JP2767136B2 - Control device for magnetic bearing spindle - Google Patents

Control device for magnetic bearing spindle

Info

Publication number
JP2767136B2
JP2767136B2 JP22231089A JP22231089A JP2767136B2 JP 2767136 B2 JP2767136 B2 JP 2767136B2 JP 22231089 A JP22231089 A JP 22231089A JP 22231089 A JP22231089 A JP 22231089A JP 2767136 B2 JP2767136 B2 JP 2767136B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
main shaft
displacement
spindle
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22231089A
Other languages
Japanese (ja)
Other versions
JPH0386469A (en
Inventor
伸幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU TEI ENU KK
Original Assignee
ENU TEI ENU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU TEI ENU KK filed Critical ENU TEI ENU KK
Priority to JP22231089A priority Critical patent/JP2767136B2/en
Publication of JPH0386469A publication Critical patent/JPH0386469A/en
Application granted granted Critical
Publication of JP2767136B2 publication Critical patent/JP2767136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Position Or Direction (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は磁気軸受スピンドルの制御装置に関し、特
に、能動制御型磁気軸受スピンドルを深孔円筒内面研削
用スピンドルとして用いる場合の制御装置に関する。
Description: TECHNICAL FIELD The present invention relates to a control device for a magnetic bearing spindle, and more particularly to a control device when an active control type magnetic bearing spindle is used as a spindle for deep hole cylindrical inner surface grinding.

[従来の技術] たとえば、長い円筒の内面を精密に研削を行なう場
合、通常は長クイルを装着したエアスピンドルなどによ
って砥石研削を行なった後、ホーニング加工を行なって
いる。しかしながら、この方法によると、長クイルのコ
ンプライアンスが高いために、研削抵抗背分力によって
クイルが弾性変形し、加工後の内面形状が加工前のもの
に倣ってしまうという欠点があった。これに対して、内
面形状を先に測定しておき、そのデータに応じて切込量
を変化させるために、スピンドル本体を振動させるとい
う加工方法が考えられる。ところが、この方法では、大
きなパワーロスを生じてしまい、高速動作させることが
困難であるという欠点がある。
[Prior Art] For example, when precisely grinding the inner surface of a long cylinder, honing is usually performed after grinding with an air spindle equipped with a long quill. However, according to this method, since the compliance of the long quill is high, there is a drawback that the quill is elastically deformed by the back force of the grinding resistance, and the inner surface shape after processing follows that before processing. On the other hand, a processing method is conceivable in which the inner surface shape is measured first, and the spindle main body is vibrated in order to change the cutting amount according to the data. However, this method has a drawback that a large power loss occurs and it is difficult to operate at a high speed.

[発明が解決しようとする課題] ところで、磁気軸受スピンドルは、磁気力によって主
軸を非接触で支持するものであり、タッチダウンベアリ
ングと主軸とのギャップは数100ミクロンある。磁気軸
受スピンドルは、このギャップ範囲内において主軸支持
位置の指令値を変化させることで主軸のみ振動させるこ
とができる。これにより、上述の高速動作させることの
問題点は解決できる。しかしながら、磁気軸受のダンピ
ング係数は小さく、目標値指令には必ずオーバシュート
を伴ない、長クイルの弾性変形によってクイル先端の砥
石部の位置が指令位置とは異なってしまうという問題点
がある。
[Problems to be Solved by the Invention] The magnetic bearing spindle supports the main shaft in a non-contact manner by a magnetic force, and the gap between the touchdown bearing and the main shaft is several hundred microns. The magnetic bearing spindle can vibrate only the main shaft by changing the command value of the main shaft support position within this gap range. Thus, the above-described problem of operating at high speed can be solved. However, there is a problem that the damping coefficient of the magnetic bearing is small, the target value command always involves overshoot, and the position of the grindstone at the tip of the quill differs from the command position due to the elastic deformation of the long quill.

それゆえに、この発明の主たる目的は、長い円筒の内
面などを精密に研削を行なう場合に、長クイルが弾性変
形することを考慮した研削機系のモデルを作成し、この
モデルに基づいたオブザーバによって砥石等の位置制御
を行ない、かつ研削力に応じた軸受剛性制御を行なう磁
気軸受スピンドルの制御装置を提供することである。
Therefore, a main object of the present invention is to create a model of a grinding machine system in consideration of elastic deformation of a long quill when precisely grinding the inner surface of a long cylinder or the like, and using an observer based on this model. An object of the present invention is to provide a magnetic bearing spindle control device that controls the position of a grindstone or the like and controls the bearing stiffness in accordance with the grinding force.

[課題を解決するための手段] 第1請求項にかかる発明は主軸に深孔円筒内面研削用
の長クイルが取付けられた磁気軸受スピンドルを制御す
るための制御装置であって、主軸の前部を磁気浮上させ
て支持するための前部磁気軸受と、主軸の後部を磁気浮
上させて支持するための後部磁気軸受と、主軸の前部の
変位を検出するための前部変位検出手段と、主軸の後部
の変位を検出するための後部変位検出手段と、前部磁気
軸受および後部磁気軸受のそれぞれに流れる電流値と、
前部変位検出手段および後部変位検出手段のそれぞれの
検出出力と、それぞれの微分出力とに基づいて、主軸に
取付けられた深孔円筒内面研削用の長クイルの砥石部位
置と変位速度とを推定する推定手段と、推定手段によっ
て推定された値で目標値を補正して前部磁気軸受および
後部磁気軸受を制御する制御手段を備えて構成される。
Means for Solving the Problems The invention according to a first aspect is a control device for controlling a magnetic bearing spindle in which a long quill for inner surface grinding of a deep hole cylinder is mounted on a main shaft, wherein a front portion of the main shaft is provided. Front magnetic bearing for magnetically levitating and supporting, a rear magnetic bearing for magnetically levitating and supporting the rear part of the main shaft, and front displacement detecting means for detecting a displacement of a front part of the main shaft, A rear displacement detecting means for detecting a rear displacement of the main shaft, a current value flowing through each of the front magnetic bearing and the rear magnetic bearing,
Based on the detected outputs of the front displacement detecting means and the rear displacement detecting means, and the respective differential outputs, the position and the displacement speed of the grindstone portion of the long quill for deep hole cylindrical inner surface grinding mounted on the main shaft are estimated. And a control means for controlling the front magnetic bearing and the rear magnetic bearing by correcting the target value with the value estimated by the estimating means.

[作用] この発明にかかる磁気軸受スピンドルの制御装置は、
分布定数系の弾性体である深孔円筒内面研削用の長クイ
ルを先端部にマスが集中した片持ちばりに集中定数化
し、前部磁気軸受および後部磁気軸受に流れる電流値と
前部および後部の変位とそれぞれの微分信号とに基づい
て、砥石部位置と変位速度を推定し、推定された値で目
標値を補正する。それによって、長い円筒の内面などを
精密に研削を行なう場合において、工作物形状に応じた
研削力を砥石部に与えることができ、加工後形状が加工
前形状に倣うという問題点を解決できる。
[Operation] A control device for a magnetic bearing spindle according to the present invention includes:
The long quill for grinding the inner surface of a deep hole cylinder, which is an elastic body of distributed constant system, is concentrated into a cantilever beam with the mass concentrated at the tip, and the current value flowing through the front magnetic bearing and the rear magnetic bearing, and the front and rear parts Based on the displacement and the respective differential signals, the position and the displacement speed of the grindstone portion are estimated, and the target value is corrected with the estimated value. Thus, when the inner surface of a long cylinder or the like is precisely ground, a grinding force corresponding to the shape of the workpiece can be applied to the grindstone portion, and the problem that the shape after processing follows the shape before processing can be solved.

[発明の実施例] 第1図はこの発明の一実施例の概略ブロック図であ
り、第2図は磁気軸受スピンドルの概要を示す図であ
る。
FIG. 1 is a schematic block diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing an outline of a magnetic bearing spindle.

磁気軸受スピンドルは、第2図に示すように、前部磁
気軸受1と後部磁気軸受4とによって主軸7が磁気力に
よって非接触で支持される。前部磁気軸受1は前部電磁
石2と前部センサ3とを含み、後部磁気軸受4は後部電
磁石5と後部センサ6とを含む。主軸7の先端部には長
クイル25が取付けられ、長クイル25の先端部には砥石部
26が取付けられている。砥石部26に圧力Fdが加わると、
長クイル25に撓みが生じる。そこで、この発明では、長
クイル25を砥石部26にマスが集中した片持ちばりに集中
定数化し、クイルを含めた磁気軸受スピンドル全体のモ
デルを作成し、このモデルをもとに砥石部26の位置およ
び変位速度を推定する。
In the magnetic bearing spindle, as shown in FIG. 2, a main shaft 7 is supported by a front magnetic bearing 1 and a rear magnetic bearing 4 in a non-contact manner by a magnetic force. The front magnetic bearing 1 includes a front electromagnet 2 and a front sensor 3, and the rear magnetic bearing 4 includes a rear electromagnet 5 and a rear sensor 6. A long quill 25 is attached to the tip of the main shaft 7, and a grindstone is attached to the tip of the long quill 25.
26 are installed. When pressure Fd is applied to the grindstone part 26,
The long quill 25 is bent. Therefore, in the present invention, the long quill 25 is concentrated into a cantilever beam in which the mass is concentrated on the grindstone part 26, and a model of the entire magnetic bearing spindle including the quill is created. Estimate position and displacement velocity.

このために、第1図に示すように、前部電磁石2の電
流値と前部センサ3の出力およびその微分信号と後部電
磁石5の電流値と後部センサ6の出力およびその微分信
号とが砥石部位置,速度推定オブザーバ21に与えられ
る。
For this purpose, as shown in FIG. 1, the current value of the front electromagnet 2, the output of the front sensor 3 and its differential signal, the current value of the rear electromagnet 5, the output of the rear sensor 6 and its differential signal are used as a grinding wheel. The position and speed are given to the observer 21.

オブザーバ21は前部電磁石2および後部電磁石5の電
流値と前部センサ3および後部センサ6のそれぞれの出
力およびそれぞれの微分信号とに基づいて、砥石部26の
位置変位速度を推定するために設けられる。オブザーバ
21によって推定された砥石部26の位置の値は前部センサ
補正信号および後部センサ補正信号として加算器19,20
に個別的に与えられる。
The observer 21 is provided for estimating the position displacement speed of the grindstone unit 26 based on the current values of the front electromagnet 2 and the rear electromagnet 5, the respective outputs of the front sensor 3 and the rear sensor 6, and the respective differential signals. Can be Observer
The value of the position of the grindstone 26 estimated by 21 is used as a front sensor correction signal and a rear sensor correction signal as adders 19 and 20.
Given individually.

加算器19は前部センサ補正信号を前部センサ3の検出
信号に加算して比較器8に与える。また、加算器20は後
部センサ補正信号を後部センサ6の検出出力に加算して
比較器13に与える。比較器8は目標値から加算器19の出
力を減算してPID制御回路9に与え、比較器13は目標値
から加算器20の出力を減算してPID制御回路14に与え
る。PID制御回路9,14はそれぞれ与えられた信号を演算
処理し、前部電磁石2および後部電磁石5に与える制御
信号を出力する。PID制御回路9,14のそれぞれの出力は
加算器10,15に与えられる。
The adder 19 adds the front sensor correction signal to the detection signal of the front sensor 3 and provides the same to the comparator 8. Further, the adder 20 adds the rear sensor correction signal to the detection output of the rear sensor 6 and provides the same to the comparator 13. The comparator 8 subtracts the output of the adder 19 from the target value and supplies it to the PID control circuit 9, and the comparator 13 subtracts the output of the adder 20 from the target value and supplies it to the PID control circuit 14. The PID control circuits 9 and 14 perform arithmetic processing on the applied signals and output control signals to be applied to the front electromagnet 2 and the rear electromagnet 5. Outputs of the PID control circuits 9 and 14 are supplied to adders 10 and 15, respectively.

さらに、直接あるいは間接的に測定した砥石部26に加
わる圧力Fdが補償回路12に与えられ、補償回路12の出力
が加算器10,15に与えられ、PID制御回路9,14のそれぞれ
の出力に加算され、パワーアンプ11,16に与えられる。
パワーアンプ11,16はそれぞれ与えられた制御信号に基
づいて、前部電磁石2および後部電磁石5をそれぞれ駆
動する。
Further, the pressure Fd applied to the grindstone part 26 measured directly or indirectly is given to the compensation circuit 12, the output of the compensation circuit 12 is given to the adders 10, 15, and the output of the PID control circuits 9, 14 is given to each output. The signals are added and supplied to the power amplifiers 11 and 16.
The power amplifiers 11 and 16 respectively drive the front electromagnet 2 and the rear electromagnet 5 based on the applied control signals.

[発明の効果] 以上のように、この発明によれば、分布定数である弾
性体の長クイルを砥石部にマスが集中した片持ちばりに
集中定数化し、長クイルを含めた磁気軸受スピンドル全
体をモデル化し、このモデルをもとにして、前部磁気軸
受および後部磁気軸受に流れる電流値と前部および後部
の変位とそれぞれの微分信号とに基づいて主軸に取付け
られた深孔円筒内面研削用の長クイルの砥石部位置と変
位速度を推定し、推定された値で目標値を補正するよう
にしたので、ワーク形状に応じた研削圧力を研削工具に
与えることができる。
[Effects of the Invention] As described above, according to the present invention, a long quill of an elastic body, which is a distributed constant, is concentrated into a cantilever beam in which mass is concentrated on the grindstone portion, and the entire magnetic bearing spindle including the long quill is provided. Based on this model, based on the current values flowing through the front magnetic bearing and the rear magnetic bearing, the displacement of the front and rear parts, and the respective differential signals, the inner surface grinding of the deep hole cylinder attached to the main shaft Since the position and displacement speed of the grindstone portion of the long quill are estimated and the target value is corrected with the estimated value, it is possible to apply a grinding pressure according to the workpiece shape to the grinding tool.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例の概略ブロック図である。
第2図は磁気軸受スピンドルの概要を示す図である。 図において、1は前部磁気軸受、2は前部電磁石、3は
前部センサ、4は後部磁気軸受、5は後部電磁石、6は
後部センサ、7は主軸、8,13は比較器、9,14はPID制御
回路、10,15,19,20は加算器、11,16はパワーアンプ、12
は補償回路、17,18は微分器、25は長クイル、26は砥石
部を示す。
FIG. 1 is a schematic block diagram of one embodiment of the present invention.
FIG. 2 is a diagram showing an outline of a magnetic bearing spindle. In the figure, 1 is a front magnetic bearing, 2 is a front electromagnet, 3 is a front sensor, 4 is a rear magnetic bearing, 5 is a rear electromagnet, 6 is a rear sensor, 7 is a main shaft, 8, 13 are comparators, 9 , 14 are PID control circuits, 10, 15, 19, 20 are adders, 11, 16 are power amplifiers, 12
Denotes a compensation circuit, 17 and 18 denote differentiators, 25 denotes a long quill, and 26 denotes a grindstone unit.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−60492(JP,A) 特開 昭63−191571(JP,A) 特開 平1−234162(JP,A) 特開 平1−127254(JP,A) 特開 昭63−13918(JP,A) 特開 平1−240267(JP,A) 特開 平1−316168(JP,A) 特開 昭59−89820(JP,A) 特開 昭57−65416(JP,A) 特開 昭57−65415(JP,A) 特開 平1−137302(JP,A) (58)調査した分野(Int.Cl.6,DB名) B24B 41/04 F16C 32/04 G05D 3/12──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-60492 (JP, A) JP-A-63-191571 (JP, A) JP-A-1-234162 (JP, A) JP-A-1- 127254 (JP, A) JP-A-63-13918 (JP, A) JP-A-1-240267 (JP, A) JP-A-1-316168 (JP, A) JP-A-59-89820 (JP, A) JP-A-57-65416 (JP, A) JP-A-57-65415 (JP, A) JP-A-1-137302 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B24B 41/04 F16C 32/04 G05D 3/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主軸に深孔円筒内面研削用の長クイルが取
付けられた磁気スピンドルを制御するための磁気軸受ス
ピンドルの制御装置であって、 前記主軸の前部を磁気浮上させて支持するための前部磁
気軸受、 前記主軸の後部を磁気浮上させて支持するための後部磁
気軸受、 前記主軸の前部の変位を検出するための前部変位検出手
段、 前記主軸の後部の変位を検出するための後部変位検出手
段、 前記前部磁気軸受および後部磁気軸受のそれぞれに流れ
る電流値と、前記前部変位検出手段および後部変位検出
手段のそれぞれの検出出力と、それぞれの微分信号とに
基づいて、前記主軸に取付けられた深孔円筒内面研削用
の長クイルの砥石部位置と変位速度とを推定する推定手
段、および 前記推定手段によって推定された値で目標値を補正して
前記前部磁気軸受および後部磁気軸受を制御する制御手
段を備えた、磁気軸受スピンドルの制御装置。
1. A control device for a magnetic bearing spindle for controlling a magnetic spindle in which a long quill for inner surface grinding of a deep hole cylinder is mounted on a main shaft, for magnetically levitating and supporting a front portion of the main shaft. A front magnetic bearing, a rear magnetic bearing for magnetically levitating and supporting a rear portion of the main shaft, a front displacement detecting unit for detecting a front displacement of the main shaft, and detecting a rear displacement of the main shaft. For the rear displacement detection means, based on the current value flowing in each of the front magnetic bearing and the rear magnetic bearing, the detection output of each of the front displacement detection means and the rear displacement detection means, and the respective differential signal Estimating means for estimating the grinding wheel position and displacement speed of a long quill for deep hole cylindrical inner surface grinding attached to the spindle, and correcting the target value with the value estimated by the estimating means Serial provided with a control means for controlling the front magnetic bearing and a rear magnetic bearing control device of the magnetic bearing spindle.
JP22231089A 1989-08-29 1989-08-29 Control device for magnetic bearing spindle Expired - Fee Related JP2767136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22231089A JP2767136B2 (en) 1989-08-29 1989-08-29 Control device for magnetic bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22231089A JP2767136B2 (en) 1989-08-29 1989-08-29 Control device for magnetic bearing spindle

Publications (2)

Publication Number Publication Date
JPH0386469A JPH0386469A (en) 1991-04-11
JP2767136B2 true JP2767136B2 (en) 1998-06-18

Family

ID=16780357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22231089A Expired - Fee Related JP2767136B2 (en) 1989-08-29 1989-08-29 Control device for magnetic bearing spindle

Country Status (1)

Country Link
JP (1) JP2767136B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2863689B2 (en) * 1993-07-08 1999-03-03 株式会社デンソー Processing machine
JPH0724601A (en) * 1993-07-08 1995-01-27 Nippondenso Co Ltd Working machine
JP2007141668A (en) 2005-11-18 2007-06-07 Molex Inc Rotary connector

Also Published As

Publication number Publication date
JPH0386469A (en) 1991-04-11

Similar Documents

Publication Publication Date Title
JP5143885B2 (en) Non-contact inspection system with integrated turning center
EP1684139B1 (en) Controller
JPH06300041A (en) Magnetic bearing device
JP2767136B2 (en) Control device for magnetic bearing spindle
JPH10244440A (en) Main spindle end displacement correction device for machine tool
KR101318211B1 (en) Active compensated stage having 5-dof motion error compensation and motion error compensating method thereof
EP0378678B1 (en) Electromagnetic bearings
JPH07295649A (en) Stage controller
JP2722003B2 (en) Control method of magnetic bearing spindle for grinding
JP3228034B2 (en) Honing method and apparatus, and main shaft structure of honing machine used in the method
JP4559912B2 (en) Magnetic bearing device
JP3290087B2 (en) Positioning device using hydrostatic bearing
US20030117099A1 (en) System and method for reducing oscillating tool-induced reaction forces
JPH1158285A (en) Force control system of hand mechanism
JPH07112671B2 (en) Processing device with magnetic bearing on spindle
JP2863689B2 (en) Processing machine
JPH1044032A (en) Rotational processing control method
JP2936261B1 (en) Processing equipment with friction force estimation function
JPH1158180A (en) Cutting position-correcting device of magnetic bearing spindle
JP3096821B2 (en) Control type magnetic bearing spindle
JP3222612B2 (en) Surface processing method
JPH106182A (en) Machining method and device
JPH10118925A (en) Condition detecting device of machine tool
JPH0724601A (en) Working machine
JPH0899254A (en) Spindle device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees