JP2766041B2 - Heat pump equipment - Google Patents
Heat pump equipmentInfo
- Publication number
- JP2766041B2 JP2766041B2 JP10850290A JP10850290A JP2766041B2 JP 2766041 B2 JP2766041 B2 JP 2766041B2 JP 10850290 A JP10850290 A JP 10850290A JP 10850290 A JP10850290 A JP 10850290A JP 2766041 B2 JP2766041 B2 JP 2766041B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- hydrogen storage
- storage alloy
- heat pump
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は水素吸蔵合金を用いたヒートポンプシステム
に関するものである。The present invention relates to a heat pump system using a hydrogen storage alloy.
(ロ)従来の技術 水素吸蔵合金を用いたヒートポンプ装置では例えば特
公昭58−19955号に開示されているように、2種類の水
素吸蔵合金を充填した容器を水素配管で連結したものを
用いて、水素ガスの吸収・解離によって温熱あるいは冷
熱発生(熱発生過程)させていた。この反応は水素吸蔵
合金の平衡圧力差を利用したものであるため、一方から
他方へ水素ガスが移動し両者が平衡に達したところで反
応は停止する。(B) Conventional technology In a heat pump device using a hydrogen storage alloy, for example, as disclosed in Japanese Patent Publication No. 58-19955, a container filled with two types of hydrogen storage alloys is connected by a hydrogen pipe. Then, hot or cold heat is generated (heat generation process) by absorption and dissociation of hydrogen gas. Since this reaction utilizes the equilibrium pressure difference of the hydrogen storage alloy, the hydrogen gas moves from one to the other and stops when the two have reached equilibrium.
これを再利用するためには初期状態に戻す必要がある
が、従来は合金槽内にヒーターを設置したり、熱媒を循
環させる等の方法で、吸収した水素を再び放出(再生過
程)させていた。しかしながら、これらの方法では容器
内部に比較的大きな熱供給用の構造体を内蔵させる必要
があり、熱容量の増大や容器が複雑になり大型化するな
どの欠点があった。In order to reuse this, it is necessary to return to the initial state, but conventionally, the absorbed hydrogen is released again (regeneration process) by a method such as installing a heater in the alloy tank or circulating a heating medium. I was However, in these methods, it is necessary to incorporate a relatively large heat supply structure inside the container, and there are drawbacks such as an increase in heat capacity and an increase in complexity and size of the container.
(ハ)発明が解決しようとする課題 本発明は水素吸蔵合金を用いたヒートポンプ装置にお
いて、熱容量の増大や容器を大型化させずに水素再生を
行おうとするものである。(C) Problems to be Solved by the Invention The present invention is to regenerate hydrogen without increasing the heat capacity or increasing the size of the vessel in a heat pump device using a hydrogen storage alloy.
(ニ)課題を解決するための手段 本発明では、水素吸蔵合金を用いたヒートポンプ装置
において、水素吸蔵合金容器内に通電のための電極を設
け、水素吸蔵合金粉体自体の抵抗加熱現象を利用し温度
上昇させて水素を再生する。(D) Means for Solving the Problems In the present invention, in a heat pump device using a hydrogen storage alloy, an electrode for energization is provided in the hydrogen storage alloy container, and the resistance heating phenomenon of the hydrogen storage alloy powder itself is used. The temperature is raised to regenerate the hydrogen.
(ホ)作用 水素吸蔵合金粉体の抵抗加熱現象を利用し、温度上昇
させて水素再生するために、水素吸蔵合金容器内には電
極を設置するだけでよく、熱媒管などの構造体を含ず、
容器の小型化が図れ熱容量の増加も防げる。(E) Action In order to regenerate hydrogen by raising the temperature by using the resistance heating phenomenon of the hydrogen storage alloy powder, it is only necessary to install electrodes in the hydrogen storage alloy container, and to construct a structure such as a heat transfer pipe. Not include
The size of the container can be reduced, and an increase in heat capacity can be prevented.
(ヘ)実施例 水素吸蔵合金を用いたヒートポンプ装置は、第3図に
示すように2組の水素吸蔵合金容器1,2を水素配管6で
連結した構成から成っており、第4図に示すような水素
吸蔵合金の水素ガスの吸収・解離反応時の熱が利用され
る。(F) Example A heat pump device using a hydrogen storage alloy has a configuration in which two sets of hydrogen storage alloy containers 1 and 2 are connected by a hydrogen pipe 6 as shown in FIG. 3, and is shown in FIG. The heat at the time of hydrogen gas absorption / dissociation reaction of such a hydrogen storage alloy is used.
一例として冷凍熱発生について説明する。使用合金と
して容器1内に希土類−Ni系の水素吸蔵合金3および容
器2内にZr−Mn系の水素吸蔵合金4を充填した。容器形
状は長円筒状で、100メッシュアンダーの合金粉体を充
填率50%で充填した。また、加熱用の電極は円盤状のも
のを容器の両端に設置する構造とした。初期状態として
右の容器に水素ガスが充填されており、左の容器は水素
ガスが入っていないとする。バルブ5を開けると圧力差
により水素ガスは右の容器1から左の容器2へ水素配管
6を通して移動し、それにともない右の容器1では冷却
が起こり、左の容器2では発熱が起こる。この反応は水
素圧力が平衡に達した時点で停止するため、再び冷凍熱
を取り出すためには水素ガスを右の容器1に戻してやる
必要がある。As an example, generation of freezing heat will be described. As the alloy to be used, the container 1 was filled with a rare earth-Ni-based hydrogen storage alloy 3 and the container 2 was filled with a Zr-Mn-based hydrogen storage alloy 4. The container had a long cylindrical shape and was filled with an alloy powder of 100 mesh under at a filling rate of 50%. In addition, a disk-shaped heating electrode was provided at both ends of the container. Assume that the right container is filled with hydrogen gas as an initial state, and the left container does not contain hydrogen gas. When the valve 5 is opened, the hydrogen gas moves from the right container 1 to the left container 2 through the hydrogen pipe 6 due to the pressure difference, whereby the right container 1 cools and the left container 2 generates heat. Since this reaction is stopped when the hydrogen pressure reaches equilibrium, it is necessary to return the hydrogen gas to the right container 1 in order to extract the freezing heat again.
そこで、左側の容器2内に設置した電極の両端に電気
を流すと、粉体の接触抵抗により合金粉体が加熱され、
電圧・電流を制御することで水素圧力を一定に保ちなが
ら水素ガスは左側の容器2から右側の容器1へ移動し再
生が行えた。なおこの時、反応を促進するため右側の容
器1はファンによって空冷した。Then, when electricity is applied to both ends of the electrode installed in the left container 2, the alloy powder is heated by the contact resistance of the powder,
By controlling the voltage and the current, the hydrogen gas was moved from the container 2 on the left to the container 1 on the right while the hydrogen pressure was kept constant, and regeneration was performed. At this time, the right container 1 was air-cooled by a fan to promote the reaction.
この方法によれば、従来法である容器内にヒーターや
熱媒管を設けた加熱方法と較べて、合金全体が均一に加
熱されるため、これまで温度分布によって生じていた合
金の未反応部分が減少するというメリットがある。According to this method, the entire alloy is uniformly heated, as compared with the conventional heating method in which a heater or a heating medium tube is provided in a container. There is a merit that is reduced.
第1図及び第2図に本発明に用いられる容器2の実施
例を示す。これらの図において、容器2は円筒形になっ
ていてZr−Mn系合金4が充填される。また、容器2両側
端には電極7,7が設けられていてスイッチ8の操作によ
り電源9から電圧が印加されるようになっている。1 and 2 show an embodiment of the container 2 used in the present invention. In these figures, the container 2 has a cylindrical shape and is filled with a Zr-Mn-based alloy 4. Electrodes 7, 7 are provided on both side ends of the container 2, and a voltage is applied from a power supply 9 by operating a switch 8.
また、第1図では容器2内部に電極だけしか設置して
いないが、この場合電流の一部が容器を流れるため、加
熱効率が低下する。そこで、合金容器2内面を第5図に
示すようにテフロン被膜10などの絶縁体で被覆し、電気
が合金粉体間のみを流れるようにすることによって効率
を上昇させることができる。In FIG. 1, only the electrodes are provided inside the container 2, but in this case, a part of the current flows through the container, so that the heating efficiency is reduced. Therefore, the efficiency can be increased by coating the inner surface of the alloy container 2 with an insulator such as a Teflon coating 10 as shown in FIG. 5 so that electricity flows only between the alloy powders.
さらに、粉体の粒度や充填率によっては、電極7,7間
の抵抗が加熱するには小さすぎる場合が生じるが、この
ときには、粉体の接触抵抗を上げるためにアルミナなど
の絶縁性の粉末を合金粉末に混合することで調整でき
る。逆に接触抵抗が大きすぎる場合には、第6図及び第
7図に示すように円筒状及び棒状の電極7,7などを組合
せた構造とし、電極面積を増加すると共に、電極間距離
を短くして抵抗を減少させればよい。Further, depending on the particle size and filling rate of the powder, the resistance between the electrodes 7 and 7 may be too small to be heated, but in this case, in order to increase the contact resistance of the powder, an insulating powder such as alumina is used. Can be adjusted by mixing with the alloy powder. Conversely, if the contact resistance is too large, a structure combining cylindrical and rod-shaped electrodes 7, 7, etc. as shown in FIGS. 6 and 7, increases the electrode area and shortens the distance between the electrodes. Then, the resistance may be reduced.
(ト)発明の効果 以上述べた如く、発明によれば、熱容量の増大や容器
が複雑化することのない水素吸蔵合金容器とすることが
でき、均一な合金反応が可能となるため、効率の高いコ
ンパクトな熱駆動ヒートポンプ装置が可能となる。(G) Effect of the Invention As described above, according to the invention, it is possible to provide a hydrogen storage alloy container without increasing the heat capacity or complicating the container, and it is possible to perform a uniform alloy reaction. A highly compact heat-driven heat pump device becomes possible.
第1図及び第2図は本発明に用いられる合金充填容器の
縦断面図及び横断面図、第3図はヒートポンプ装置の構
成を示す断面模式図、第4図は冷熱発生過程、再生過程
を示す説明図、第5図は本発明に用いられる合金充填容
器の他の実施例を示す縦断面図、第6図及び第7図は本
発明に用いられる合金充填容器の他の実施例を示す縦断
面図及び横断面図である。 1,2……水素吸蔵合金容器、3,4……水素吸蔵合金、5…
…バルブ、6……水素配管、7,7……電極、8……スイ
ッチ、9……電源、10……テフロン被膜。1 and 2 are a longitudinal sectional view and a transverse sectional view of an alloy-filled container used in the present invention, FIG. 3 is a schematic sectional view showing a configuration of a heat pump device, and FIG. FIG. 5 is a longitudinal sectional view showing another embodiment of the alloy-filled container used in the present invention, and FIGS. 6 and 7 show other embodiments of the alloy-filled container used in the present invention. It is a longitudinal sectional view and a transverse sectional view. 1,2 ... hydrogen storage alloy container, 3,4 ... hydrogen storage alloy, 5 ...
... Valve, 6 ... Hydrogen piping, 7,7 ... Electrode, 8 ... Switch, 9 ... Power supply, 10 ... Teflon coating.
Claims (3)
おいて、水素吸蔵合金粉体を充填した容器内へ電極を設
け、この電極を介して容器内の水素吸蔵合金粉体に通電
を行い水素吸蔵合金自体を抵抗加熱することを特徴とし
たヒートポンプ装置。In a heat pump device using a hydrogen storage alloy, an electrode is provided in a container filled with the hydrogen storage alloy powder, and electricity is supplied to the hydrogen storage alloy powder in the container via the electrode to perform the hydrogen storage alloy operation. Heat pump device characterized by resistance heating itself.
徴とする特許請求の範囲第1項記載のヒートポンプ装
置。2. The heat pump device according to claim 1, wherein an insulator is provided inside said container.
体粉体を混合したことを特徴とする特許請求の範囲第1
項乃至第2項記載のヒートポンプ装置。3. A hydrogen storage alloy powder mixed with an electrically defective conductor powder such as an oxide.
Item 3. The heat pump device according to Item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10850290A JP2766041B2 (en) | 1990-04-24 | 1990-04-24 | Heat pump equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10850290A JP2766041B2 (en) | 1990-04-24 | 1990-04-24 | Heat pump equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH046358A JPH046358A (en) | 1992-01-10 |
JP2766041B2 true JP2766041B2 (en) | 1998-06-18 |
Family
ID=14486405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10850290A Expired - Fee Related JP2766041B2 (en) | 1990-04-24 | 1990-04-24 | Heat pump equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2766041B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106288071A (en) * | 2016-07-21 | 2017-01-04 | 青岛海尔空调器有限总公司 | Electrochemistry air conditioning system |
CN110030659B (en) * | 2019-03-26 | 2021-01-29 | 青岛海尔空调器有限总公司 | Electrochemical air conditioner and control method thereof |
-
1990
- 1990-04-24 JP JP10850290A patent/JP2766041B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH046358A (en) | 1992-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5273635A (en) | Electrolytic heater | |
US3823305A (en) | Arrangement for regulating supply of heat from a heat accumulating device | |
EP1257688A4 (en) | Electrical cells, components and methods | |
US3068311A (en) | Fuel cells | |
JP2766041B2 (en) | Heat pump equipment | |
JP5066319B2 (en) | Electrochemical converter | |
EP1273057A1 (en) | Electrochemical conversion system using hydrogen storage materials | |
JPS60177568A (en) | Fuel cell power generating system | |
CN112151202A (en) | Radioisotope power source | |
JP3643662B2 (en) | DC power supply charger | |
JP2001068105A (en) | Method for manufacturing negative electrode plate for secondary battery | |
JP6145808B1 (en) | Fluid heater | |
NL1018316C2 (en) | Tank for use in vehicle driven by fuel cell, stores fuel gas at room temperature and maintains gas temperature by means of Peltier element heat exchanger, powered by fuel cell | |
JPS6046901A (en) | Method for releasing stored hydrogen gas | |
JPH06163089A (en) | Alkali metal thermoelectric generating device | |
JPH09324960A (en) | Heat generating or heat absorbing method and apparatus using hydrogen storing alloy | |
JP2641886B2 (en) | Ozone generator | |
JP2680056B2 (en) | Latent heat storage device | |
JPS58140301A (en) | Method and apparatus for occluding hydrogen in hydrogen occluding alloy and method for dissociating hydrogen from hydrogen occluding alloy | |
JPH0634776A (en) | Room temperature nuclear fusion heat generating device seam generating device and power plant | |
JPS63161353A (en) | Heat storage type electric water heater | |
JPS59151479A (en) | Superconductive magnet device | |
JP2718463B2 (en) | Holding current supply device for titanium evaporation source | |
JP2000329475A (en) | Heater furnace | |
JPH0692241B2 (en) | Hydrogen storage / release device using hydrogen storage alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |