JP2766636B2 - Hot water and reheating method - Google Patents

Hot water and reheating method

Info

Publication number
JP2766636B2
JP2766636B2 JP9100254A JP10025497A JP2766636B2 JP 2766636 B2 JP2766636 B2 JP 2766636B2 JP 9100254 A JP9100254 A JP 9100254A JP 10025497 A JP10025497 A JP 10025497A JP 2766636 B2 JP2766636 B2 JP 2766636B2
Authority
JP
Japan
Prior art keywords
hot water
water
bathtub
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9100254A
Other languages
Japanese (ja)
Other versions
JPH1048029A (en
Inventor
一三 高木
昌 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Sangyo KK
Original Assignee
Takagi Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14269092&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2766636(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Takagi Sangyo KK filed Critical Takagi Sangyo KK
Priority to JP9100254A priority Critical patent/JP2766636B2/en
Publication of JPH1048029A publication Critical patent/JPH1048029A/en
Application granted granted Critical
Publication of JP2766636B2 publication Critical patent/JP2766636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control For Baths (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、浴槽に給湯する
とともに前記浴槽内の湯水を追焚きによって加熱する給
湯・追焚方法に関する。 【0002】 【従来の技術】給湯及び追焚きが可能な自動風呂釜にお
いて、浴槽内の水量を制御する場合、浴槽内の水量の検
出が不可欠であり、その水量検出には、圧力スイッチや
水位スイッチなど、浴槽内の水位を直接検知する水位検
知装置が用いられて来た。 【0003】 【発明が解決しようとする課題】ところで、自動風呂釜
は、加熱手段などを設置した器具本体側で加熱した湯を
ポンプを用いて浴槽側に移送する方法が採られ、浴槽内
の湯を器具本体側に戻して再加熱する追焚機能を持って
いる。このような自動風呂釜では、加熱手段を設置した
器具本体と浴槽とが離れた場所に設置され、例えば、家
屋の一階側に器具本体、その二階側に浴槽が設置される
場合がある。この場合、浴槽に設置された水位検知装置
と器具本体を制御する制御装置とを結ぶ制御用信号線や
制御装置などが複雑化し、そのために設置に手数を要す
る。 【0004】また、水量を器具本体側で計量して、浴槽
へ供給すべき水量を最適化するようにした自動風呂釜が
ある。この風呂釜では浴槽の容積に対して適量の水を供
給することができるが、器具本体側で浴槽内の水位を間
接的に算出しているため、入浴などで減った水量は器具
本体側で検知することができない。 【0005】何れの風呂釜においても、水位検知装置及
びその配線が必要である。 【0006】そこで、この発明は、浴槽内水量の簡易な
制御とともに、保温制御を実現した給湯・追焚方法を提
供することを目的とする。 【0007】 【課題を解決するための手段】この発明の給湯・追焚方
法は、浴槽内の水量を既存の追焚機能を利用して温度情
報、時間情報及び熱量の各要素を用いて演算することに
より浴槽内水量を遠隔的に検出し、不足水量分の給湯と
ともに、浴槽内の湯水の保温制御を実現している。 【0008】この発明の給湯・追焚方法は、図1及び図
2に例示するように、浴槽に給湯するとともに浴槽内の
湯水を追焚きによって加熱する給湯・追焚方法であっ
て、浴槽(20)内の湯水(4c)をポンプ(56)を
以て循環経路(追焚循環管路60)に循環させることに
より前記浴槽内の湯水を攪拌し、温度センサ(70)で
検出した湯水の温度を取り込んだ後、第1の加熱手段
(追焚用熱交換器22及び追焚バーナ24)を動作させ
ることにより検出温度から湯水を所定温度だけ加熱さ
せ、この所定温度の上昇に要した加熱時間を計測し、こ
の加熱時間と前記第1の加熱手段により前記湯水に加え
られる熱量との積を前記所定温度で除すことにより前記
浴槽内の水量を算出し、この検出水量と設定水量との比
較により不足水量を求め、この不足水量分の上水を水量
センサ(水流量センサ47)で検出するとともに第2の
加熱手段(熱交換器28及び給湯バーナ30)により加
熱して前記循環経路から前記浴槽に供給することにより
浴槽内水量を前記設定水量に維持し、かつ、所定時間毎
に前記ポンプを動作させて前記循環経路に循環させるこ
とにより前記浴槽内の湯水を攪拌し、前記温度センサで
検出した湯水の温度が設定温度未満の場合には、前記第
1の加熱手段により前記浴槽内の湯水を設定温度まで加
熱することを特徴とする。 【0009】この発明の給湯・追焚方法にあっては、浴
槽(20)内の湯水(4c)を循環経路(追焚循環管路
60)を通してポンプ(56)によって圧送して第1の
加熱手段(追焚用熱交換器22)を通過させることによ
り、浴槽内の湯水を加熱する。その加熱に応じて浴槽内
の水温が、例えば、特定温度ΔTだけ上昇させるに必要
な時間をt、第1の加熱手段の加熱能力をNoとする
と、浴槽内の水量Qは、 Q=No・t/ΔT ・・・(1) で与えられる。この結果、浴槽内の水量Qを算出するこ
とができる。 【0010】したがって、実際の浴槽に対して、第1の
加熱手段に浴槽内の湯水を循環させて加熱する風呂釜で
は、浴槽内の水量Qは、第1の加熱手段の熱量(追焚バ
ーナ24の発熱量)、即ち、燃焼能力N(=No)と、
特定温度ΔTだけ上昇させるに必要な時間tとから、式
(1)によって水量Q(=N・t/ΔT)として検出す
ることができる。 【0011】そして、第1の加熱手段を通して湯水に加
えられる熱量は、第1の加熱手段の発熱量と熱効率との
積で与えられる。この場合、熱効率は、浴槽内の一定水
量とこの水量を第1の加熱手段で加熱して得られた上昇
温度との積を、上昇温度に到達させるに要した時間と第
1の加熱手段における例えばバーナの発熱量との積で除
すことにより求めたものであり、この値は、例えば、追
焚時に求められる。 【0012】そこで、この熱効率は、追焚時毎に得られ
る検出値に基づいて演算することができ、その値を更新
することができる。即ち、追焚時毎に求めた熱効率を次
回の追焚時に使用することにより、常に最新のデータを
以て浴槽内の水量の算出をすることができる。 【0013】このようにして得られた検出水量と設定水
量との比較により不足水量を求め、この不足水量分の上
水を水量センサで検出するとともに第2の加熱手段によ
り加熱して循環経路から浴槽に供給することにより浴槽
内水量を設定水量に維持し、かつ、所定時間毎にポンプ
を動作させて循環経路に循環させることにより浴槽内の
湯水を攪拌し、温度センサで検出した湯水の温度が設定
温度未満の場合には、第1の加熱手段により浴槽内の湯
水を設定温度まで加熱する。この結果、設定温度及び設
定湯量に制御でき、快適な入浴環境が実現される。 【0014】 【発明の実施の形態】以下、本発明を図面に示した実施
形態を参照して詳細に説明する。図1は、この発明の給
湯・追焚方法の実施形態を示し、この実施形態は自動風
呂釜である。 【0015】図1に示すように、水道などから上水供給
路としての上水供給管25に供給された上水からなる水
4aは、給湯水流スイッチ26を通過することによっ
て、その水流が電気的に検出され、Dw1は給湯水流スイ
ッチ26によって得られた給湯水流検出信号を表わす。
水4aは、第2の加熱手段としての熱交換器28及び給
湯バーナ30によって加熱される。 【0016】給湯バーナ30には、燃焼用ガス32が、
電気的に開閉が制御される元弁34及び給湯弁36を経
て供給され、Cv1は元弁34の開閉制御信号、Cv2は給
湯弁36の開閉制御信号を表わす。給湯バーナ30に供
給されたガス32は、点火手段として電気的に着火され
るイグナイタ38によって着火され、Sf1はその着火信
号を表わす。ガス32の着火の有無は、炎の有無を電気
的に検出するフレームロッドと称する炎検出器40で検
出され、Df1は着火検出信号を表わしている。 【0017】そして、熱交換器28を通過して得られた
温水4bは、温度検出手段として設置された給湯温度を
電気的に検出するサーミスタなどで構成される給湯温度
検出器42を通過して、その温度が検出される。At1
は、その給湯温度検出信号を表わす。この給湯温度検出
器42を通過した温水4bは、電気的に給湯・注湯方向
が切り換えられる給湯・注湯切換弁44に導かれて、給
湯・注湯切換信号Sh1によって給湯口46側への供給
と、浴槽20側への注湯とが切り換えられる。 【0018】給湯・注湯切換弁44を経て注湯側bに導
かれた温水4bは、流量を電気的に検出する水流量セン
サ47によってその流量が検出され、Dm はその水流量
検出信号を表わす。この水流量センサ47を通過した温
水4bは、水道側とを遮断するホッパ48を経て、給湯
方向を電気的に切り換える追焚・注湯切換弁50に導か
れて、追焚・注湯切換信号Sh2に応じて追焚側、注湯側
に切り換えられる。 【0019】この場合、注湯側cでは、浴槽20に対し
て直結された管路52から温水4bが浴槽20に対して
電気的に水を循環させるポンプ56を介して矢印Bで示
す方向に供給される。Dr は、ポンプ56を駆動するポ
ンプ駆動信号を表わす。 【0020】また、追焚側dでは、追焚・注湯切換弁5
0によって注湯を禁止するとともに、浴槽20に対して
追焚きのための浴槽20内の湯水4cを、浴槽20内の
循環口54を介して矢印Aで示す方向に、追焚・注湯切
換弁50の追焚側通路を含む循環経路としての追焚循環
管路60によってポンプ56を介して循環させる。 【0021】追焚循環管路60内を通過する湯水4c
は、電気的に水流の有無を検出する水流センサ62によ
って検出され、Dw2はその検出信号を表わす。 【0022】追焚循環管路60には第1の加熱手段とし
ての追焚用熱交換器22及び追焚バーナ24が設置され
ており、浴槽20内の湯水4cは追焚きによって加熱さ
れる。この場合、追焚バーナ24には燃焼用ガス32
が、電気的に開閉が制御される追焚ガス弁64を経て供
給され、追焚ガス弁64は開閉制御信号Cv3によって開
閉が制御される。追焚バーナ24に供給された燃焼用ガ
ス32は、給湯バーナ30の場合と同様に、点火手段と
して電気的に着火されるイグナイタ66によって着火さ
れ、Sf2はその着火信号を表わす。燃焼用ガス32の着
火の有無は、炎の有無を電気的に検出する炎検出器68
で検出され、Df2は着火検出信号を表わす。 【0023】そして、追焚きによって加熱された浴槽2
0内の湯水4cは、追焚循環管路60側で電気的に水温
を検出するサーミスタなどからなる温度センサ70によ
って検出され、At2はその温度検出信号を表わす。 【0024】そして、水4aの加熱系統、浴槽20への
温水4bの供給系統または浴槽20内の湯水4cの追焚
循環系統は、図2に示す加熱、供給または追焚を行う給
湯制御装置によって制御される。 【0025】この給湯制御装置は、制御手段としての主
装置72と遠隔制御器74とから構成されており、主装
置72は熱交換器22、28などを設置した器具本体側
に設置され、また、遠隔制御器74は浴槽20内から入
浴者が任意に調節可能な浴室内などに設置される。給湯
水流検出信号Dw1、給湯側の着火検出信号Df1、給湯側
の水流量検出信号Dm 、追焚水流検出信号Dw2及び追焚
側の着火検出信号Df2のディジタルデータは、入力回路
721を経て中央演算処理部(CPU)722に取り込
まれる。また、給湯温度検出信号At1及び追焚温度検出
信号At2は、アナログ信号であるため、入力部に設置さ
れたマルチプレクサ724による時分割によって交互に
アナログ・ディジタル変換回路723に加えられ、アナ
ログ・ディジタル変換された後、CPU722に取り込
まれる。 【0026】CPU722は、書込み専用の記憶素子
(ROM)725に書き込まれた加熱、供給または追焚
制御プログラムに従って演算処理を行う。また、取り込
んだ各種データ及び演算処理上のデータは、書込み、読
出し自由な記憶素子(RAM)726に書き込まれる。 【0027】加熱、供給または追焚制御の指令は、遠隔
制御器74のスイッチの操作によって行い、その指令信
号は遠隔制御送受信回路727に加えられ、CPU72
2に取り込まれる。 【0028】そして、CPU722の演算結果としての
各種制御出力である給湯側着火信号Sf1、開閉制御信号
Cv1、給湯側開閉制御信号Cv2、追焚側開閉制御信号C
v3、追焚側着火信号Sf2、給湯・注湯切換信号Sh1、追
焚・注湯切換信号Sh2及びポンプ駆動信号Dr は、出力
回路728からそれぞれ制御対象に加えられる。 【0029】このような風呂釜において、浴槽20内の
水量検出を追焚時を例に取って工程順に説明する。 【0030】(a) 給湯・注湯切換弁44を給湯側
a、追焚・注湯切換弁50を追焚側dに切り換えて、追
焚循環管路60を閉ループとして、追焚モードを設定す
る。 【0031】(b) この追焚モードに設定した後、ポ
ンプ56を駆動して浴槽20内の湯水4cの温度を均一
温度Tにする。その場合、浴槽20の水温Tは、温度セ
ンサ70によって検出する。 【0032】(c) 浴槽20内の水温を一定温度Tに
した後、元弁34及び追焚ガス弁64を開くとともに、
イグナイタ66に着火信号Sf2を与えて電流を流して発
熱させ、追焚バーナ24に着火する。 【0033】(d) ポンプ56によって湯水4cを循
環させながら、追焚燃焼によって、浴槽20内の湯水4
cの温度を温度Toより僅かに高い温度ΔTだけ均一に
沸き上げるとともに、温度ToからΔTへの所要時間t
を測定し、RAM726内に書き込む。 【0034】(e) そして、予め、追焚バーナ24の
燃焼による追焚燃焼能力Nを測定してROM725に記
憶して置くものとすると、浴槽20内の水量Qは、CP
U722で式(1)から、Q=N・t/ΔTとして算出
される。例えば、ΔT=1℃とすると、浴槽20内の水
量Qは、Q=N・tとなる。 【0035】また、この浴槽20内の水量Qの算出は、
一定時間tに対して上昇温度ΔTを検出して、その上昇
温度ΔTをRAM726に記憶して式(1)から算出し
ても良い。 【0036】(f) そして、不足水量は、予め、浴槽
20の容積から設定水量Qo が定まるので、それを遠隔
制御器74に設定して置き、その設定水量Qo と、浴槽
20内の検出水量Qとから差水量ΔQを、 ΔQ=Qo −Q ・・・(2) 算出する。 【0037】(g) そこで、この差水量ΔQの温水4
bを浴槽20内に供給するため、給湯・注湯切換弁44
を注湯側b、追焚・注湯切換弁50を注湯側cに切り換
えて浴槽20内に温水4bを供給する。 【0038】この場合、給湯バーナ30に着火すること
により、水4aを加熱して温水4bを得て供給し、また
は、給湯バーナ30を着火しないで加熱しない水4aを
供給してもよい。 【0039】(h) 適量の注湯または注水を行った
後、給湯・注湯切換弁44を給湯側a、追焚・注湯切換
弁50を追焚側dに切り換えて浴槽20内に温水4bを
適正温度Tまで沸き上げて、適正湯量及び適正温度への
注湯・追焚を完了する。 【0040】なお、保温及び足し湯制御を行う場合に
は、一定の時間間隔で自動的に浴槽20内への注湯及び
追焚を繰り返すことにより、浴槽20内の水量Q及び温
度Tを一定に保つ最適制御ができる。 【0041】また、追焚燃焼による沸き上げ時間は、熱
効率によって影響されるが、熱効率を低下させる要因に
は、浴槽の材質、追焚配管、外気温、器具固有のガス圧
セット値の誤差などがある。そこで、熱効率ηを次式に
より、 η=Qo ×(T2 −T1 )/S×to ・・・(3) 追焚時毎にCPU722によって算出してRAM726
に記憶させ、追焚時毎にその値を更新する。ただし、Q
o は設定水量(=注湯水量)、T1 は注湯動作にて浴槽
20へ供給された水の均一温度、T2 は沸き上り均一温
度(=沸き上り設定温度)、to は沸き上り時間、Sは
追焚インプット能力である。即ち、Qo ×(T2 −T1
)は湯水に加えられる熱量、S×to はバーナ側の発
熱量である。 【0042】この場合、追焚バーナ24側の発熱量であ
る追焚インプット能力Sは予めROM725の中に記憶
しておき、循環する湯水4cに加えられる熱量である追
焚燃焼能力Nは、追焚インプット能力Sと熱効率ηとの
積(N=S・η)で与えられる。 【0043】 【発明の効果】以上説明したように、この発明によれ
ば、追焚機能を利用して浴槽内水量を検出し、演算によ
り設定水量に対する不足水量を求め、その不足水量分の
上水を加熱しながら浴槽に供給でき、浴槽内の湯温を所
定時間毎に監視して追焚きするので、浴槽内の湯量を設
定湯量に制御できるとともに、浴槽内の湯温を設定湯温
に保温でき、快適な入浴環境を維持、設定することがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying hot water to a bathtub and heating the hot water in the bathtub by additional heating. 2. Description of the Related Art In an automatic bath kettle capable of hot water supply and additional heating, when controlling the amount of water in a bathtub, it is indispensable to detect the amount of water in the bathtub. Water level detection devices, such as switches, for directly detecting the water level in a bathtub have been used. [0003] By the way, in the automatic bath-cooker, a method is adopted in which hot water heated on the side of the appliance provided with heating means and the like is transferred to the bathtub side by using a pump. It has a reheating function that returns hot water to the appliance body side and reheats it. In such an automatic bath kettle, the appliance main body provided with the heating means and the bathtub are installed at separate places. For example, the appliance main body may be installed on the first floor side of a house and the bathtub may be installed on the second floor side. In this case, a control signal line and a control device for connecting the water level detection device installed in the bathtub to the control device for controlling the appliance body are complicated, and the installation is troublesome. [0004] There is also an automatic bath kettle in which the amount of water is measured on the appliance body side to optimize the amount of water to be supplied to a bathtub. This bath kettle can supply an appropriate amount of water to the volume of the bathtub, but since the water level in the bathtub is calculated indirectly on the appliance body side, the amount of water reduced by bathing etc. is reduced by the appliance body side. It cannot be detected. [0005] In any bath kettle, a water level detecting device and its wiring are required. SUMMARY OF THE INVENTION It is an object of the present invention to provide a hot water supply / reheating method which realizes heat retention control as well as simple control of the amount of water in a bathtub. [0007] In the hot water supply / reheating method of the present invention, the amount of water in the bath tub is calculated using the temperature information, the time information, and the respective amounts of heat using the existing reheating function. By doing so, the amount of water in the bathtub is remotely detected, and the hot water supply for the insufficient water amount and the heat retention control of the hot water in the bathtub are realized. As shown in FIGS. 1 and 2, a hot water supply / reheating method according to the present invention is a method for supplying water to a bathtub and heating the hot water in the bathtub by additional heating. 20) The hot water in the bathtub is stirred by circulating the hot water (4c) in the circulation path (additional heating circulation pipe 60) by the pump (56), and the temperature of the hot water detected by the temperature sensor (70) is detected. After taking in, the first heating means (the additional heat exchanger 22 and the additional heating burner 24) are operated to heat the hot water from the detected temperature by a predetermined temperature, and the heating time required for the increase of the predetermined temperature is reduced. The amount of water in the bathtub is calculated by measuring and multiplying the product of the heating time and the amount of heat applied to the hot water by the first heating means by the predetermined temperature, and comparing the detected amount of water with the set amount of water. To determine the amount of water shortage By detecting the shortage of clean water by the water amount sensor (water flow sensor 47) and heating by the second heating means (heat exchanger 28 and hot water supply burner 30) to supply the water from the circulation path to the bathtub. The amount of water in the bathtub is maintained at the set water amount, and the pump is operated at predetermined time intervals to circulate through the circulation path to stir the water in the bathtub. When the temperature is lower than the set temperature, the hot water in the bathtub is heated to the set temperature by the first heating means. In the hot water supply / reheating method of the present invention, the hot water (4c) in the bathtub (20) is pressure-fed by a pump (56) through a circulation path (reheating combustion circulation line 60) to perform first heating. The hot and cold water in the bathtub is heated by passing through the means (the additional heat exchanger 22). Assuming that the time required for the water temperature in the bathtub to rise by a specific temperature ΔT in response to the heating is t, and the heating capacity of the first heating means is No, the amount of water Q in the bathtub is Q = No · t / ΔT (1) As a result, the amount of water Q in the bathtub can be calculated. [0010] Therefore, in a bath kettle in which the hot water is circulated through the first heating means to heat the actual bath tub, the water quantity Q in the bath tub is determined by the heat quantity of the first heating means (the reburning burner). 24), that is, the combustion capacity N (= No),
From the time t required to raise the temperature by the specific temperature ΔT, the water amount Q (= N · t / ΔT) can be detected by equation (1). [0011] The amount of heat applied to the hot water through the first heating means is given by the product of the calorific value of the first heating means and the thermal efficiency. In this case, the thermal efficiency is determined by calculating the product of the constant amount of water in the bathtub and the temperature rise obtained by heating the amount of water with the first heating means, the time required to reach the temperature rise, and the time required for the first heating means. For example, it is obtained by dividing by the product of the calorific value of the burner, and this value is obtained, for example, at the time of reheating. Therefore, the thermal efficiency can be calculated based on a detection value obtained at each additional heating, and the value can be updated. That is, the amount of water in the bathtub can always be calculated using the latest data by using the thermal efficiency obtained for each additional firing at the next additional firing. A shortage amount is obtained by comparing the detected water amount thus obtained with the set water amount, and the shortage amount of the clean water is detected by the water amount sensor and heated by the second heating means to be discharged from the circulation path. By supplying the water to the bathtub, the water content in the bathtub is maintained at the set water amount, and the pump is operated every predetermined time to circulate the water through the circulation path, thereby stirring the water in the bathtub, and detecting the temperature of the hot water detected by the temperature sensor. Is lower than the set temperature, the hot water in the bathtub is heated to the set temperature by the first heating means. As a result, the set temperature and the set hot water amount can be controlled, and a comfortable bathing environment is realized. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments shown in the drawings. FIG. 1 shows an embodiment of a hot water supply / reheating method according to the present invention, which is an automatic bath kettle. As shown in FIG. 1, water 4a composed of clean water supplied from a water supply or the like to a clean water supply pipe 25 serving as a clean water supply passage passes through a hot water supply water flow switch 26 so that the water flow is changed to an electric current. Dw1 represents a hot water flow detection signal obtained by the hot water flow switch 26.
The water 4a is heated by the heat exchanger 28 and the hot water supply burner 30 as second heating means. In the hot water supply burner 30, a combustion gas 32 is provided.
Supplied via a base valve 34 and a hot water supply valve 36 whose opening and closing are controlled electrically, Cv1 represents an opening and closing control signal of the base valve 34, and Cv2 represents an opening and closing control signal of the hot water supply valve 36. The gas 32 supplied to the hot water supply burner 30 is ignited by an igniter 38 that is electrically ignited as ignition means, and Sf1 represents the ignition signal. The presence / absence of ignition of the gas 32 is detected by a flame detector 40 called a flame rod for electrically detecting the presence / absence of a flame, and Df1 represents an ignition detection signal. Then, the hot water 4b obtained by passing through the heat exchanger 28 passes through a hot water supply temperature detector 42 which is provided as a temperature detecting means and is constituted by a thermistor for electrically detecting the hot water supply temperature. , Its temperature is detected. At1
Represents the hot water temperature detection signal. The hot water 4b that has passed through the hot water temperature detector 42 is guided to a hot water / hot water switching valve 44 in which the direction of hot water and hot water is switched electrically, and is sent to the hot water supply port 46 side by a hot water / hot water switching signal Sh1. Supply and pouring to the bathtub 20 are switched. The flow rate of the hot water 4b guided to the pouring side b via the hot water supply / pour switching valve 44 is detected by a water flow rate sensor 47 for electrically detecting the flow rate, and Dm is the water flow rate detection signal. Express. The hot water 4b that has passed through the water flow sensor 47 is guided to a reheating / pouring switching valve 50 that electrically switches the hot water supply direction via a hopper 48 that shuts off the water supply side, and receives a reheating / pouring switching signal. It is switched to the reheating or pouring side according to Sh2. In this case, on the pouring side c, the hot water 4b is supplied from a pipe 52 directly connected to the bathtub 20 via a pump 56 for electrically circulating water to the bathtub 20 in the direction indicated by the arrow B. Supplied. Dr represents a pump drive signal for driving the pump 56. On the additional heating side d, the additional heating / pouring switching valve 5 is provided.
0, the pouring is prohibited, and the hot water 4c in the bathtub 20 for reheating the bathtub 20 is switched between the reheating and pouring in the direction shown by the arrow A through the circulation port 54 in the bathtub 20. The valve 50 is circulated through a pump 56 by a reheating line 60 as a circulation path including a reheating side passage. Hot water 4c passing through the additional heating circulation line 60
Is detected by a water flow sensor 62 that electrically detects the presence or absence of a water flow, and Dw2 represents the detection signal. A reheating heat exchanger 22 and a reheating burner 24 as first heating means are installed in the reheating circuit 60, and the hot water 4c in the bathtub 20 is heated by the reheating. In this case, the combustion gas 32 is
Is supplied via a reheating gas valve 64 whose opening and closing are controlled electrically, and the opening and closing of the reheating gas valve 64 is controlled by an opening and closing control signal Cv3. The combustion gas 32 supplied to the reburning burner 24 is ignited by an igniter 66 that is electrically ignited as ignition means, as in the case of the hot water supply burner 30, and Sf2 represents the ignition signal. The presence or absence of ignition of the combustion gas 32 is determined by a flame detector 68 that electrically detects the presence or absence of a flame.
, And Df2 represents an ignition detection signal. Then, the tub 2 heated by the additional heating
The hot / cold water 4c within 0 is detected by a temperature sensor 70 such as a thermistor that electrically detects the water temperature on the side of the additional heating circulation line 60, and At2 represents the temperature detection signal. The heating system for the water 4a, the system for supplying the hot water 4b to the bathtub 20, or the reheating circulation system for the hot water 4c in the bathtub 20 is controlled by a hot water supply control device shown in FIG. Controlled. This hot water supply control device comprises a main device 72 as a control means and a remote controller 74. The main device 72 is installed on the side of the appliance body where the heat exchangers 22 and 28 are installed. The remote controller 74 is installed in a bathroom or the like that can be arbitrarily adjusted by a bather from within the bathtub 20. Digital data of the hot water supply water flow detection signal Dw1, the hot water supply side ignition detection signal Df1, the hot water supply side water flow rate detection signal Dm, the reheating water flow detection signal Dw2, and the reheating heating side ignition detection signal Df2 are processed by the central processing unit via the input circuit 721. The data is taken into the processing unit (CPU) 722. Further, since the hot water supply temperature detection signal At1 and the reheating temperature detection signal At2 are analog signals, they are alternately added to the analog / digital conversion circuit 723 by time division by the multiplexer 724 provided at the input unit, and the analog / digital conversion is performed. After that, it is taken into the CPU 722. The CPU 722 performs arithmetic processing according to a heating, supply or reheating control program written in a write-only storage element (ROM) 725. In addition, the various types of data and data on the arithmetic processing are written to a storage element (RAM) 726 that can be freely written and read. A command for heating, supply or reheating control is performed by operating a switch of the remote controller 74, and the command signal is applied to a remote control transmission / reception circuit 727, and the
2 Then, the hot water supply side ignition signal Sf1, the open / close control signal Cv1, the hot water supply open / close control signal Cv2, and the additional heating side open / close control signal C which are various control outputs as the calculation results of the CPU 722.
v3, the additional firing side ignition signal Sf2, the hot water supply / hot water switching signal Sh1, the additional heating / hot water switching signal Sh2, and the pump drive signal Dr are added to the control target from the output circuit 728. In such a bath, detection of the amount of water in the bathtub 20 will be described in the order of steps, taking the case of additional heating as an example. (A) The hot water supply / pour-in switching valve 44 is switched to the hot water supply side a, and the additional heating / pouring-in switching valve 50 is switched to the additional heating side d, and the additional heating mode is set with the additional heating circulation line 60 as a closed loop. I do. (B) After setting the reheating mode, the pump 56 is driven to set the temperature of the hot and cold water 4c in the bathtub 20 to the uniform temperature T. In that case, the water temperature T of the bathtub 20 is detected by the temperature sensor 70. (C) After the water temperature in the bathtub 20 is set to a constant temperature T, the main valve 34 and the reheating gas valve 64 are opened,
The ignition signal Sf2 is supplied to the igniter 66 to cause a current to flow to generate heat, and the reburner 24 is ignited. (D) While the hot water 4c is circulated by the pump 56, the hot water 4
b is uniformly heated by a temperature ΔT slightly higher than the temperature To, and a time t required from the temperature To to ΔT.
Is measured and written into the RAM 726. (E) If the reburning combustion capacity N by the combustion of the reburning burner 24 is measured in advance and stored in the ROM 725, the amount of water Q in the bathtub 20 becomes CP
In U722, Q = N · t / ΔT is calculated from equation (1). For example, if ΔT = 1 ° C., the amount of water Q in the bathtub 20 is Q = N · t. The calculation of the amount of water Q in the bathtub 20 is as follows.
The temperature rise ΔT may be detected for a certain time t, and the temperature rise ΔT may be stored in the RAM 726 and calculated from the equation (1). (F) Since the set water amount Qo is determined in advance from the volume of the bathtub 20, the set water amount is set in the remote controller 74, and the set water amount Qo and the detected water amount in the bathtub 20 are determined. From Q, the difference water amount ΔQ is calculated as follows: ΔQ = Qo−Q (2) (G) Then, the hot water 4 having the difference ΔQ
b in order to supply b into the bathtub 20.
The hot water 4 b is supplied into the bathtub 20 by switching the pouring side b and the reheating / pouring switching valve 50 to the pouring side c. In this case, the hot water supply burner 30 may be ignited to heat the water 4a to obtain and supply hot water 4b, or the hot water supply burner 30 may be supplied with unheated water 4a without being ignited. (H) After supplying or pouring an appropriate amount of hot water, the hot water / hot water switching valve 44 is switched to the hot water supply side a, and the reheating / pouring water switching valve 50 is switched to the reheating side d, and hot water is supplied into the bathtub 20. 4b is boiled up to an appropriate temperature T, and pouring and reheating to an appropriate amount and an appropriate temperature are completed. When controlling the temperature and adding hot water, the water quantity Q and the temperature T in the bathtub 20 are kept constant by repeatedly pouring and reheating the bathtub 20 at regular time intervals. Optimal control can be maintained. The boiling time of the reheating combustion is affected by the thermal efficiency. Factors that reduce the thermal efficiency include the material of the bathtub, the reheating piping, the outside air temperature, and the error of the gas pressure set value specific to the appliance. There is. Therefore, the thermal efficiency η is calculated by the following equation using the following formula: η = Qo × (T2−T1) / S × to (3)
And the value is updated each time reheating is performed. However, Q
o is a set water amount (= pouring water amount), T1 is a uniform temperature of the water supplied to the bathtub 20 in the pouring operation, T2 is a uniform boiling temperature (= a boiling set temperature), to is a boiling time, and S is a boiling time. Is the reheating input capacity. That is, Qo × (T2−T1
) Is the amount of heat added to the hot and cold water, and S × to is the amount of heat generated on the burner side. In this case, the reheating input capacity S, which is the amount of heat generated on the reheating burner 24 side, is stored in advance in the ROM 725, and the reheating combustion capacity N, which is the amount of heat added to the circulating hot and cold water 4c, is calculated. It is given by the product of the firing input capacity S and the thermal efficiency η (N = S · η). As described above, according to the present invention, the amount of water in the bathtub is detected by using the additional heating function, the amount of water shortage with respect to the set amount of water is obtained by calculation, and the amount of water shortage is calculated. The water can be supplied to the bathtub while heating it, and the temperature of the hot water in the bathtub is monitored every predetermined time and refired, so that the amount of hot water in the bathtub can be controlled to the set hot water amount and the hot water temperature in the bathtub can be adjusted to the set hot water temperature. It can keep warm and maintain and set a comfortable bathing environment.

【図面の簡単な説明】 【図1】この発明の給湯・追焚方法の実施形態である自
動風呂釜を示す図である。 【図2】図1に示した自動風呂釜の給湯制御装置を示す
ブロック図である。 【符号の説明】 4c 湯水 20 浴槽 22 追焚用熱交換器(第1の加熱手段) 24 追焚バーナ(第1の加熱手段) 28 熱交換器(第2の加熱手段) 30 給湯バーナ(第2の加熱手段) 47 水流量センサ 56 ポンプ 60 追焚循環管路(循環経路) 70 温度センサ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an automatic bath kettle which is an embodiment of the hot water supply / reheating method of the present invention. FIG. 2 is a block diagram showing a hot water supply control device for the automatic bath kettle shown in FIG. [Description of Signs] 4c Hot Water 20 Bath 22 Reheating Heat Exchanger (First Heating Means) 24 Reheating Burner (First Heating Means) 28 Heat Exchanger (Second Heating Means) 30 Hot Water Supply Burner (No. 2 Heating means) 47 Water flow rate sensor 56 Pump 60 Additional firing circulation pipe (circulation path) 70 Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01G 17/04 - 17/06 F24H 1/00 302 F24H 1/00 306──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01G 17/04-17/06 F24H 1/00 302 F24H 1/00 306

Claims (1)

(57)【特許請求の範囲】 1.浴槽に給湯するとともに浴槽内の湯水を追焚きによ
って加熱する給湯・追焚方法であって、 浴槽内の湯水をポンプを以て循環経路に循環させること
により前記浴槽内の湯水を攪拌し、温度センサで検出し
た湯水の温度を取り込んだ後、第1の加熱手段を動作さ
せることにより検出温度から湯水を所定温度だけ加熱さ
せ、この所定温度の上昇に要した加熱時間を計測し、こ
の加熱時間と前記第1の加熱手段により前記湯水に加え
られる熱量との積を前記所定温度で除すことにより前記
浴槽内の水量を算出し、この検出水量と設定水量との比
較により不足水量を求め、この不足水量分の上水を水量
センサで検出するとともに第2の加熱手段により加熱し
て前記循環経路から前記浴槽に供給することにより浴槽
内水量を前記設定水量に維持し、かつ、所定時間毎に前
記ポンプを動作させて前記循環経路に循環させることに
より前記浴槽内の湯水を攪拌し、前記温度センサで検出
した湯水の温度が設定温度未満の場合には、前記第1の
加熱手段により前記浴槽内の湯水を設定温度まで加熱す
ることを特徴とする給湯・追焚方法。
(57) [Claims] This is a hot water supply / reheating method in which hot water is supplied to the bathtub and the hot water in the bathtub is heated by additional heating. After taking in the detected hot water temperature, the hot water is heated from the detected temperature by a predetermined temperature by operating the first heating means, and the heating time required for the rise of the predetermined temperature is measured. The amount of water in the bathtub is calculated by dividing the product of the amount of heat added to the hot water and the hot water by the first heating means by the predetermined temperature. Water in the bath tub is maintained at the set water amount by detecting the amount of clean water by the water amount sensor and heating the water by the second heating means and supplying the water from the circulation path to the bath tub, and By operating the pump at predetermined time intervals and circulating through the circulation path to stir the hot water in the bathtub, and when the temperature of the hot water detected by the temperature sensor is lower than a set temperature, the first A hot water supply / reheating method, wherein the hot water in the bathtub is heated to a set temperature by a heating means.
JP9100254A 1997-04-17 1997-04-17 Hot water and reheating method Expired - Fee Related JP2766636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9100254A JP2766636B2 (en) 1997-04-17 1997-04-17 Hot water and reheating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9100254A JP2766636B2 (en) 1997-04-17 1997-04-17 Hot water and reheating method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6284379A Division JP2819525B2 (en) 1994-10-24 1994-10-24 Bathtub water level detector

Publications (2)

Publication Number Publication Date
JPH1048029A JPH1048029A (en) 1998-02-20
JP2766636B2 true JP2766636B2 (en) 1998-06-18

Family

ID=14269092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9100254A Expired - Fee Related JP2766636B2 (en) 1997-04-17 1997-04-17 Hot water and reheating method

Country Status (1)

Country Link
JP (1) JP2766636B2 (en)

Also Published As

Publication number Publication date
JPH1048029A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
KR101997043B1 (en) Apparatus and method for heating temperature control of each control system using boiler return temperature
KR100757302B1 (en) Underfloor heating system
JP2766636B2 (en) Hot water and reheating method
JP2945351B2 (en) Hot water supply / reheating unit
KR20060092653A (en) Apparatus and method for adjusting temperature of water heater
JP3078785B2 (en) Hot water supply / reheating unit
JP2819525B2 (en) Bathtub water level detector
KR20020072354A (en) Multi temperature control device for korean under-floor heating system
JP2637927B2 (en) Method and apparatus for controlling amount of water in bathtub
JP3171979B2 (en) Circulating warm water heater
JP2635510B2 (en) Hot water supply control device for bathtub
JP2598629B2 (en) Bathtub hot water controller
JP2637941B2 (en) Bathtub hot water controller
JP2647818B2 (en) Automatic bath kettle device
JP2637913B2 (en) Hot water control device for bathtub
JP2635509B2 (en) Bathtub hot water control device
JPH0577010B2 (en)
JP2954284B2 (en) Method and apparatus for indicating gas usage or gas / water usage in water heater
JPS62295124A (en) Water quantity control method
JPH1026416A (en) Bath burner with hot water feeder
JP2989657B2 (en) Control method of bath water temperature and water level
JPH0131105B2 (en)
JP2932160B2 (en) Hot water level measurement method
JP2511581Y2 (en) Heat retention device for hot water supply
JP2001221450A (en) Bathroom floor-heating apparatus having prompt hot- water letting-out function

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees