JP2767470B2 - Lubrication method between two sliding members - Google Patents

Lubrication method between two sliding members

Info

Publication number
JP2767470B2
JP2767470B2 JP27403289A JP27403289A JP2767470B2 JP 2767470 B2 JP2767470 B2 JP 2767470B2 JP 27403289 A JP27403289 A JP 27403289A JP 27403289 A JP27403289 A JP 27403289A JP 2767470 B2 JP2767470 B2 JP 2767470B2
Authority
JP
Japan
Prior art keywords
soot
test
friction
benzene
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27403289A
Other languages
Japanese (ja)
Other versions
JPH03134399A (en
Inventor
秀明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP27403289A priority Critical patent/JP2767470B2/en
Publication of JPH03134399A publication Critical patent/JPH03134399A/en
Application granted granted Critical
Publication of JP2767470B2 publication Critical patent/JP2767470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、少なくとも一方がセラミックスで形成さ
れている2つの摺接部材間の潤滑方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of lubricating between two sliding members at least one of which is made of ceramics.

従来の技術と発明の課題 たとえば自動車用エンジンにおける2つの摺接部材間
の潤滑は、オイルによって行われていた。ところで、冷
却損失の低減、軽量化、苛酷な使用条件での耐久性の向
上などの目的として、セラミックス製の部品を用いるこ
とが考えられている。セラミックス製の部品は、耐熱性
が優れているので、冷却する必要がなく、冷却損失を低
減させることが可能となる。
2. Description of the Related Art For example, lubrication between two sliding members in an automobile engine has been performed by oil. By the way, use of ceramic parts has been considered for the purpose of reducing cooling loss, reducing weight, and improving durability under severe use conditions. Since ceramic parts have excellent heat resistance, they do not need to be cooled, so that cooling loss can be reduced.

しかしながら、冷却しない場合は、セラミックス製部
品は300℃以上の高温となるので、このような高温の部
材の潤滑に現在使用されているオイルを使用できないこ
とは明らかである。そこで、固体潤滑剤を使用すること
も考えられるが、コストが高くなるという問題がある。
However, if not cooled, the temperature of the ceramic component will be 300 ° C. or higher, so it is clear that oil currently used for lubricating such high-temperature components cannot be used. Therefore, it is conceivable to use a solid lubricant, but there is a problem that the cost increases.

この発明の目的は、上記問題を解決した2つの摺接部
材間の潤滑方法を提供することにある。
An object of the present invention is to provide a method of lubricating between two sliding members which solves the above-mentioned problem.

課題を解決するための手段 この発明による2つの摺接部材間の潤滑方法は、 少なくとも一方がセラミックスで形成されている2つ
の摺接部材間の潤滑方法であって、 炭化水素系燃料を燃焼させることにより生じる煤を両
摺接部材間に供給することを特徴とするものである。
Means for Solving the Problems A lubricating method between two sliding contact members according to the present invention is a method for lubricating between two sliding contact members, at least one of which is formed of ceramics, in which a hydrocarbon fuel is burned. The resulting soot is supplied between the sliding members.

本発明は、次の経緯で完成されたものである。すなわ
ち、煤は、これまではエンジンの摺接部材に重大な損傷
をもたらしてエンジン性能を劣化させる物質であると考
えられていた。ところが、本発明の発明者が種々研究を
重ねた結果、煤が摺接部材に損傷を与えるのは、オイル
に混入した煤が、摺接部材の表面に堆積したり、2つの
摺接部材間に入り込んだりして摺接部材どうしの間にオ
イルが供給されなくすることが原因であることが判明し
た。そして、煤単独では、決して上記のような問題が生
じることはないことを見出だし、本発明を完成したので
ある。
The present invention has been completed in the following manner. That is, soot has conventionally been considered to be a substance that causes serious damage to the sliding member of the engine and deteriorates the engine performance. However, as a result of various studies conducted by the inventor of the present invention, it is found that the soot damages the sliding member because the soot mixed in the oil is deposited on the surface of the sliding member or between the two sliding members. It has been found that the cause is that oil is not supplied between the sliding contact members due to intrusion. Then, they found that the above-mentioned problem never occurred with soot alone, and completed the present invention.

なお、上記において、2つの摺接部材としては、互い
に摺動する部材および互いに回転する部材が含まれ、た
とえばエンジンのシリンダとピストンである。エンジン
のシリンダとピストンの場合、シリンダ内で生じる煤
を、両者の摩擦面に導入させるのがよい。
In the above description, the two sliding members include a member that slides on each other and a member that rotates on each other, for example, a cylinder and a piston of an engine. In the case of a cylinder and a piston of an engine, soot generated in the cylinder is preferably introduced into a friction surface between the two.

また、炭化水素系燃料としては、メタン、エタン、プ
ロパンなどの脂肪族炭化水素、ベンゼン、トルエン、ク
メンなどの単環式炭化水素、インデン、ナフタレンなど
の縮合環式炭化水素、ビフェニル環式炭化水素、スピロ
環式炭化水素などが挙げられる。
Examples of hydrocarbon fuels include aliphatic hydrocarbons such as methane, ethane, and propane; monocyclic hydrocarbons such as benzene, toluene, and cumene; condensed cyclic hydrocarbons such as indene and naphthalene; and biphenyl cyclic hydrocarbons. And spirocyclic hydrocarbons.

作用 炭化水素系燃料を燃焼させることにより生じる煤を摺
接する2つの部材間に供給すると、煤によりセラミック
ス製の摺接部材の表面に膜状物が形成され、この膜状物
により2つの摺接部材の摩擦面どうしが直接接触しなく
なる。煤は、表面積が大きく、しかも300〜600Å程度の
小さな複数の粒子(1次粒子)どうしがファンデルワー
ルス力により数μmの粒子(2次粒子)の形態で存在し
ているが、結合力が小さいので、容易に分離して微細な
1次粒子となる。また、2次粒子としては、摺接部材表
面への分子付着力が大きく、2つの部材間の摩擦面に侵
入しやすくなる。そして、2つの部材が摺接するさい
に、2次粒子が分離して1次粒子となり、その結果潤滑
性能を高めると考えられる。
When soot generated by burning a hydrocarbon-based fuel is supplied between two members in sliding contact with each other, a film is formed on the surface of the ceramic sliding member by the soot. The friction surfaces of the members do not come into direct contact with each other. Soot has a large surface area, and a plurality of small particles (primary particles) of about 300 to 600 mm exist in the form of particles (secondary particles) of several μm due to van der Waals force. Since they are small, they are easily separated into fine primary particles. In addition, the secondary particles have a large molecular adhesion to the surface of the sliding member, and easily enter the friction surface between the two members. When the two members come into sliding contact with each other, it is considered that the secondary particles are separated into primary particles, and as a result, the lubrication performance is improved.

実 施 例 以下、この発明の実施例を、比較例とともに説明す
る。
EXAMPLES Hereinafter, examples of the present invention will be described together with comparative examples.

試験1 α−Al2O3にMgOを添加したセラミックスから、第1図
に示すように、外径26mm、内径20mm、長さ15mmの筒状部
材(1)および1辺の長さ30mm、厚さ5mmの正方形状角
盤(2)を成形した。α−Al2O3の焼成温度は1630℃、
比重3.9、比抵抗1011、曲げ強度39kgf/mm2、ビッカース
硬さ(HV)1200である。筒状部材(1)の一端部におけ
る1直径上には、互いに対向するスリット(1a)を形成
しておいた。そして、スリット(1a)の形成された端部
が下になるように、筒状部材(1)を角盤(2)上に載
せ、筒状部材(1)内にベンゼンの拡散炎から得られた
煤(ベンゼン煤)を入れ、炉内において種々の温度(室
温〜400℃)に加熱保持しながら、次の条件で筒状部材
(1)と角盤(2)とを互いに回転させて摩擦試験を行
った。この回転時に、ベンゼン煤は、スリット(1a)を
経て筒状部材(1)と角盤(2)との間の摩擦面に侵入
する。
Test 1 As shown in FIG. 1, a cylindrical member (1) having an outer diameter of 26 mm, an inner diameter of 20 mm, a length of 15 mm, a side length of 30 mm, and a thickness of a ceramic obtained by adding MgO to α-Al 2 O 3 was used. A square square plate (2) having a length of 5 mm was formed. The firing temperature of α-Al 2 O 3 is 1630 ° C,
The specific gravity is 3.9, the specific resistance is 10 11 , the bending strength is 39 kgf / mm 2 , and the Vickers hardness (HV) is 1200. Slits (1a) facing each other were formed on one end of the cylindrical member (1) on one diameter. Then, the tubular member (1) was placed on the square plate (2) such that the end where the slit (1a) was formed faced downward, and the tubular member (1) was obtained from the diffusion flame of benzene in the tubular member (1). A soot (benzene soot) is put in the furnace and heated and maintained at various temperatures (room temperature to 400 ° C.) while rotating the tubular member (1) and the square plate (2) under the following conditions to perform a friction test. went. During this rotation, the benzene soot enters the friction surface between the tubular member (1) and the square plate (2) via the slit (1a).

荷 重 29.4N 速 度 0.1m/s すべり距離 1500m そして、各雰囲気温度において、すべり距離が1000m
で摩擦係数が定常状態に達した時点での摩擦係数を測定
した。また、各雰囲気温度において、すべり距離が1500
mに達した後の比摩耗量を測定した。比摩耗量は、筒状
部材(1)の重量変化とその比重との関係から減少した
体積を求め、この体積を荷重とすべり距離とで割ること
(体積/荷重・距離)による求めた。
Load 29.4N Speed 0.1m / s Sliding distance 1500m And at each ambient temperature, the sliding distance is 1000m
The coefficient of friction at the time when the coefficient of friction reached a steady state was measured. At each ambient temperature, the slip distance is 1500
The specific wear after reaching m was measured. The specific wear amount was obtained by calculating the reduced volume from the relationship between the change in weight of the tubular member (1) and its specific gravity, and dividing this volume by the load and the slip distance (volume / load / distance).

比較のために、筒状部材(1)内に、ベンゼン煤の代
わりに固体潤滑剤として知られているグラファイト粉末
を入れて上記と同様に摩擦係数を測定した。また、筒状
部材(1)内に何も入れないで上記と同様に摩擦係数お
よび比摩耗量を測定した。
For comparison, graphite powder known as a solid lubricant was placed in the tubular member (1) instead of benzene soot, and the friction coefficient was measured in the same manner as described above. Further, the friction coefficient and the specific wear amount were measured in the same manner as described above without putting anything in the tubular member (1).

これらの結果を第2図および第3図にまとめて示す。
雰囲気温度と摩擦係数との関係を示す第2図から明らか
なように、ベンゼン煤を用いた場合には、何も用いなか
った場合に比べて摩擦係数が小さくなり、優れた潤滑性
能を付与することが分かる。また、特に、雰囲気温度が
300℃を中心とする所定の温度範囲内にある場合には、
グラファイト粉末よりも摩擦係数が小さくなっている。
These results are summarized in FIGS. 2 and 3.
As is clear from FIG. 2 showing the relationship between the ambient temperature and the friction coefficient, when benzene soot was used, the friction coefficient was smaller than when nothing was used, and excellent lubrication performance was imparted. You can see that. In particular, the ambient temperature
If the temperature is within a predetermined range around 300 ° C,
It has a lower coefficient of friction than graphite powder.

また、雰囲気温度と比摩耗量との関係を示す第3図か
ら明らかなように、ベンゼン煤を用いた場合の比摩耗量
は、各雰囲気温度において何も用いない場合よりも少な
く、室温〜300℃近傍では、グラファイト粉末を用いた
場合よりも少ないか、あるいは同程度であることが分か
る。
Further, as is clear from FIG. 3 showing the relationship between the ambient temperature and the specific wear amount, the specific wear amount when benzene soot was used was smaller than the case where nothing was used at each ambient temperature, and was between room temperature and 300 ° C. In the vicinity of ° C., it can be seen that it is less than or similar to the case where graphite powder is used.

試験2 筒状部材(1)内にベンゼン煤を入れた場合、グラフ
ァイト粉末を入れた場合、何も入れない場合について、
それぞれ雰囲気温度を400℃とし、荷重を種々変更する
とともに、荷重以外は上記試験1と同じ条件で筒状部材
(1)と角盤(2)とを互いに回転させて摩擦試験を行
い、すべり距離が1500mに達した後の比摩耗量を測定し
た。これらの結果を第4図にまとめて示す。第4図から
明らかなように、ベンゼン煤を用いた場合の比摩耗量
は、各荷重において何も用いない場合よりも少なく、荷
重の小さい場合は、グラファイト粉末を用いた場合と同
程度であることが分かる。
Test 2 When benzene soot was put in the cylindrical member (1), when graphite powder was put, and when nothing was put,
The ambient temperature was set to 400 ° C., the load was changed variously, and the friction test was performed by rotating the cylindrical member (1) and the square plate (2) under the same conditions as in the above test 1 except for the load, and the slip distance was reduced. The specific wear amount after reaching 1500 m was measured. These results are summarized in FIG. As is clear from FIG. 4, the specific wear amount when benzene soot was used was smaller than that when nothing was used at each load, and when the load was small, the specific wear amount was almost the same as when graphite powder was used. You can see that.

試験3 窒素ガス雰囲気中で700℃×1h、1100℃×1hおよび150
0℃×1hでそれぞれ熱処理したベンゼン煤、ならびに熱
処理を施していないベンゼン煤を使用し、雰囲気温度30
0℃で、上記試験1と同じ条件で筒状部材(1)と角盤
(2)とを互いに回転させて摩擦試験を行い、各すべり
距離における摩擦係数を測定した。これらの結果を第5
図に示す。第5図から明らかなように、すべり距離が長
くなれば、熱処理を施していないものは、熱処理を施し
たものに比べて摩擦係数が小さくかつ安定化することが
分かる。また、熱処理が施したものの中では、熱処理温
度が低いベンゼン煤ほど摩擦係数が小さくかつ安定化す
ることが分かる。
Test 3 700 ℃ × 1h, 1100 ℃ × 1h and 150 ℃ in nitrogen gas atmosphere
Using benzene soot heat-treated at 0 ° C x 1 h and benzene soot without heat treatment, respectively,
At 0 ° C., a friction test was performed by rotating the tubular member (1) and the square plate (2) under the same conditions as in Test 1 above, and the friction coefficient at each slip distance was measured. These results are
Shown in the figure. As is clear from FIG. 5, when the slip distance becomes longer, the non-heat-treated one has a smaller friction coefficient and is more stable than the heat-treated one. Further, among the heat-treated benzene soots, the lower the heat treatment temperature, the lower the friction coefficient and the more stable the benzene soot.

試験4 試験3と同じ4種のベンゼン煤を使用し、雰囲気温度
300℃で、上記試験1と同じ条件で筒状部材(1)と角
盤(2)とを互いに回転させて摩擦試験を行い、すべり
距離が1500mに達した後の比摩擦量を測定した。これら
の結果を第6図に示す。第6図から明らかなように、比
摩耗量は、いずれの煤においても変わらない。
Test 4 Using the same four types of benzene soot as in Test 3, and the ambient temperature
At 300 ° C., the friction test was performed by rotating the tubular member (1) and the square plate (2) under the same conditions as in the above Test 1, and the specific friction amount after the slip distance reached 1500 m was measured. These results are shown in FIG. As is clear from FIG. 6, the specific wear amount does not change in any of the soots.

試験5 上記試験1と同じ装置を使用し、 (a)ベンゼン煤を用いて300℃で摩擦試験を行い、試
験後のベンゼン煤を集めて筒状部材(1)内に入れ、雰
囲気温度を室温として筒状部材(1)と角盤(2)とを
互いに回転させて摩擦試験を行った。
Test 5 Using the same apparatus as in Test 1 above, (a) A friction test was performed at 300 ° C. using benzene soot, and the benzene soot after the test was collected and placed in a cylindrical member (1), and the ambient temperature was set to room temperature. The friction test was performed by rotating the cylindrical member (1) and the square plate (2) with each other.

(b)ベンゼン煤を筒状部材(1)内に入れた後、200
℃×10hの条件で熱処理を施し、その後その状態から雰
囲気温度を300℃として筒状部材(1)と角盤(2)と
を互いに回転させて摩擦試験を行った。
(B) After putting benzene soot into the cylindrical member (1), 200
A heat treatment was performed at a temperature of 10 ° C. × 10 hours, and then an atmospheric temperature was set to 300 ° C., and the friction test was performed by rotating the cylindrical member (1) and the square plate (2) with each other.

(c)ベンゼン煤を筒状部材(1)内に入れた後、300
℃×10hの条件で熱処理を施し、その後その状態から雰
囲気温度を300℃として筒状部材(1)と角盤(2)と
を互いに回転させて摩擦試験を行った。
(C) After putting benzene soot into the cylindrical member (1), 300
A heat treatment was performed at a temperature of 10 ° C. × 10 hours, and then an atmospheric temperature was set to 300 ° C., and the friction test was performed by rotating the cylindrical member (1) and the square plate (2) with each other.

なお、荷重、速度、すべり距離は、上記試験1と同じ
である。そして、各すべり距離における摩擦係数を測定
した。これらの結果を第7図に示す。第7図から明らか
なように、すべり距離が長くなれば、上記条件(b)で
行ったものは、条件(a)および(c)で行ったものに
比べて摩擦係数が小さくかつ安定化している。そして、
この結果を、上記試験1のベンゼン煤に関する結果およ
び上記試験3の熱処理を施していないベンゼン煤に関す
る結果と比べてみれば、次のことが推測される。すなわ
ち、煤は、300℃まで加熱されることによって何等かの
変化を起こし、この変化に起因して摩擦係数が小さくな
ると考えられる。上記変化は、不可逆的なものであって
加熱後冷却しても元の状態には戻らず、摩擦試験のさい
の雰囲気温度が300℃を中心とする所定の温度範囲内に
あることが重要であると推測される。
The load, speed, and slip distance are the same as those in Test 1. Then, the friction coefficient at each slip distance was measured. These results are shown in FIG. As is clear from FIG. 7, when the slip distance becomes longer, the friction coefficient obtained under the condition (b) has a smaller and more stable friction coefficient than those performed under the conditions (a) and (c). I have. And
When this result is compared with the result of the test 1 on benzene soot and the result of the test 3 on the benzene soot not subjected to the heat treatment, the following is presumed. That is, it is considered that the soot undergoes some change when heated to 300 ° C., and the coefficient of friction decreases due to this change. The above change is irreversible and does not return to the original state even after cooling after heating, and it is important that the ambient temperature during the friction test is within a predetermined temperature range around 300 ° C. It is speculated that there is.

試験6 試験3と同じ4種のベンゼン煤を使用し、これらの煤
を、大気中において昇温速度10℃/minで加熱し、そのさ
いの重量減少量(%)を測定した。その結果を第8図に
示す。第8図から明らかなように、熱処理を施していな
いベンゼン煤は200℃を越えるあたりから重量減少量が
多くなっているのに対し、熱処理を施した煤は450℃を
越えるあたりから重量減少量が多くなっている。これ
は、熱処理を施した煤は、熱処理時に既に重量が減少し
ているからであると考えられる。
Test 6 The same four types of benzene soot as in Test 3 were used, and these soots were heated in the atmosphere at a heating rate of 10 ° C./min, and the weight loss (%) was measured. The result is shown in FIG. As is clear from FIG. 8, the weight loss of benzene soot without heat treatment increased from around 200 ° C., whereas the weight loss of heat treated soot increased from around 450 ° C. Is increasing. This is considered to be because the soot that had been subjected to the heat treatment had already decreased in weight during the heat treatment.

試験7 熱処理を施していないベンゼン煤、300℃で4時間加
熱保持したベンゼン煤、および上記試験1において300
℃で摩擦試験を行ったベンゼン煤を使用し、これらの煤
を、大気中において昇温速度10℃/minで加熱し、そのさ
いの重量減少量(%)を測定した。その結果を第9図に
示す。第9図から明らかなように、何等処理を施してい
ないベンゼン煤は200℃を越えるあたりから重量減少量
が多くなっているのに対し、処理を施した煤は300℃を
越えるあたりから重量減少量が多くなっている。これ
は、処理を施した煤は、処理時に既に重量が減少してい
るからであると考えられる。
Test 7 Benzene soot without heat treatment, benzene soot heated and held at 300 ° C. for 4 hours, and 300
Using benzene soot subjected to a friction test at 0 ° C., these soots were heated in the air at a heating rate of 10 ° C./min, and the weight loss (%) was measured. The results are shown in FIG. As is clear from FIG. 9, the benzene soot without any treatment has a large weight loss around 200 ° C., whereas the treated soot has a weight loss around 300 ° C. The amount is increasing. This is probably because the treated soot has already been reduced in weight during the treatment.

上記試験6および7の結果から次のことが推測され
る。すなわち、何等処理を施していないベンゼン煤は、
200〜400℃において、煤の成分である炭素、水素、窒素
および酸素が、一部煤から脱離し、多環式芳香族炭化水
素の形態で放出されることによって重量が減少し、450
℃を越えると煤の主成分である炭素が空気中の酸素と反
応して燃焼することによって重量が減少する。そして、
200〜400℃における煤の成分である炭素、水素、窒素お
よび酸素が、一部煤から脱離することによって、煤を構
成する粒子どうしが分離し易くなり、摺接部材どうしの
間の摩擦面での潤滑性能の向上に寄与すると考えられ
る。
The following is presumed from the results of Tests 6 and 7 above. That is, benzene soot without any treatment is
At 200-400 ° C., the weight of carbon, hydrogen, nitrogen and oxygen, which are components of soot, is reduced by being partly desorbed from soot and released in the form of polycyclic aromatic hydrocarbons, and 450
When the temperature exceeds ℃, carbon, which is the main component of soot, reacts with oxygen in the air and burns, thereby reducing the weight. And
Carbon, hydrogen, nitrogen and oxygen, which are soot components at 200 to 400 ° C., are partly desorbed from the soot, so that the particles constituting the soot are easily separated from each other, and the friction surface between the sliding contact members. It is considered that this contributes to the improvement of lubrication performance.

試験8 何等処理を施していないベンゼン煤を使用し、雰囲気
温度100℃、300℃、400℃で、上記試験1と同じ条件で
摩擦試験を行った。30分間摩擦試験を行ったさいの炉内
の雰囲気ガスをアスピレータで吸い出し、これをBa(O
H)溶液中に通し、 Ba(OH)+CO2 →BaCO3+H2O の反応によってBaCO3を沈澱させた。ついで、沈澱したB
aCO3を使用し、 BaCO3+H2SO4 →BaSO4+H2O+CO2 の反応によってBaCO3の沈澱をBaSO4に置換し、これから
炉内のCO2量を求めた。また、炉内の温度を100℃、300
℃、400℃にし、炉内のガスをアスピレータで吸い出
し、上記同様にして摩擦試験を行わない場合の炉内のCO
2量を求めた。そして、摩擦試験を行ったときのCO2量か
ら摩擦試験を行わなかったときのCO2量を減じ、炉内に
おいて摩擦試験により発生するCO2量を求め、その値か
ら燃焼による煤の減少量を求めた。その結果を下表に示
す。
Test 8 Using a benzene soot that had not been subjected to any treatment, a friction test was performed at 100 ° C., 300 ° C., and 400 ° C. under the same conditions as in Test 1 above. During the 30 minute friction test, the atmosphere gas in the furnace was sucked out with an aspirator,
H) 2 solution, and BaCO 3 was precipitated by a reaction of Ba (OH) 2 + CO 2 → BaCO 3 + H 2 O. Then, precipitated B
Using the ACO 3, replaced precipitation of BaCO 3 to BaSO 4 by the reaction of BaCO 3 + H 2 SO 4 → BaSO 4 + H 2 O + CO 2, and therefrom determine the amount of CO 2 in the furnace. In addition, the temperature inside the furnace
℃, 400 ℃, the gas in the furnace is sucked out by an aspirator, CO
Two quantities were determined. Then, subtract the amount of CO 2 when the friction test was not performed from the amount of CO 2 when the friction test was performed, obtain the amount of CO 2 generated by the friction test in the furnace, and determine the amount of soot reduction due to combustion from the value. I asked. The results are shown in the table below.

上表から明らかなように、摩擦試験を行う温度が高い
ほど、炉内の煤減少量は大きい。400℃で越えると筒状
部材(1)と角盤(2)との摩擦面での煤の酸化反応が
激しくなるため、摩擦面に煤が付着しにくくなる。
As is clear from the above table, the higher the temperature at which the friction test is performed, the greater the amount of soot reduction in the furnace. If the temperature exceeds 400 ° C., the oxidation reaction of soot on the friction surface between the tubular member (1) and the square plate (2) becomes intense, so that the soot hardly adheres to the friction surface.

このことが、400℃近辺の摩擦摩耗特性劣化の要因と
なる。
This causes the friction and wear characteristics to deteriorate around 400 ° C.

試験9 筒状部材(1)および角盤(2)をSiCで成形し、煤
としてベンゼン煤、およびベンゼンに亜鉛を添加した燃
料の拡散炎から得られた煤を用い、その他は上記試験1
と同様にして摩擦試験を行った。そして、各雰囲気温度
において、すべり距離が1000mで摩擦係数が定常状態に
達した時点での摩擦係数を測定するとともに、各雰囲気
温度において、すべり距離が1500mに達した後の比摩耗
量を測定した。これらの結果を第10図および第11図に示
す。
Test 9 The cylindrical member (1) and the square plate (2) were formed of SiC, and benzene soot was used as soot, and soot obtained from a fuel diffusion flame obtained by adding zinc to benzene was used.
A friction test was performed in the same manner as described above. Then, at each ambient temperature, the friction coefficient was measured when the slip distance reached a steady state at a slip distance of 1000 m, and at each ambient temperature, the specific wear amount after the slip distance reached 1500 m was measured. . These results are shown in FIG. 10 and FIG.

試験10 筒状部材(1)および角盤(2)をSi3N4で成形し、
煤としてベンゼン煤、ベンゼンに亜鉛を添加した燃料の
拡散炎から得られた煤、およびベンゼンにニッケルを添
加した燃料の拡散炎から得られた煤を用い、その他は上
記試験1と同様にして摩擦試験を行った。そして、各雰
囲気温度において、すべり距離が1000mで摩擦係数が定
常状態に達した時点での摩擦係数を測定するとともに、
各雰囲気温度において、すべり距離が1500mに達した後
の比摩耗量を測定した。これらの結果を第12図および第
13図に示す。
Test 10 A cylindrical member (1) and a square plate (2) were formed from Si 3 N 4 ,
Using benzene soot as a soot, soot obtained from a diffusion flame of a fuel obtained by adding zinc to benzene, and soot obtained from a diffusion flame of a fuel obtained by adding nickel to benzene. The test was performed. Then, at each ambient temperature, while measuring the friction coefficient when the friction distance reaches a steady state at a slip distance of 1000 m,
At each ambient temperature, the specific wear after the slip distance reached 1500 m was measured. FIG. 12 and FIG.
Figure 13 shows.

上記試験9および10の結果から、摺接部材の材質が他
のセラミックスに変わった場合であっても、特に雰囲気
温度が300℃を中心として所定の温度範囲内にあるとき
には、煤を用いた場合には、潤滑材を用いなかった場合
およびグラファイトを用いた場合に比べて、摩擦係数が
小さくなるとともに、比摩耗量もSi3N4のベンゼン煤の
場合を除いて少なくなっており、より優れた潤滑性能を
付与していることが分かる。
From the results of the above tests 9 and 10, even when the material of the sliding contact member is changed to another ceramic, particularly when the ambient temperature is within a predetermined temperature range around 300 ° C., the case where soot is used In comparison with the case where no lubricant was used and the case where graphite was used, the coefficient of friction was smaller and the specific wear amount was smaller except for the case of benzene soot of Si 3 N 4 , which was more excellent. It can be seen that the lubrication performance was given.

発明の効果 この発明の潤滑方法によれば、固体循環剤と同様な潤
滑性能を示し、コストは安くなる。
Effects of the Invention According to the lubrication method of the present invention, the lubrication performance is the same as that of the solid circulating agent, and the cost is reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は摩擦試験を行う装置を示す垂直縦断面図、第2
図は試験1の結果を示し、摩擦試験の雰囲気温度と摩擦
係数との関係を表すグラフ、第3図は試験1の結果を示
し、摩擦試験の雰囲気温度と比摩耗量との関係を表すグ
ラフ、第4図は試験2の結果を示し、摩擦試験の荷重と
比摩耗量との関係を表すグラフ、第5図は試験3の結果
を示し、すべり距離と摩擦係数との関係を表すグラフ、
第6図は試験4の結果を示し、各種煤の比摩耗量を表す
グラフ、第7図は試験5の結果を示し、すべり距離と摩
擦係数との関係を表すグラフ、第8図は試験6の結果を
示し、加熱温度と重量減少量との関係を表すグラフ、第
9図は試験7の結果を示し、加熱温度と重量減少量との
関係を表すグラフ、第10図は試験8の結果を示し、摩擦
試験の雰囲気温度と摩擦係数との関係を表すグラフ、第
11図は試験9の結果を示し、摩擦試験の雰囲気温度と比
摩耗量との関係を表すグラフ、第12図は試験10の結果を
示し、摩擦試験の雰囲気温度と摩擦係数との関係を表す
グラフ、第13図は試験10の結果を示し、摩擦試験の雰囲
気温度と比摩耗量との関係を表すグラフである。
FIG. 1 is a vertical longitudinal sectional view showing an apparatus for performing a friction test, and FIG.
The figure shows the results of Test 1 and is a graph showing the relationship between the ambient temperature of the friction test and the friction coefficient. FIG. 3 is the graph showing the results of Test 1 and the relationship between the ambient temperature of the friction test and the specific wear. , FIG. 4 shows the results of Test 2, a graph showing the relationship between the load of the friction test and the specific wear, FIG. 5 shows the results of Test 3, and shows the relationship between the slip distance and the coefficient of friction,
FIG. 6 shows the results of Test 4, showing the specific wear of various soots. FIG. 7 shows the results of Test 5, showing the relationship between the slip distance and the coefficient of friction. FIG. 9 is a graph showing the relationship between the heating temperature and the weight loss, FIG. 9 is a graph showing the relationship between the heating temperature and the weight loss, and FIG. Is a graph showing the relationship between the friction coefficient and the ambient temperature in the friction test.
FIG. 11 shows the results of Test 9, showing the relationship between the ambient temperature of the friction test and the specific wear. FIG. 12 shows the results of Test 10, showing the relationship between the ambient temperature of the friction test and the coefficient of friction. FIG. 13 is a graph showing the results of Test 10 and showing the relationship between the ambient temperature and the specific wear in the friction test.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F16N 15/00 F16C 33/24 F16C 33/10Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) F16N 15/00 F16C 33/24 F16C 33/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一方がセラミックスで形成され
ている2つの摺接部材間の潤滑方法であって、 炭化水素系燃料を燃焼させることにより生じる煤を両摺
接部材間に供給することを特徴とする2つの摺接部材間
の潤滑方法。
1. A method of lubricating between two sliding members, at least one of which is made of ceramics, wherein soot produced by burning a hydrocarbon-based fuel is supplied between the two sliding members. Lubrication method between two sliding contact members.
JP27403289A 1989-10-20 1989-10-20 Lubrication method between two sliding members Expired - Fee Related JP2767470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27403289A JP2767470B2 (en) 1989-10-20 1989-10-20 Lubrication method between two sliding members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27403289A JP2767470B2 (en) 1989-10-20 1989-10-20 Lubrication method between two sliding members

Publications (2)

Publication Number Publication Date
JPH03134399A JPH03134399A (en) 1991-06-07
JP2767470B2 true JP2767470B2 (en) 1998-06-18

Family

ID=17536011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27403289A Expired - Fee Related JP2767470B2 (en) 1989-10-20 1989-10-20 Lubrication method between two sliding members

Country Status (1)

Country Link
JP (1) JP2767470B2 (en)

Also Published As

Publication number Publication date
JPH03134399A (en) 1991-06-07

Similar Documents

Publication Publication Date Title
Zum Gahr Sliding wear of ceramic-ceramic, ceramic-steel and steel-steel pairs in lubricated and unlubricated contact
JP4790135B2 (en) Wear-resistant sliding member
JP3549239B2 (en) Rolling bearing
JP2891745B2 (en) piston ring
Zhang et al. A study of B4C‐SiC composite for self‐lubrication
JP2767470B2 (en) Lubrication method between two sliding members
Jin et al. Effects of sintering aids and solid lubricants on tribological behaviours of CMC/Al 2 O 3 pair at 650° C
Yun et al. Tensile creep and stress-rupture behavior of polymer derived SiC fibers
Barnick et al. High temperature lubrication of various ceramics and metal alloys via directed hydrocarbon feed gases
US5327995A (en) Method of lubrication between two sliding members
Kim et al. Tribological characteristics of silicon nitride at elevated temperatures
JPS6089543A (en) Erosion resistant metal-ceramics composite material
Haldar et al. The effect of normal load and sliding frequency on the reciprocating friction behavior of Nanocrystalline CuO-based alumina ceramics
Liu et al. The influence of TiC, CaF2 and MnS additives on friction and lubrication of sintered high speed steels at elevated temperature
Sun et al. Effect of layer thickness on the rolling-sliding wear behavior of low-temperature plasma-carburized austenitic stainless steel
JP2017075401A (en) Friction adjustment interface between two components made of nickel, nickel alloy or cobalt-chromium alloy moving relatively at high temperature
Novak et al. Wear of silicon nitride ceramics under fretting conditions
CN116445846B (en) Explosion spraying nickel-based wide-temperature-range self-lubricating coating
Blanchard et al. Effect of silicon carbide whisker and titanium carbide particulate additions on the friction and wear behavior of silicon nitride
JPS6132273B2 (en)
GB2331996A (en) A nickel alloy
DellaCorte et al. Sliding durability of two carbide-oxide candidate high temperature fiber seal materials in air to 900 C
JPH11256176A (en) Solid lubricant
JP2659648B2 (en) Lubricants for gas engines
JP3419478B2 (en) bearing

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees