 7 in the closed water area 3 is used. The bag body 10 is not provided in the one area 8 isolated by the above, and instead, a serpentine-shaped expansion / contraction material 13 made of a plastic material or the like is provided.

そして、この水質浄化設備においても、周辺海域2の
潮汐力を利用してその周辺海域2の海水を膨縮材13の内
部へ流出入させることにより領域8の水位を上下させる
ことができ、それによって閉鎖性水域3内の水を流動さ
せて生物膜接触領域7を通過させることにより微生物膜
の有機物分解作用で効果的に浄化することができる。
In this water purification facility, the tidal force of the surrounding sea area 2 is used to allow seawater in the surrounding sea area 2 to flow into and out of the expansion / contraction member 13, thereby raising and lowering the water level in the area 8. Thus, the water in the closed water area 3 is caused to flow and pass through the biofilm contact area 7, whereby the microorganisms can be effectively purified by the organic matter decomposition action.

なお、これら各実施例の閉鎖性水域の水質浄化設備で
は、該閉鎖性水域3内に、海水、汽水、淡水にうちのど
れが貯留されていたとしても、その水を効果的に浄化す
ることができる。すなわち、この閉鎖性水域の水質浄化
設備では、池、貯水場、潮、運河、あるいはこれらに類
する種々の淡水域、または汽水域、海水域の浄化を行な
うことができる。
In addition, in the water purification equipment for closed water bodies of each of the embodiments, even if any of seawater, brackish water, and freshwater is stored in the closed water body 3, the water can be effectively purified. Can be. In other words, the water purification equipment for closed water areas can purify ponds, reservoirs, tides, canals, or various similar freshwater areas, brackish water areas, and seawater areas.

また、上記のような閉鎖性水域3内に海水と同じ組成
の水を貯留しておく必要がある場合には、その閉鎖性水
域3内の海水が雨水により薄まって次第に塩分濃度が低
下していくため、海水と同じ組成を保つためには、該閉
鎖性水域3の水を周辺海域2の海水とある程度入れ換え
る必要がある。そして、その場合には、閉鎖性水域3と
周辺海域2とを仕切る外壁1に一つまたは複数の水門を
設け、その水門を適当な時期に開閉させることによって
周辺海域2の海水を閉鎖性水域3内へ適量だけ入れ換え
るようにすれば良い。
Further, when it is necessary to store water having the same composition as seawater in the closed water area 3 as described above, the seawater in the closed water area 3 is diluted by rainwater and the salt concentration gradually decreases. Therefore, in order to maintain the same composition as seawater, it is necessary to replace the water in the closed water area 3 with the seawater in the surrounding sea area 2 to some extent. In that case, one or more sluices are provided on the outer wall 1 separating the closed water area 3 and the surrounding sea area 2, and the sluice gate is opened and closed at an appropriate time so that the seawater in the surrounding sea area 2 is closed. 3 may be replaced by an appropriate amount.

さらに、上記各実施例では、周辺水域2が海域である
場合について説明したが、このような閉鎖性水域の水質
浄化設備は、入り江、湾、港湾等の海域の近隣のほか、
例えば海域と連通している湖沼などのように水位変動の
ある種々の汽水域または淡水域の近隣に設けても良く、
その場合にも、その水域の水位変動を利用して十分な水
質浄化を行なうことが可能である。
Further, in each of the above embodiments, the case where the surrounding water area 2 is a sea area has been described. However, such a water purification system for a closed water area includes, in addition to the vicinity of sea areas such as a bay, a bay, and a port,
For example, it may be provided in the vicinity of various brackish water areas or freshwater areas having water level fluctuations such as lakes and marshes communicating with the sea area,
Even in such a case, it is possible to sufficiently purify the water quality using the fluctuation of the water level in the water area.

「浄化性能の評価」 この発明の閉鎖性水域の水質浄化設備の一例として、
第7図に示すような閉鎖性水域3に水質浄化設備を設け
た。なお、第7図において符号1は外壁、4、5は隔
壁、6は整流壁、7は生物膜接触領域、8、9は生物膜
接触領域7により隔離された各領域、10は袋体、11は開
口部である。
"Evaluation of purification performance" As an example of the water purification equipment for closed water areas of the present invention,
A water purification facility was provided in the closed water area 3 as shown in FIG. In FIG. 7, reference numeral 1 denotes an outer wall, 4 and 5 denote partition walls, 6 denotes a rectifying wall, 7 denotes a biofilm contact area, 8 and 9 denote respective areas separated by the biofilm contact area 7, 10 denotes a bag, 11 is an opening.

この水質浄化設備が設けられた閉鎖性水域3は、縦10
0m、横1000mの長方形状に形成されたものであり、その
水深は、周辺海域の干満差を1mとして平均2.5m(2〜3m
の間で変化する)である。
The closed water body 3 provided with this water purification facility is 10
It is formed in a rectangular shape of 0 m and 1000 m in width, and its depth is 2.5 m on average, with the tidal difference in the surrounding sea area as 1 m (2 to 3 m
Varies between).

以下、この閉鎖性水域3の水質浄化設備の浄化性能に
ついて評価する。
Hereinafter, the purification performance of the water purification equipment in the closed water area 3 will be evaluated.

このような水質浄化設備の浄化性能を評価する際に
は、閉鎖性水域3全体の何%の水が生物膜接触領域7
を通過するか、生物膜接触領域7中での水の線速度が
どのくらいとれるか、生物膜接触領域7中での滞留時
間がどれだけとれるかの三つの点が重要である。したが
って、これら三つの点についてそれぞれ評価を行なうこ
とにする。
When evaluating the purification performance of such a water purification apparatus, what percentage of the water in the entire closed water area 3 is in the biofilm contact area 7.
, The linear velocity of water in the biofilm contact area 7, and the residence time in the biofilm contact area 7 are important. Therefore, each of these three points will be evaluated.

閉鎖性水域3の面積は、 縦(100m)×横(1000m)=100,000m2 閉鎖性水域3内の平均水量は、 閉鎖性水域3の面積×水深=250,000m3 袋体10内へ流出入する海水の量、すなわち閉鎖性水域
3内の動く水の量は、一回の潮汐で、 平均水量×干満差=100,000m3 (これによって、袋体10として、100,000m3以上の内容
積のものが必要なことがわかる。) すなわち、閉鎖性水域3内を一日に動く水の量は、潮
汐が一日に二度あることから、 100,000m3×2=200,000m3 であることがわかる。
The area of the closed water area 3 is vertical (100m) x the horizontal (1000m) = 100,000m 2 The average water volume in the closed water area 3 is the area of the closed water area 3 x the water depth = 250,000m 3 The amount of seawater that flows, that is, the amount of moving water in the closed water area 3 is, in one tide, the average amount of water x the tidal difference = 100,000 m 3 (Thus, the bag 10 has an inner volume of 100,000 m 3 or more. what it is understood that necessary.) that is, the amount of water moving to a day closed water 3, since the tide is twice a day, to be 100,000m 3 × 2 = 200,000m 3 Recognize.

したがって、閉鎖性水域3全体の平均水量に対する生
物膜接触領域7を通過する水の割合は、 一日に動く水の量÷平均水量×100=80% であり、これによって、閉鎖性水域3内のほとんど全部
の水が一日のうちに生物膜接触領域7を通過することが
わかる。
Therefore, the ratio of the amount of water passing through the biofilm contact area 7 to the average amount of water in the entire closed water area 3 is the amount of water moving per day ÷ the average water amount × 100 = 80%. It can be seen that almost all of the water passes through the biofilm contact area 7 in one day.

また、生物過領域7の充填高さを1.5mとすると、そ
の生物膜接触領域7の断面積は、 25m×1.5m=37.5m2 である。
Further, assuming that the filling height of the biological excess region 7 is 1.5 m, the cross-sectional area of the biological film contacting region 7 is 25 m × 1.5 m = 37.5 m 2 .

したがって、生物膜接触領域7を通過する水の線速度
は、該生物膜接触領域7を通過する水の量が一日あたり
200,000m3であることから、 200,000m3÷(24×60×60)÷37.5m2=0.062m すなわち秒速6.2cmであり、この線速度は、接触材表面
の微生物膜との接触速度として十分な速度である。
Therefore, the linear velocity of water passing through the biofilm contact area 7 is determined by the following equation:
Since it is 200,000m 3, 200,000m 3 ÷ (24 × 60 × 60) is ÷ 37.5 m 2 = 0.062 i.e. per second 6.2 cm, the linear velocity is sufficient for the contact rate between the biofilm contact material surface Speed.

さらに、生物膜接触領域7の長さを900mとすると、生
物膜接触領域7の容積は、 37.5m2×900m=33750m3 であり、この容積の生物膜接触領域7中を一時間あたり
8333m2(200,000m3÷24=8333m3)の水が通過すること
から、その生物膜接触領域7中での滞留時間は、 33750m3÷8333m3=4(時間) であり、生物膜接触領域7中において十分な滞留時間が
とれることがわかる。
Further, assuming that the length of the biofilm contact area 7 is 900 m, the volume of the biofilm contact area 7 is 37.5 m 2 × 900 m = 33750 m 3.
Since 8333 m 2 (200,000 m 3 ÷ 24 = 8333 m 3 ) of water pass through, the residence time in the biofilm contact area 7 is 33750 m 3 ÷ 8333 m 3 = 4 (hours). 7 that a sufficient residence time can be obtained.

「発明の効果」 この発明の閉鎖性水域の水質浄化設備によれば、周辺
水域から閉鎖された閉鎖性水域内に、その閉鎖性水域を
複数の領域に隔離する透水性の生物膜接触領域を設け、
かつ上記領域のうち少なくとも一つの領域に、上記周辺
水域と連通する開口部を設けると共に、その領域内に、
上記開口部に連結されて上記周辺水域からの水の導入量
に応じて体積変化する膨縮材を水没状態で設けたので、
下記のように、周辺水域の潮汐力によって閉鎖性水域内
に流動エネルギーを生じさせることができ、かつその流
動エネルギーにより該閉鎖性水域内の水を流動させて生
物膜接触領域を通過させることができる。そして、その
際、生物膜接触領域内に固定化された微生物膜と水との
接触速度を適正な速度に保つことによって、その生物膜
接触領域を通過する水を微生物膜の有機物分解作用によ
り効果的に浄化していくことができる。
[Effects of the Invention] According to the water purification system for closed water bodies of the present invention, a water permeable biofilm contact area for isolating the closed water area into a plurality of areas is provided in the closed water area closed from the surrounding water area. Provided,
And, in at least one of the regions, an opening communicating with the surrounding water area is provided, and in the region,
Because the expanding and contracting material that is connected to the opening and changes in volume according to the amount of water introduced from the surrounding water area is provided in a submerged state,
As described below, flow energy can be generated in the closed water area by the tidal force of the surrounding water area, and the flow energy can cause the water in the closed water area to flow and pass through the biofilm contact area. it can. At that time, the water passing through the biofilm contact area is effectively decomposed by the organic matter decomposition action of the microbial membrane by maintaining the contact speed between the microorganism membrane immobilized in the biofilm contact area and the water at an appropriate speed. It can be purified.

すなわち、周辺水域の水位が干潮時から満潮等にかけ
て上げ潮により上昇していく際には、その周辺水域と閉
鎖性水域との間に水位差が生じ、その水位差による位置
エネルギーによって周辺水域から開口部を通って閉鎖性
水域へ向かう水の流れが生じ、それによって周辺水域の
水が開口部を通過して膨縮材の内部に導入されることと
なる。このため、該閉鎖性水域内の上記膨縮材が設けら
れている領域の水位を上昇させてその領域と生物膜接触
領域との間に水位差を生じさせることができ、同時にそ
の水位差によってその領域の水を生物膜接触領域へ流入
させることによりその生物膜接触領域の水位を上昇させ
ることができ、これによりその生物膜接触領域と該生物
膜接触領域により上記領域から隔離された反対側の領域
との間に水位差を生じさせることができ、さらにその水
位差によって生物膜接触領域の水を上記領域と反対側の
領域へ流出させてその領域の水位も上昇させることがで
きる。この場合、上記生物膜接触領域中を通過する水
を、その生物膜接触領域内に固定化された微生物膜と適
度な接触速度を確保させながら通過させていくことによ
って、微生物膜の有機物分解作用により効果的に浄化す
ることができる。そして、このようにして、周辺水域が
満潮になった時に、該閉鎖性水域内の全ての領域の水位
を周辺水域の水位と同一水位まで上昇させることができ
る。
That is, when the water level of the surrounding water area rises due to rising tide from low tide to high tide, a water level difference occurs between the surrounding water area and the closed water area, and the potential energy due to the water level difference causes an opening from the surrounding water area. A flow of water through the section towards the closed body of water occurs, thereby causing water in the surrounding body of water to pass through the opening and into the interior of the expansion and contraction material. For this reason, it is possible to raise the water level in the area where the expanding and contracting material is provided in the closed water area to cause a water level difference between the area and the biofilm contact area. The water level of the biofilm contact area can be raised by flowing the water of the area into the biofilm contact area, whereby the biofilm contact area and the opposite side isolated from the biofilm contact area by the biofilm contact area A water level difference can be caused between the above-mentioned region and the water level difference, and the water in the biofilm contact region can be caused to flow out to the region on the opposite side of the above-mentioned region to raise the water level in that region. In this case, the water passing through the biofilm contact area is allowed to pass through while maintaining an appropriate contact speed with the microbial membrane immobilized in the biofilm contact area, thereby decomposing the organic substance of the microbial membrane. It can be more effectively purified. Then, in this way, when the surrounding water area becomes high tide, the water levels of all the areas in the closed water area can be raised to the same water level as the surrounding water area.

また、周辺水域の水位が満潮から干潮にかけて引き潮
により下降していく際には、その周辺水域と閉鎖性水域
との間には水位差が生じ、その水位差による位置エネル
ギーによって閉鎖性水域から開口部を通って周辺水域へ
向かう水の流れが生じ、それによって閉鎖性水域内に設
けられている膨縮材の内部の水が開口部を通過して周辺
水域へ流出していくこととなる。このため、該閉鎖性水
域内の上記膨縮材が設けられている領域の水位を下降さ
せてその領域と生物膜接触領域との間に水位差を生じさ
せることができ、同時にその水位差によってその領域に
生物膜接触領域の水を流入させることによりその生物膜
接触領域の水位を下降させることができ、これによりそ
の生物膜接触領域と該生物膜接触領域により上記領域か
ら隔離された反対側の領域との間に水位差を生じさせる
ことができ、さらにその水位差によって上記領域と反対
側の領域の水を生物膜接触領域に流入させてその領域の
水位も上昇させることができる。この場合にも、上記生
物膜接触領域中を通過する水を、その生物膜接触領域内
に固定化された微生物膜と速度な接触速度を確保させな
がら通過させていくことによって、微生物膜の有機物分
解作用により効果的に浄化していくことができる。そし
て、このようにして、周辺水域が干潮になった時に、該
閉鎖性水域内の全ての領域の水位を周辺水域の水位と同
一水位まで下降させることができる。
Also, when the water level in the surrounding water area falls due to ebb tide from high tide to low tide, there is a water level difference between the surrounding water area and the closed water area, and the potential energy due to the water level difference causes the water to open from the closed water area. A flow of water is generated toward the surrounding water body through the portion, whereby water inside the expanding / contracting material provided in the closed water body flows through the opening to the surrounding water body. For this reason, it is possible to lower the water level of the area in which the expandable material is provided in the closed water area to cause a water level difference between the area and the biofilm contact area, and at the same time, by the water level difference, The water in the biofilm contact area can be lowered by flowing the water in the biofilm contact area into the area, whereby the biofilm contact area and the opposite side isolated from the area by the biofilm contact area A water level difference can be generated between the above-mentioned region and the water level difference, and the water in the region opposite to the above-mentioned region can flow into the biofilm contact region to raise the water level in that region. Also in this case, the water passing through the biofilm contact area is allowed to pass while maintaining a high contact speed with the microbial membrane immobilized in the biofilm contact area. Purification can be effectively performed by the decomposition action. Then, in this way, when the surrounding water area becomes low tide, the water levels of all the areas in the closed water area can be lowered to the same water level as the surrounding water area.

【図面の簡単な説明】 第1図ないし第5図は、この発明の第1実施例の閉鎖性
水域の水質浄化設備を示す図であって、第1図は平面
図、第2図は上げ潮の状態を示す要部の断面図、第3図
は満潮時の状態を示す要部の断面図、第4図は引き潮の
状態を示す要部の断面図、第5図は干潮時の状態を示す
要部の断面図である。第6図は、この発明の第2実施例
の閉鎖性水域の水質浄化設備の要部の断面図である。第
7図は、この発明の閉鎖性水域の水質浄化設備の浄化性
能の評価に用いた平面図である。 1……外壁、 2……周辺水域、 3……閉鎖性水域、 4、5……隔壁、 6……整流壁、 7……生物膜接触領域、 8、9……生物膜接触領域により隔離された領域、 10……膨縮材(袋体)、 11……開口部、 12……通水孔。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 5 are diagrams showing a water purification system for closed water bodies according to a first embodiment of the present invention, wherein FIG. 1 is a plan view and FIG. 2 is a rising tide. 3 is a cross-sectional view of a main part showing a state at high tide, FIG. 4 is a cross-sectional view of a main part showing a state of ebb tide, and FIG. 5 is a state at a low tide. It is sectional drawing of the principal part shown. FIG. 6 is a sectional view of a main part of a water purification system for closed water bodies according to a second embodiment of the present invention. FIG. 7 is a plan view used for evaluating the purification performance of the water purification equipment for closed water areas of the present invention. 1 ... outer wall, 2 ... surrounding water area, 3 ... closed water area, 4, 5 ... partition wall, 6 ... rectifying wall, 7 ... biofilm contact area, 8, 9 ... isolated by biofilm contact area Area, 10 …… Expansion material (bag), 11… Opening, 12… Water hole.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周辺水域から閉鎖された閉鎖性水域内に、
その閉鎖性水域を複数の領域に隔離する透水性の生物膜
接触領域が設けられ、かつ上記領域のうち少なくとも一
つの領域に、上記周辺水域と連通する開口部が設けられ
ていると共に、その領域内に、上記開口部に連結されて
上記周辺水域からの水の導入量に応じて体積変化する膨
縮材が水没状態で設けられていることを特徴とする閉鎖
性水域の水質浄化設備。
1. A closed water body closed from a surrounding water body,
A permeable biofilm contact area that isolates the closed water area into a plurality of areas is provided, and in at least one of the areas, an opening communicating with the peripheral water area is provided, and the area is provided. A water purifying apparatus for a closed water body, wherein an expanding / contracting material connected to the opening and changing in volume in accordance with the amount of water introduced from the surrounding water area is provided in a submerged state.
JP13487989A 1989-05-29 1989-05-29 Water purification equipment for closed water bodies Expired - Fee Related JP2772378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13487989A JP2772378B2 (en) 1989-05-29 1989-05-29 Water purification equipment for closed water bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13487989A JP2772378B2 (en) 1989-05-29 1989-05-29 Water purification equipment for closed water bodies

Publications (2)

Publication Number Publication Date
JPH03196A JPH03196A (en) 1991-01-07
JP2772378B2 true JP2772378B2 (en) 1998-07-02

Family

ID=15138635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13487989A Expired - Fee Related JP2772378B2 (en) 1989-05-29 1989-05-29 Water purification equipment for closed water bodies

Country Status (1)

Country Link
JP (1) JP2772378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094918A (en) * 2002-06-10 2003-12-18 박순신 Accessary using dual coil spring

Also Published As

Publication number Publication date
JPH03196A (en) 1991-01-07

Similar Documents

Publication Publication Date Title
CN109437477A (en) A kind of river channel ecology environmental reconstruction system
Yang et al. The use of coastal reservoirs and SPP strategy to provide sufficient high quality water to coastal communities
CN100404759C (en) Method for insulating and storing heterogeneous in water body in large volume
JP2772378B2 (en) Water purification equipment for closed water bodies
JPH07310311A (en) Artificial lagoon
KR100746245B1 (en) Sustainable structured wetland media and constructed wetland system having the same
JP2006205068A (en) Water quality improving mass and water quality improving mass device using it
JPWO2016013109A1 (en) Water storage device using “UTSURO”
JP2810925B2 (en) Water purification structure
WO2005118489A1 (en) Advanced purification system utilizing closed water area by “void of water area”
JP2881246B2 (en) Water purification facility
JPH11158837A (en) Sea water purifying caisson
WO2010047640A1 (en) A lamellar structure for treatment and aeration of water and wastewater
KR200432566Y1 (en) Sustainable structured wetland media
JPH03278887A (en) Facilities for purifying water area
JP3555128B2 (en) Water purification levee and method of withdrawing water from its inner water area
JP2001017957A (en) Purification system of exterior water basin utilizing hollow of water basin
JP3087228B2 (en) Purification embankment
JPWO2008068872A1 (en) Advanced purification system for sewage using a fishway with contact oxidation bank
JP2873387B2 (en) Closed water purification facility
JPH1088547A (en) Revetment structure
Webb Hydrodynamics, organisms and pollution of coastal sands
JPH1046542A (en) Water quality purifying bank
JPH0581319B2 (en)
JP2000345530A (en) Gravel clean-up system caisson

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees