JP2766756B2 - Conductive hollow flat plate - Google Patents

Conductive hollow flat plate

Info

Publication number
JP2766756B2
JP2766756B2 JP4313470A JP31347092A JP2766756B2 JP 2766756 B2 JP2766756 B2 JP 2766756B2 JP 4313470 A JP4313470 A JP 4313470A JP 31347092 A JP31347092 A JP 31347092A JP 2766756 B2 JP2766756 B2 JP 2766756B2
Authority
JP
Japan
Prior art keywords
flat plate
hollow
hollow flat
gas
sofc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4313470A
Other languages
Japanese (ja)
Other versions
JPH06163062A (en
Inventor
敏雄 松島
勲 根本
利恭 弓場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4313470A priority Critical patent/JP2766756B2/en
Publication of JPH06163062A publication Critical patent/JPH06163062A/en
Application granted granted Critical
Publication of JP2766756B2 publication Critical patent/JP2766756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導電性物質から構成さ
れ、内部にガスや冷却水等の流体を流すための流路とな
る貫通口を有する平板に関するもので、平板の一方の面
から他の面に電流を流す導電性中空平板に関するもので
ある。具体的な応用分野としては、固体電解質燃料電池
が挙げられ、内部にガス供給路を有する自己支持型燃料
電池の基板としての応用がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate made of a conductive material and having a through hole serving as a flow passage for flowing a fluid such as gas or cooling water therein. The present invention relates to a conductive hollow flat plate that allows current to flow through another surface. As a specific application field, there is a solid oxide fuel cell, and there is an application as a substrate of a self-supporting fuel cell having a gas supply passage therein.

【0002】[0002]

【従来の技術】燃料電池は、酸化剤ガスと燃料ガスの2
種類を使用し、これを酸化剤極と燃料極に供給すること
で発電を行なうものの総称であり、これを構成する材料
によっていくつかの種類が存在している。ここで述べる
固体電解質型燃料電池(以下、SOFCと略称する)
は、それを構成する材料が全て固体物質から構成された
もので、具体的には以下のような物質から成る粉末を種
々の方法で成形し、これを焼結させたセラミックスが主
材料となっている。
2. Description of the Related Art A fuel cell is composed of an oxidizing gas and a fuel gas.
It is a general term for generating electricity by using a kind and supplying it to an oxidant electrode and a fuel electrode. There are several kinds depending on the material constituting the kind. The solid oxide fuel cell described here (hereinafter abbreviated as SOFC)
Is a material that is made up of all solid materials.Specifically, ceramics obtained by molding powder composed of the following substances by various methods and sintering them are the main material. ing.

【0003】電解質 イットリア安定化ジルコニア
(以下、YSZと略称する) 燃料極 ニッケルジルコニアサーメット(以下、N
i−YSZと略称する) 酸化剤極 ランタンマンガナイト(以下、LSMと略
称する) 基本的には、1個のセルは電解質の両面に2つの電極を
配置して形成されるが、このセルの出力電圧は開路電圧
でも1V足らずである。従って、実用的な出力を得るた
めには、このようなセルを多層積み重ねた構造とする必
要がある。複数のセルを積層させて構成するSOFCの
構造の例を、図4に示す。図4において、1は固体電解
質、2は燃料極、3は酸化剤極、4はインターコネクタ
ー、5は燃料ガス流路、6は酸化剤ガス流路、7は単位
セルである。このような構造のSOFCに、各ガスを供
給することで、所定の電圧・電流の電気出力を取り出す
ことができる。このような構造のSOFCにおいて、所
定の発電を行わせるためには、供給された各ガスが各々
の反応面に有効に行き渡り、未反応ガスは排出口から流
出する以外には電極の端部等から周辺部へのリークが全
く無いように積層する必要がある。このような点から見
ると、図4に示したような構造のSOFCは設計概念上
は有効と考えられるが、実際に積層を行なおうとすると
各単位セル7とインターコネクター4部の間の気密性の
確保が極めて難しいという問題がおきる。これは、先に
述べたように全ての材料が固体のセラミックスで構成さ
れているためであり、セラミックス同士の接合面ではガ
ス気密性を得ることは不可能である。これは、部材の平
坦性を極めて向上させたとしても難しいことであるのに
対し、実際にSOFCの単セルを焼結させて作製した場
合には、ある程度の反り等が発生することを考慮すると
全くと言って良いほど実現不可能となっている。
Electrolyte Yttria stabilized zirconia (hereinafter abbreviated as YSZ) Fuel electrode Nickel zirconia cermet (hereinafter N)
Oxidant electrode Lanthanum manganite (hereinafter abbreviated as LSM) Basically, one cell is formed by arranging two electrodes on both sides of the electrolyte. The output voltage is less than 1 V even with an open circuit voltage. Therefore, in order to obtain a practical output, it is necessary to have a structure in which such cells are stacked in multiple layers. FIG. 4 shows an example of a structure of an SOFC in which a plurality of cells are stacked. In FIG. 4, 1 is a solid electrolyte, 2 is a fuel electrode, 3 is an oxidant electrode, 4 is an interconnector, 5 is a fuel gas flow path, 6 is an oxidant gas flow path, and 7 is a unit cell. By supplying each gas to the SOFC having such a structure, an electrical output of a predetermined voltage and current can be obtained. In the SOFC having such a structure, in order to perform predetermined power generation, each supplied gas is effectively distributed to each reaction surface, and unreacted gas is discharged from an outlet except for an end of an electrode. It is necessary to stack the layers so that there is no leakage from the area to the periphery. From this point of view, the SOFC having the structure shown in FIG. 4 is considered to be effective in terms of the design concept. However, when the stacking is actually performed, the airtightness between each unit cell 7 and the interconnector 4 is considered. There is a problem that it is extremely difficult to secure the quality. This is because all the materials are composed of solid ceramics as described above, and it is impossible to obtain gas tightness at the joint surface between the ceramics. This is difficult even if the flatness of the member is extremely improved, while considering that a certain degree of warpage or the like is generated when a single cell of an SOFC is actually manufactured by sintering. The more they say, the more impossible.

【0004】そこで、このようなガス気密性の問題を解
決する一つの方法として、図5に示すように予めどちら
か一方の電極材料例えば酸化剤極3で内部に酸化剤ガス
流路6を備えた基体を作製し、これに単位セル7を形成
させることが考えられる(特願平3−114261
号)。図5において、1は固体電解質、2は燃料極、4
はインターコネクター、8は緻密膜である。このように
すると、基体の材料となったガスは基体内のガス流路6
を流れることになるので、基体の両端においてガスの気
密性を確保しておくことによってガスの気密性を大幅に
改善することができる。しかし、この場合には、電極の
基体は単位セル7を支える強度を有することと併せて、
複数のセルを直列接続した際の圧迫力にも耐える必要が
あり、ある程度の機械的な強度が必要となる。一方、こ
のような強度の確保だけでなく、基体は、内部にガスを
通し、基体の厚さの方向には電流を流す必要があるの
で、そのようなガスの通過抵抗の増加を抑え、基体その
ものの電気抵抗も極力抑えるような基体設計を行なう必
要があった。このような設計を行なわない限り、中空基
体を使用したとしても、反応に必要となるガスが充分供
給しきれなくなったり、またはガスの送入のために入口
圧力が高くなりガスシール性に支障が生じたり、あるい
は基体の電気抵抗が大きくなってしまい、単位セル1個
あたりの出力電圧が小さくなるといった問題があった。
それにも拘らず、従来の中空基体では、ガス流路の適切
な設計が行われていなかったため、中空基体を使用した
にも関わらず単位セルの特性を充分に発揮できないとい
う重大な欠点があった。
[0004] Therefore, as one method for solving such a gas tightness problems, with the oxidant gas flow path 6 on the inside at one electrode material e.g. oxidant electrode 3 in which either As shown in FIG. 5 It is conceivable to fabricate a base body and form a unit cell 7 therein (Japanese Patent Application No. 3-114261).
issue). In FIG. 5, 1 is a solid electrolyte, 2 is a fuel electrode, 4
Is an interconnector, and 8 is a dense film. In this manner, the gas that has become the material of the base is supplied to the gas passage 6 in the base.
Therefore, the gas tightness of the gas can be significantly improved by securing the gas tightness at both ends of the base. However, in this case, in addition to the fact that the base of the electrode has the strength to support the unit cell 7,
It is necessary to withstand the compressive force generated when a plurality of cells are connected in series, and a certain degree of mechanical strength is required. On the other hand, in addition to ensuring such strength, it is necessary to allow gas to flow through the inside of the base and to flow an electric current in the thickness direction of the base. It was necessary to design the base such that the electrical resistance of the base itself was suppressed as much as possible. Unless such a design is performed, even if a hollow substrate is used, the gas required for the reaction cannot be supplied sufficiently, or the inlet pressure increases due to the gas supply, which hinders gas sealing performance. Or the electrical resistance of the substrate increases, and the output voltage per unit cell decreases.
Nevertheless, in the conventional hollow substrate, since the gas flow path was not properly designed, there was a serious disadvantage that the characteristics of the unit cell could not be sufficiently exhibited despite the use of the hollow substrate. .

【0005】[0005]

【発明が解決しようとする課題】このように、内部にガ
ス等の流体を流すための流路を設けた導電性物質からな
る平板の応用例としては、SOFC単位セルが想定さ
れ、ガス気密性を向上させる点で、電極材料からなる中
空状の基体を使用し、この基体の片面にセルを形成する
ことが有効と考えられるが、これまでこのような中空形
状が適切に設計されていなかった。従って、セル性能が
充分に発揮しきれないという問題があった。
As described above, as an application example of a flat plate made of a conductive substance provided with a flow path for flowing a fluid such as a gas therein, an SOFC unit cell is supposed. It is considered effective to use a hollow base made of an electrode material and form cells on one side of this base in terms of improving the shape, but such hollow shapes have not been appropriately designed until now. . Therefore, there is a problem that the cell performance cannot be sufficiently exhibited.

【0006】本発明は上記の事情に鑑みてなされたもの
で、流路の配置法を明らかにし、それによって、平板の
電気抵抗を減少させる導電性中空平板を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a conductive hollow flat plate that clarifies a method of arranging flow paths and thereby reduces the electric resistance of the flat plate.

【0007】[0007]

【課題を解決するための手段及び作用】本発明は上記課
題を解決するために、導電性の材料から構成され、内部
に複数の貫通口がほぼ平行に配置された中空構造の平板
において、貫通口の位置を平板の一方の面から平板全体
の厚みの1/10未満の距離を隔たって設けることを特
徴としている。このような中空構造の平板の応用例の1
つとしてはSOFCが考えられるが、従来、導電性の中
空板の使用例が少なかったため、内部の貫通口の配置法
に関する検討が全く行われていなかった。
According to the present invention, there is provided a flat plate having a hollow structure which is made of a conductive material and has a plurality of through-holes arranged substantially in parallel therein. The position of the mouth is provided at a distance of less than 1/10 of the thickness of the entire flat plate from one surface of the flat plate. Application example 1 of such a flat plate having a hollow structure
One example is an SOFC. However, there has been little use of a conductive hollow plate, and no study has been made on a method of arranging the internal through-holes.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0009】図1に本発明の一実施例の構造を示し、
(a)は中空平板断面図、(b)は中空平板の構成要素
となる角柱体、(c)は中空平板の全体斜視図を示す。
本実施例は、導電性の材料からなり、内部に複数の貫通
口20がほぼ平行に配置された中空構造の平板21であ
って、前記貫通口20が平板21の一方の面22を基準
として形成される。前記貫通口20の設置位置を中空平
板21の一方の面22を基準とし、この面22から距離
u 未満の間隔をへだてた部位としている。ここで、距
離tu は、中空平板21の全体厚をtとした時、tu
1/10tを満たす値である。平板の電気抵抗は内部に
貫通口等の中空部を設けると増加するが、このような位
置に設けることによって、電気抵抗の増加量の抑制を図
ることができた。図2は、中空平板21の構成要素とな
る、中空状角柱体(図1(b))の上下面間(中空平板
21においては対向する面間に相当)の電気抵抗を内部
の貫通口20の位置をパラメータとして求めたものであ
る。算出にあたっては、回路解析用ソフト“SPIC
E”を用いた。そして、具体的な計算にあたっては、図
2に示した中空平板21の構成要素である中空状角柱体
の断面を、図3の例のように複数の格子状単位40に分
割し、貫通口20はこの格子状単位40が存在しないも
のとして計算した。計算時には、中空平板21の奥行き
は任意でよいが、標準的に1cmとした。また、SPI
CEによる解析においては、サブサーキットを設定し、
全体をこのサブサーキットの組み合わせとして解析する
が、ここでは先程述べた格子状単位40をサブサーキッ
トとし、サブサーキット1個の面の抵抗を、4辺に直流
抵抗を配置した抵抗体に近似して求めた。そして、この
サブサーキットの電気的な接続状態を種々変更すること
で、貫通口20の位置を様々に変更した際の抵抗変化を
計算した。この結果、角柱の電気抵抗は、貫通口20を
設けることによって、しかも、貫通口20の開口面積す
なわち開口幅tsが大きくなるほど増加するが、その位
置を一方の面に接近させて配置する方が増加量は抑制さ
れることがわかる。そして、この図より角柱体の電気抵
抗は、貫通口20の大きさがどのようなものであって
も、一方の面から、板厚tの1/10の距離まで近づけ
ることで小さくすることが可能であることがわかる。図
1(a)の中空平板21は、図1(b)の構成要素とな
る角柱体の集合体と見なせるので、図1(b)において
抵抗の小さい形状が最も有利となる。従って、一方の面
22に少なくとも板全体厚tの1/10の距離まで近づ
ける配置法が中空平板21においても好ましいと言え
る。なお、板全体厚tの1/10以下の距離についてで
あるが、中空平板21の厚み方向に向かって電流を流す
使用法を考えると、板全体厚tはたかだか5〜15mm
程度であり、その1/10は0.5〜1.5mmとなる
ので、実用的には板全体厚tの1/10程度の間隔で充
分と考えられる。
FIG. 1 shows the structure of an embodiment of the present invention.
(A) is a cross-sectional view of a hollow flat plate, (b) is a prism that is a component of the hollow flat plate, and (c) is an overall perspective view of the hollow flat plate.
The present embodiment is a flat plate 21 made of a conductive material and having a hollow structure in which a plurality of through-holes 20 are arranged substantially parallel to each other. The through-hole 20 is based on one surface 22 of the flat plate 21. It is formed. Wherein the installation position of the through hole 20 and the one surface 22 of the hollow flat plate 21 as a reference, and a portion spaced a distance less than t u from this surface 22. Here, the distance t u, when the total thickness of the hollow flat plate 21 was set to t, t u
This value satisfies 1 / 10t. Although the electric resistance of the flat plate increases when a hollow portion such as a through hole is provided inside, the increase in the electric resistance can be suppressed by providing the flat portion at such a position. FIG. 2 shows the electric resistance between the upper and lower surfaces of the hollow prismatic body (FIG. 1B) (corresponding to the opposing surfaces in the hollow flat plate 21), which is a component of the hollow flat plate 21, and the internal through-hole 20. Is obtained as a parameter. For the calculation, the circuit analysis software “SPIC
E ”was used. In a specific calculation, the cross section of the hollow prismatic body which is a component of the hollow flat plate 21 shown in FIG. 2 was divided into a plurality of grid-like units 40 as in the example of FIG. The calculation was made assuming that the lattice-shaped unit 40 did not exist in the through-hole 20. At the time of calculation, the depth of the hollow flat plate 21 was arbitrary, but was typically 1 cm.
In the analysis by CE, sub-circuits are set,
The whole is analyzed as a combination of the sub-circuits. Here, the lattice unit 40 described above is used as a sub-circuit, and the resistance of one surface of the sub-circuit is approximated to a resistor having DC resistances arranged on four sides. I asked. Then, the resistance change when the position of the through-hole 20 was variously changed was calculated by variously changing the electrical connection state of the sub-circuit. As a result, the electric resistance of the prism increases with the provision of the through-hole 20 and as the opening area of the through-hole 20, that is, the opening width ts increases, but it is better to arrange the position closer to one surface. It can be seen that the increase is suppressed. From this figure, it can be seen that the electrical resistance of the prismatic body can be reduced by bringing the through hole 20 close to a distance of 1/10 of the plate thickness t from one surface regardless of the size of the through hole 20. It turns out that it is possible. Since the hollow flat plate 21 shown in FIG. 1A can be regarded as an aggregate of prisms as constituent elements of FIG. 1B, a shape having a small resistance in FIG. 1B is most advantageous. Therefore, it can be said that an arrangement method in which one surface 22 is brought close to at least a distance of 1/10 of the total thickness t of the plate is also preferable for the hollow flat plate 21. In addition, as for the distance of 1/10 or less of the total thickness t of the plate, the thickness t of the entire plate is at most 5 to 15 mm in consideration of the usage in which the current flows in the thickness direction of the hollow flat plate 21.
1/10 is 0.5 to 1.5 mm, so that it is considered that an interval of about 1/10 of the total thickness t of the plate is sufficient for practical use.

【0010】次に、このような中空状の平板を作製した
具体的な例について述べる。本発明では、電極材料によ
ってこのような板を作製し、この片側の面に電解質とも
う一方の電極を形成するSOFCセルを想定し、電極材
料によって中空状平板を作製した。SOFCの電極材料
としては酸化剤極と燃料極があるが、以下の実施例に示
すようにいずれの材料によっても作製が可能であった。
Next, a specific example of manufacturing such a hollow flat plate will be described. In the present invention, such a plate is manufactured using an electrode material, and a hollow flat plate is manufactured using an electrode material, assuming an SOFC cell in which an electrolyte and another electrode are formed on one surface. The electrode material of the SOFC includes an oxidant electrode and a fuel electrode, and as shown in the following examples, it was possible to produce the material using any material.

【0011】(1) 酸化剤極材料 SOFCの酸化剤極材料としては、一般的にペロブスカ
イト構造を持つ(La1-x Srx Y MnO3 が広く使
用されている。そこで、この材料を取り上げ、組成;L
0.8 Sr0.2 MnO3 およびLa0.9 Sr0.1 MnO
3 、粒径1〜3μmの原料粉末を使用した。そして、中
空平板の作製には、シート成形体を熱融着させる方法を
用い、熱融着させたグリーン体を焼結させることによっ
て中空状の物体を得た。シート成形体はドクターブレー
ド法によって作製し、これに必要なスラリーは以下の混
合比(重量)で調合した。
(1) Oxidizer electrode material (La 1-x Sr x ) Y MnO 3 having a perovskite structure is generally widely used as an oxidizer electrode material of the SOFC. Therefore, this material is taken up and the composition;
a 0.8 Sr 0.2 MnO 3 and La 0.9 Sr 0.1 MnO
3. Raw material powder having a particle size of 1 to 3 μm was used. Then, for the production of the hollow flat plate, a method of heat-sealing the sheet molded body was used, and the heat-sealed green body was sintered to obtain a hollow object. The sheet compact was prepared by a doctor blade method, and the slurry required for this was prepared at the following mixing ratio (weight).

【0012】原料粉末 100 結合剤 10〜15 可塑剤 5〜10 溶媒 200 結合剤としては、ポリビニルブチラール、可塑剤として
はフタル酸ブチルを、そして溶媒としてはイソブチルア
ルコールを使用した。溶媒は、イソブチルアルコール単
独でも可能であるが必要に応じてトルエンを添加した混
合物としても使用した。結合剤と可塑剤の量に範囲があ
るのは、使用する量が異なると、例えば粒径が異なり表
面積も変わってくるためスラリーの性状に差が生じてく
るので、量を適切に調節するためである。また、この他
にやはりスラリーの性状に応じて分散剤と消泡剤を少量
添加した。このような混合物を約24〜48時間ボール
ミルによって攪拌した後、減圧下で脱気して溶媒を除去
し粘度を調整し、この後ドクターブレード装置によって
シート成形体を得た。このようなシート成形体を、所定
の大きさに切断した後、加熱・加圧しシートの融着体を
作製した。なお、この時の加熱・加圧条件はシートの軟
らかさによって変える必要があるが、概ね70〜80
℃、30〜70kg/cm 2 の条件内で行なった。中空体の
中空部の形状は、この段階で、各層に重ねるシートの枚
数を変えることで任意の形とすることができ、片側の面
のみ積層するシート枚数を少なくするだけで、目的とし
た、片側に全体厚の1/10の厚みの面を有する中空平
板を得ることができた。なお、この時考慮するべきこと
は、シート成形体の収縮率である。収縮はシートの成形
時と焼成時において生じるが、今回の実施例の中では、
成形時の収縮は主に厚み方向でのみ観測され、おおよそ
60%、また焼成時にはおおよそ10%であった。従っ
て、このような収縮を見込んで焼成後の焼結体が所定の
大きさになるように融着体のシート枚数と大きさを選定
した。このように融着した中空平板を約400℃におい
て脱脂し、この後1250〜1350℃で5〜10時間
焼成することで酸化剤極中空平板を作製した。中空平板
の大きさとしては、寸法で100〜150mm角、厚み
は5〜10mm程度のものが作製できた。なお、焼結の
進行は、使用した原料粉末の粒径と結合剤と可塑剤の添
加量によって影響される。そこで、これらの影響を考慮
し使用原料に応じて温度と時間を適宜選定した。粒径が
小さい原料は、表面積が大きいので低温領域から焼結が
開始するので低温・短時間の条件で焼成した(例えば、
1250℃、2時間)。このように、焼成条件を原料粉
末や結合剤等の添加量に応じて適宜選定して焼成するこ
とで、原料粉末が変わっても多孔度20〜30%の焼結
体を得ることができた。なお、酸化剤極の導電率は多孔
度によってもある程度左右されるが、この焼結体の正味
の導電率は1000℃において、約100S/cmであ
った。
Raw material powder 100 Binder 10-15 Plasticizer 5-10 Solvent 200 Polyvinyl butyral was used as the binder, butyl phthalate was used as the plasticizer, and isobutyl alcohol was used as the solvent. As the solvent, isobutyl alcohol alone can be used, but it was also used as a mixture to which toluene was added as necessary. The range of the amount of the binder and the amount of the plasticizer is that if the amount used is different, for example, the particle size is different and the surface area is also different, so a difference occurs in the properties of the slurry, so that the amount is appropriately adjusted. It is. In addition, a small amount of a dispersant and a defoamer were also added depending on the properties of the slurry. After stirring such a mixture with a ball mill for about 24 to 48 hours, the mixture was degassed under reduced pressure to remove the solvent and adjust the viscosity, and then a sheet molded body was obtained with a doctor blade device. Such a molded sheet was cut into a predetermined size, and then heated and pressed to produce a fused sheet. The heating / pressing conditions at this time need to be changed depending on the softness of the sheet.
C., 30 to 70 kg / cm 2 . At this stage, the shape of the hollow portion of the hollow body can be changed to an arbitrary shape by changing the number of sheets to be stacked on each layer. A hollow flat plate having a surface having a thickness of 1/10 of the total thickness on one side was obtained. What should be considered at this time is the contraction rate of the sheet molded body. Shrinkage occurs during the forming and firing of the sheet, but in this example,
Shrinkage during molding was mainly observed only in the thickness direction, approximately 60%, and approximately 10% during firing. Therefore, in consideration of such shrinkage, the number of sheets and the size of the fused body were selected so that the sintered body after firing had a predetermined size. The hollow flat plate thus fused was degreased at about 400 ° C., and then baked at 1250 to 1350 ° C. for 5 to 10 hours to produce an oxidant electrode hollow flat plate. Regarding the size of the hollow flat plate, a plate having a size of about 100 to 150 mm square and a thickness of about 5 to 10 mm could be produced. The progress of sintering is affected by the particle size of the raw material powder used and the amounts of the binder and plasticizer added. Therefore, in consideration of these effects, the temperature and time were appropriately selected according to the raw materials used. Raw materials having a small particle size have a large surface area, so that sintering starts from a low-temperature region.
1250 ° C, 2 hours). Thus, by appropriately selecting the firing conditions in accordance with the amount of the raw material powder, the binder, and the like, and firing, a sintered body having a porosity of 20 to 30% could be obtained even when the raw material powder was changed. . Although the conductivity of the oxidant electrode is affected to some extent by the porosity, the net conductivity of the sintered body at 1000 ° C. was about 100 S / cm.

【0013】(2) 燃料極材料 燃料極材料については、ニッケルを体積%で40〜50
%含むNi−YSZを出発原料に使用した。この粉末
は、酸化ニッケル(#200メッシュ以下)とYSZ
(トーソー製、TZ−8Y)から作製し、ニッケルが所
定の体積%となるよう各粉末を秤量した後混合し、これ
にエタノールを加えボールミルで24〜48時間混合し
た。中空平板の作製には酸化剤極材料の場合と同様に、
シート成形体を熱融着させ、これを焼結させる方法によ
った。中空平板の材料となるシート成形体はここでもド
クターブレード法により作製し、これに必要なスラリー
は以下の混合比(重量)とした。
(2) Fuel electrode material For the fuel electrode material, nickel is contained in an amount of 40 to 50 by volume%.
% Ni-YSZ was used as a starting material. This powder is made of nickel oxide (# 200 mesh or less) and YSZ
(TZ-8Y, manufactured by Tosoh Corporation). Each powder was weighed so that nickel had a predetermined volume%, and then mixed. Ethanol was added to the powder and mixed by a ball mill for 24 to 48 hours. As in the case of the oxidant electrode material,
According to a method in which a sheet molded body is thermally fused and sintered. The sheet molding used as the material of the hollow flat plate was again produced by the doctor blade method, and the slurry required for this was set at the following mixing ratio (weight).

【0014】原料粉末 100 結合剤 10〜15 可塑剤 5〜10 溶媒 200 シート成形体および中空平板の作製法は酸化剤極材料に
よるものと同一である。そして、やはり加熱・加圧時に
積層するシートの枚数や大きさを適宜選定することで任
意の寸法の中空平板の融着体が得られた。このように作
製した中空状の融着体を約400℃で脱脂し、この後1
250〜1400℃の温度で5〜10時間焼成し燃料極
材料からなる中空平板の焼結体が作製できた。ここで
も、焼成条件は使用した原料粉末の粒径に応じて選定し
たが、高温・長時間にすることで還元後の導電率は高く
なる反面、多孔度は減少する。従って、還元後の導電率
が1000℃において約1000S/cmとなることを
目標に焼成を行なった。
Raw material powder 100 Binder 10-15 Plasticizer 5-10 Solvent 200 The method for producing the sheet molded body and the hollow flat plate is the same as that for the oxidant electrode material. Also, by appropriately selecting the number and size of the sheets to be laminated at the time of heating and pressurizing, a fused body of a hollow flat plate having an arbitrary size was obtained. The hollow fused body thus produced is degreased at about 400 ° C.
It was fired at a temperature of 250 to 1400 ° C. for 5 to 10 hours to obtain a hollow flat plate sintered body made of a fuel electrode material. Here also, the firing conditions were selected according to the particle size of the raw material powder used. However, when the temperature and temperature are increased, the conductivity after reduction increases, but the porosity decreases. Therefore, firing was performed with the aim of achieving a conductivity after reduction of about 1000 S / cm at 1000 ° C.

【0015】なお、成形体の作製にあたってシート成形
体の収縮率を考慮すべきことは酸化剤極材料の場合と同
様である。ただし、この燃料極材料の場合には、成形時
の収縮は約60%と酸化剤極材料とほぼ等しかったが、
焼成時の値はおおよそ20%であったので、この収縮率
を見込んで融着体のシート枚数と大きさを選定した。
It should be noted that the shrinkage ratio of the sheet compact must be taken into account when producing the compact, as in the case of the oxidizer electrode material. However, in the case of this fuel electrode material, the shrinkage during molding was about 60%, which was almost equal to that of the oxidizer electrode material.
Since the value at the time of firing was approximately 20%, the number and size of the sheets of the fused body were selected in consideration of the shrinkage.

【0016】[0016]

【発明の効果】以上述べたように本発明では、内部にガ
ス等の流体を流すような貫通口を複数設けた平板におい
て、その貫通口の配置法を具体的に明らかにしたもので
ある。本発明に示すような中空平板の具体的な応用例と
しては、電極材料でこのような平板を作製し、この片面
に電解質と他の電極を形成するSOFCが考えられる
が、このようなSOFCの構成にあたっては、平板の電
気抵抗を減少させ得るという具体的な効果が有り、これ
はSOFCの内部抵抗の減少を図りうるものであり、畢
竟、高性能なSOFCを実現するうえで大きな効果があ
る。また、発明の具体的な内容で示したように、このよ
うな中空状の平板はシート成形体の熱圧着法で非常に容
易に作製でき、製造コストもかからず経済性の面でも優
れたものである。
As described above, in the present invention, a method of arranging the through-holes in a flat plate having a plurality of through-holes through which a fluid such as a gas flows is specifically clarified. As a specific application example of the hollow flat plate as shown in the present invention, an SOFC in which such a flat plate is formed from an electrode material and an electrolyte and another electrode are formed on one surface thereof is considered. In the configuration, there is a specific effect that the electric resistance of the flat plate can be reduced, which can reduce the internal resistance of the SOFC, and finally has a great effect in realizing a high-performance SOFC. . Further, as shown in the specific contents of the invention, such a hollow flat plate can be produced very easily by a thermocompression bonding method of a sheet molded body, and is excellent in terms of economical efficiency without production cost. Things.

【0017】なお、本発明についてはSOFCを例とし
て説明したが、平板の一方の面から他の面に向けて電流
を流し、平板内に冷却用の媒体を流すような用途におい
ても、板の電気抵抗を極力抑制しつつ所定の目的を達成
することができ、広く種々の用途への応用が可能であ
る。このように、広く産業界一般への応用も可能であり
多くの利点を有している。
Although the present invention has been described by taking an SOFC as an example, the present invention can be applied to an application in which a current flows from one surface of a flat plate to another surface and a cooling medium flows in the flat plate. A predetermined object can be achieved while suppressing electric resistance as much as possible, and application to a wide variety of applications is possible. In this way, it can be widely applied to the general industry and has many advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構造図である。FIG. 1 is a structural diagram showing one embodiment of the present invention.

【図2】本発明に係る中空平板の構成要素となる角柱体
の抵抗特性の一例を示す特性図である。
FIG. 2 is a characteristic diagram showing an example of a resistance characteristic of a prism serving as a component of the hollow flat plate according to the present invention.

【図3】本発明に係る中空平板を構成する角柱体の抵抗
解析時の断面分割状況を示す説明図である。
FIG. 3 is an explanatory view showing a sectional state of a rectangular column constituting a hollow flat plate according to the present invention during resistance analysis.

【図4】従来の平板型燃料電池の組立状態の分解斜視図
である。
FIG. 4 is an exploded perspective view of a conventional flat fuel cell in an assembled state.

【図5】従来の内部にガス流路を有する基体を用いた燃
料電池の斜視図である。
FIG. 5 is a perspective view of a conventional fuel cell using a base having a gas flow path inside.

【符号の説明】[Explanation of symbols]

1…固体電解質、2…燃料極、3…酸化剤極、4…イン
ターコネクター、5…燃料ガス流路、6…酸化剤ガス流
路、7…単位セル、8…緻密膜、20…貫通口、21…
中空平板、22…中空平板の一方の面、40…格子状単
位。
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte, 2 ... Fuel electrode, 3 ... Oxidant electrode, 4 ... Interconnector, 5 ... Fuel gas flow path, 6 ... Oxidant gas flow path, 7 ... Unit cell, 8 ... Dense membrane, 20 ... Through-hole , 21 ...
Hollow flat plate, 22: one surface of the hollow flat plate, 40: lattice unit.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−68562(JP,A) 特開 平4−230954(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/86 H01M 8/00 - 8/24────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-68562 (JP, A) JP-A-4-230954 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/86 H01M 8/00-8/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性の材料からなり、内部に複数の貫
通口がほぼ平行に配置された中空構造の平板であって、
前記貫通口が平板のどちらか一方の面を基準として形成
され、その位置が、基準となる面から板厚全体の1/1
0未満の距離を隔たって配置されたことを特徴とする導
電性中空平板。
1. A hollow flat plate made of a conductive material and having a plurality of through-holes disposed substantially in parallel therein,
The through-hole is formed with reference to one of the surfaces of the flat plate, and the position thereof is set at 1/1 of the entire plate thickness from the reference surface.
A conductive hollow flat plate arranged at a distance of less than 0.
JP4313470A 1992-11-24 1992-11-24 Conductive hollow flat plate Expired - Lifetime JP2766756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4313470A JP2766756B2 (en) 1992-11-24 1992-11-24 Conductive hollow flat plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4313470A JP2766756B2 (en) 1992-11-24 1992-11-24 Conductive hollow flat plate

Publications (2)

Publication Number Publication Date
JPH06163062A JPH06163062A (en) 1994-06-10
JP2766756B2 true JP2766756B2 (en) 1998-06-18

Family

ID=18041693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4313470A Expired - Lifetime JP2766756B2 (en) 1992-11-24 1992-11-24 Conductive hollow flat plate

Country Status (1)

Country Link
JP (1) JP2766756B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165379A (en) * 2010-02-05 2011-08-25 Ngk Insulators Ltd Cell of solid oxide fuel cell

Also Published As

Publication number Publication date
JPH06163062A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
CA1301832C (en) Fabrication of ceramic trilayers for a monolithic solid oxide fuel cell
US5342705A (en) Monolithic fuel cell having a multilayer interconnect
KR101162806B1 (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
JP3215650B2 (en) Electrochemical cell, method for producing the same, and electrochemical device
US5385792A (en) Solid oxide fuel cell
US7014934B2 (en) Tubular flat plate fuel cells and method of making the same
US5312700A (en) Solid oxide fuel cell and method for producing the same
WO1992009116A1 (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
JP3456378B2 (en) Solid oxide fuel cell
CA2435988A1 (en) Metal foam interconnect
JP5077238B2 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
EP0549695B1 (en) Apparatus and method of fabricating a monolithic solid oxide fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JP2766756B2 (en) Conductive hollow flat plate
JPH06349516A (en) Stack for solid electrolyte type fuel cell
JPH10106608A (en) Solid electrolyte fuel cell and manufacture thereof
JPH06325779A (en) Stack for solid electrolytic fuel cell and its manufacture
JPH09180732A (en) Solid electrolyte fuel cell board and method for manufacturing cell using the board
JPH05129033A (en) Solid electrolytic fuel cell
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JPH06338336A (en) Conductive nonuniform hollow flat plate
JP3063952B2 (en) Hollow flat solid electrolyte fuel cell
JPH09306514A (en) Manufacture of solid electrolyte fuel cell
JPH05275106A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110403

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 15