JP2764008B2 - Lightning protection method using lightning transformer - Google Patents

Lightning protection method using lightning transformer

Info

Publication number
JP2764008B2
JP2764008B2 JP6161662A JP16166294A JP2764008B2 JP 2764008 B2 JP2764008 B2 JP 2764008B2 JP 6161662 A JP6161662 A JP 6161662A JP 16166294 A JP16166294 A JP 16166294A JP 2764008 B2 JP2764008 B2 JP 2764008B2
Authority
JP
Japan
Prior art keywords
lightning
transformer
load equipment
input
electrostatic shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6161662A
Other languages
Japanese (ja)
Other versions
JPH0831668A (en
Inventor
茂 木村
明男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP6161662A priority Critical patent/JP2764008B2/en
Publication of JPH0831668A publication Critical patent/JPH0831668A/en
Application granted granted Critical
Publication of JP2764008B2 publication Critical patent/JP2764008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体を含む各種の情
報化システムの耐雷変圧器による耐雷方法に関るもの
で、特に敷地面積が狭く、また山頂等で耐雷対策のため
の増設接地工事の施行が困難である上に、雷撃を受ける
確率の高い各種無線中継所、送電線用航空標識灯等の施
設、およびこれ等に電力を供給する配電線を含めた耐雷
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightning protection method using a lightning protection transformer for various information systems including semiconductors. The present invention relates to various types of radio relay stations and facilities such as air traffic signposts and the like that are likely to receive lightning strikes, as well as to lightning protection methods including distribution lines that supply power to them.

【0002】[0002]

【従来の技術】従来、この種の負荷設備の耐雷対策とし
ては、負荷設備に接続する入力電源線と負荷設備の間
に、入力巻線と出力巻線の間に1枚の中間静電遮蔽板の
みを有する耐雷変圧器を設け、この耐雷変圧器の外凾お
よび中間静電遮蔽板の接地と入力電源線に接続された避
雷器の接地を接続し、さらに負荷設備の主接地に連接し
た構成の1点接地方式の耐雷方法が採用されていた。
2. Description of the Related Art Conventionally, as a measure against lightning of this type of load equipment, one intermediate electrostatic shield is provided between an input power supply line connected to the load equipment and the load equipment, between an input winding and an output winding. A lightning-resistant transformer having only a board is provided, the outer case of the lightning-resistant transformer and the ground of the intermediate electrostatic shield are connected to the ground of the lightning arrester connected to the input power line, and further connected to the main ground of the load equipment. The single point grounding method of lightning protection was adopted.

【0003】上記の耐雷方法では、入力電源線側から侵
入した雷サージに対しては、入力電源線に接続した避雷
器や、中間静電遮蔽板の働きによってある程度の耐雷効
果を奏するものの、入力電源線に設けられた避雷器の接
地線と負荷設備等の接地とは連接接地線により電気的に
接続されているため未だ種々の難点がある。特に負荷設
備側のアンテナ鉄塔に雷の直撃があったとき負荷設備の
主接地の電位が上昇して前記避雷器を逆放電してこれを
破壊するばかりでなく、雷電流の大きな分流成分を入力
電源側の配電線に送り込み大きな配電線事故を起こして
いた。また負荷設備の方でも大きな雷サージに対して高
電位下での全設備の同電位化は困難で種々の被害が発生
していた。
In the lightning protection method described above, a lightning surge connected to the input power supply line and a lightning arrester connected to the input power supply line and an intermediate electrostatic shield plate provide a certain lightning protection effect. The grounding wire of the lightning arrester provided on the wire and the grounding of the load equipment and the like are still electrically connected by the connecting grounding wire, so there are still various difficulties. In particular, when a lightning strike strikes the antenna tower on the load equipment side, the potential of the main ground of the load equipment rises and not only destroys the lightning arrester by reverse discharge, but also causes a large shunt component of the lightning current to be input to the input power supply. Into the distribution line on the side, causing a large distribution line accident. Also, it was difficult for the load equipment to equalize all equipment under high potential against a large lightning surge, causing various damages.

【0004】そこで、上述した弊害を防止するため、特
開昭57−149713号公報や特開平 3−86017号公報に提案
したものがある。その提案した耐雷対策は、負荷設備に
接続する入力電源線路中に入力巻線と出力巻線との間に
中間静電遮蔽板を有し、さらにこの中間静電遮蔽板と入
力巻線の間に入力巻線を包むように且つ入力巻線と中間
静電遮蔽板の各々に絶縁した静電遮蔽板を有する耐雷変
圧器を設け、この耐雷変圧器の入力巻線側の静電遮蔽
板、中間静電遮蔽板および負荷設備の接地をそれぞれ別
個に接地した構成(特開昭57−149713号公報参照)、あ
るいはこの構成にさらに前記中間静電遮蔽板と出力巻線
の間に出力巻線を包むように且つ出力巻線と中間静電遮
蔽板の各々に絶縁した静電遮蔽板を設け、この出力巻線
側の静電遮蔽板の接地を入力巻線側の静電遮蔽板、中間
静電遮蔽板および負荷設備の接地とは別個にあるいは負
荷設備の接地と連接した構成(特開昭57−149713号公
報、特開平 3− 86017号公報参照)の耐雷方法である。
[0004] In order to prevent the above-mentioned adverse effects, there are proposals in Japanese Patent Application Laid-Open Nos. 57-149713 and 3-86017. The proposed lightning protection measures include an intermediate electrostatic shielding plate between the input winding and the output winding in the input power supply line connected to the load equipment, and furthermore, a connection between the intermediate electrostatic shielding plate and the input winding. A lightning proof transformer having an electrostatic shield plate insulated on each of the input winding and the intermediate electrostatic shield plate so as to enclose the input winding, and an electrostatic shield plate on the input winding side of the lightning proof transformer, A configuration in which the electrostatic shielding plate and the ground of the load equipment are separately grounded (see JP-A-57-149713), or an output winding is further provided between the intermediate electrostatic shielding plate and the output winding in addition to this configuration. An electrostatic shielding plate is provided so as to wrap and is insulated from each of the output winding and the intermediate electrostatic shielding plate. Configuration that is separate from grounding of shield plate and load equipment or connected to ground of load equipment 149713, JP-A-3-86017).

【0005】上記前者の入力巻線側の静電遮蔽板と中間
静電遮蔽板を有する構成の耐雷方法は、負荷設備のアン
テナあるいは主接地よりサージが侵入する確率が小さい
場合に適用されるもので、入力電源線側から侵入してく
る雷サージに対しては、入力巻線側に静電遮蔽板を設け
ているので負荷側への移行が大きく減衰され負荷設備の
保護が図られる。
[0005] The lightning protection method having the above-described structure having the input-winding-side electrostatic shield plate and the intermediate electrostatic shield plate is applied when the probability of surge penetration is smaller than the antenna of the load equipment or the main ground. With respect to a lightning surge that enters from the input power supply line side, an electrostatic shield plate is provided on the input winding side, so that the shift to the load side is greatly attenuated, and the load equipment is protected.

【0006】そしてさらに、上記後者の構成の耐雷方法
では、上記前者の構成に加えて出力巻線側にも静電遮蔽
板を設け、その接地を他の静電遮蔽板の接地とは別個、
あるいは特開平 3− 86017号公報に記載されているよう
に負荷設備の主接地に接続しているので、出力巻線から
負荷設備までの回路をその電位にあわせた局部同電位化
に形成でき、耐雷変圧器によって外部に出ていく入力電
源線とは完全な絶縁化が図られ、また静電遮蔽板の作用
でサージの移行に伴う障害をも防止でき、優れた耐雷方
法が確立でき、これが広く採用され出し卓越した効果を
挙げてきた。
Further, in the lightning protection method of the latter configuration, in addition to the former configuration, an electrostatic shielding plate is also provided on the output winding side, and the ground is separated from the ground of the other electrostatic shielding plates.
Alternatively, as described in JP-A-3-86017, the circuit from the output winding to the load equipment can be formed to have the same local electric potential in accordance with the electric potential because the circuit is connected to the main ground of the load equipment. The lightning transformer completely insulates the input power line going out to the outside, and the action of the electrostatic shielding plate can prevent the failure caused by the transition of the surge, and an excellent lightning protection method can be established. It has been widely adopted and has produced outstanding effects.

【0007】上記耐雷方法においては、無線中継所のア
ンテナ鉄塔に雷の直撃があった場合に半導体機器を含む
所内の設備ならびにそこに電力を供給する配電線をも保
護し得るために必須とする条件がある。すなわち、一般
に耐雷変圧器は所内またはその近くの屋外に設置される
のが通例で、その設置場所の近くに設ける中間静電遮蔽
板の接地位置と主接地との距離は近いので中間静電遮蔽
板の接地は出力巻線側の静電遮蔽板の接地と同様に主接
地と共用することができ、このための増設接地工事は省
略することができるが、卓越した耐雷効果を得るために
は、入力巻線側の静電遮蔽板の接地は主接地極とは数〜
30m程度離隔する必要がありこのための増設接地工事が
必要となっている。
[0007] In the above lightning proof method, it is essential to be able to protect the equipment in the station including the semiconductor equipment and the distribution line for supplying power thereto when the lightning strikes directly on the antenna tower of the radio relay station. There are conditions. That is, in general, a lightning proof transformer is generally installed outdoors in or near a place. Since the distance between the grounding position of the intermediate electrostatic shielding plate provided near the installation location and the main ground is short, the intermediate electrostatic shielding is generally used. The grounding of the board can be shared with the main grounding in the same way as the grounding of the electrostatic shielding plate on the output winding side, and additional grounding work can be omitted, but in order to obtain an excellent lightning protection effect The grounding of the electrostatic shielding plate on the input winding side is several to the main grounding pole.
It needs to be separated by about 30m, so additional grounding work is required.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記耐雷方
法は、全ての半導体応用システムに応用できるが、上述
したように入力巻線側の静電遮蔽板の接地は、負荷設備
の主接地とは別個の接地極を設けて接地しなければなら
ないため、特に山頂に設置された既設の無線中継所、送
電線用航空標識灯などは勿論のこと、昨今、急速に多数
箇所に設置されようとする山頂、または平地における移
動無線中継所等では、その立地条件、借地権等の問題で
限られた敷地面積となることが多いこと、また山頂では
地表近くまで岩盤層であったり、平地であっても道路の
舗装や、水道、ガス等の地下構造物が多いことに加え
て、借地権等の問題も絡むことから、負荷設備の主接地
極の他に独立した別個の接地極を設けることが極めて困
難な場合が多くなってきた。
The above lightning protection method can be applied to all semiconductor application systems. However, as described above, the grounding of the electrostatic shielding plate on the input winding side is different from the main grounding of the load equipment. Separate grounding poles must be provided for grounding, so existing radio relay stations installed on the top of the mountain, air traffic sign lights for power lines, etc., as well as these, are being rapidly installed in many places these days. In the case of mobile radio relay stations on the summit or flat ground, the site area is often limited due to the location conditions, leasehold rights, etc.At the summit, there is a bedrock layer close to the surface, In addition, there are many underground structures such as road pavement and water and gas, and there are also issues such as leasehold rights.Therefore, it is necessary to provide an independent and separate ground electrode in addition to the main ground electrode of load equipment. Very difficult in many cases It came.

【0009】そこで、本発明は、上記の事情に着目して
なされたものであって、その目的は、入力巻線側ならび
に出力巻線側の静電遮蔽板の接地極を増設工事すること
なく上記耐雷変圧器による卓越した効果を享受し得る
他、上記耐雷変圧器による耐雷効果よりも更に1段向上
させノイズ領域での障害さえをも防止し得る耐雷方法を
提供しようとするものである。
Therefore, the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to reduce the number of grounding poles of electrostatic shielding plates on the input winding side and the output winding side without increasing the number of grounding poles. It is an object of the present invention to provide a lightning protection method that can enjoy the excellent effect of the lightning transformer and can further improve the lightning protection effect of the lightning transformer by one step to prevent even a failure in a noise region.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る請求項1記載の発明は、負荷設備に
接続する入力電源線と負荷設備の間に入力巻線と出力巻
線の各々に互いに絶縁され独立した静電遮蔽板を有する
耐雷変圧器を設け、この耐雷変圧器の出力巻線側の静電
遮蔽板を負荷設備の主接地に接続する一方、入力巻線側
の静電遮蔽板を入力電源線のゼロ電位線に接続したもの
である。
In order to achieve the above object, the invention according to claim 1 of the present invention provides an input winding and an output winding between an input power supply line connected to a load facility and the load facility. Each of the wires is provided with a lightning proof transformer having an independent electrostatic shielding plate which is insulated from each other, and the electrostatic shielding plate on the output winding side of the lightning proof transformer is connected to the main ground of the load equipment, while the input winding side Is connected to the zero potential line of the input power supply line.

【0011】そして、本発明に係る請求項2記載の発明
は、負荷設備に接続する入力電源線と負荷設備の間に入
力巻線と出力巻線の各々に互いに絶縁され独立した静電
遮蔽板を有する耐雷変圧器を設け、この耐雷変圧器の出
力巻線側の静電遮蔽板を負荷設備の主接地に接続する一
方、入力巻線側の静電遮蔽板を入力電源線の内のいずれ
かの一線に接続するとともに、入力電源線に線間避雷器
を設けてなるものである。
According to a second aspect of the present invention, there is provided an independent electrostatic shield plate which is insulated from an input power supply line connected to a load equipment and an output winding, respectively, between an input power supply line and the load equipment. A lightning proof transformer having a lightning proof transformer is provided, and the electrostatic shielding plate on the output winding side of the lightning proof transformer is connected to the main ground of the load equipment, and the electrostatic shielding plate on the input winding side is connected to any of the input power lines. In addition to connecting to one of these lines, an input power supply line is provided with a line arrester.

【0012】また、本発明に係る請求項3記載の発明
は、上記請求項1または2記載の耐雷変圧器による耐雷
方法において、入力巻線と出力巻線の各々の静電遮蔽板
の間に相互に絶縁された中間静電遮蔽板を設け、この中
間静電遮蔽板を、出力巻線側の静電遮蔽板あるいは直接
負荷設備の主接地に接続してなるものである。
According to a third aspect of the present invention, there is provided a lightning proofing method using the lightning proofing transformer according to the first or second aspect of the present invention. An insulated intermediate electrostatic shield is provided, and this intermediate electrostatic shield is connected to the electrostatic shield on the output winding side or directly to the main ground of the load equipment.

【0013】[0013]

【作用】本発明は、入力巻線と出力巻線との間に少なく
ともこれら巻線各々に互いに絶縁され独立した静電遮蔽
板を有する耐雷変圧器を使用し、前記複数の静電遮蔽板
の内、入力巻線側の静電遮蔽板を入力電源線の内のいず
れかの一線に接続することを基本とするもので、これに
より入力巻線側の静電遮蔽板の接地を独立の接地極へ接
続したと同様の働きをさせ得るものである。すなわち、
一般に特殊な場合を除き無線中継所の場合、責任分界点
である引込柱あるいは1つ手前の電柱まで高圧で電力が
送られて来てそこに設置された柱上変圧器によって低圧
に変換されて電力が供給されている。通常、柱上変圧器
は第2種接地がなされており入力電源線の内のいずれか
の一線はゼロ電位の線である。そこで、この線に直接あ
るいは他の線との間に避雷器を介在させ間接的に入力巻
線側の静電遮蔽板を接続することで、入力巻線側の静電
遮蔽板を独立の接地極へ接続したと同様の働きをさせる
ことができ、入力巻線側の静電遮蔽板の接地極を増設工
事することなく、上記耐雷変圧器による卓越した効果に
より負荷設備は元より配電線側をも含めた雷による被害
を防止することができる。
According to the present invention, there is provided a lightning proof transformer having an independent electrostatic shielding plate insulated from each other at least in each of the windings between an input winding and an output winding. The basic principle is to connect the electrostatic shield plate on the input winding side to any one of the input power supply lines, so that the grounding of the electrostatic shield plate on the input winding side is independent grounding. It can work the same as connecting to the pole. That is,
In general, except for special cases, in the case of a radio relay station, high-voltage power is sent to the drop pole, which is the responsibility demarcation point, or the telephone pole in front of it, and converted to low voltage by a pole transformer installed there. Power is being supplied. Usually, the pole transformer is of the second type ground, and one of the input power supply lines is a line of zero potential. Therefore, by connecting a lightning arrestor directly or indirectly to this line and connecting the electrostatic shielding plate on the input winding side indirectly to the input winding side, the electrostatic shielding plate on the input winding side can be connected to an independent grounding electrode. Can be made to work in the same way as connected to the power supply, and without the need for additional grounding of the electrostatic shielding plate on the input winding side, the load equipment can be installed from the distribution line side by the outstanding effect of the lightning proof transformer. Can be prevented from being damaged by lightning.

【0014】雷の大地電流は遠方になれば小さくはなる
が、比較的地中の浅いところを通って数kmにわたった
地表から雷撃点に向かって流れ込んでくる。従ってゼロ
電位点はその先であることから考えて無線中継所の敷地
一杯に設置されたメッシュ設置と数十m以内の間隔で設
置される柱上変圧器の第2種接地との間の電位差は通常
想定されているほど大きな値とはならないので、この第
2種接地されたゼロ電位の線に入力巻線側の静電遮蔽板
を直接あるいは避雷器を介在させて間接的に接続して
も、この入力巻線側の静電遮蔽板と中継所の主接地に接
続された他の静電遮蔽板との間の絶縁強度は実用可能な
有限値であり、充分入力巻線側の静電遮蔽板の接地極の
代用として使用し得る。
Although the ground current of lightning becomes smaller as it gets farther, it flows from the surface over a distance of several kilometers toward the lightning strike point through a relatively shallow place in the ground. Therefore, considering that the zero potential point is beyond that, the potential difference between the mesh installation installed on the full site of the radio relay station and the type 2 grounding of the pole transformer installed at intervals of within several tens of meters Is not as large as normally assumed, so even if this type 2 grounded zero-potential line is connected directly or indirectly through a lightning arrestor to the electrostatic shielding plate on the input winding side The insulation strength between the input shield-side electrostatic shield plate and the other electrostatic shield plate connected to the main ground of the relay station is a finite value that can be used practically. It can be used as a substitute for the ground electrode of the shielding plate.

【0015】なお、入力巻線と出力側線の静電遮蔽板の
間に中間静電遮蔽板を設け、その中間静電遮蔽板の接地
を出力巻線側の静電遮蔽板の接地と共用することによっ
て、より効果的な耐雷効果を得ることができる。
An intermediate electrostatic shielding plate is provided between the input winding and the output side electrostatic shielding plate, and the grounding of the intermediate electrostatic shielding plate is shared with the grounding of the output winding side electrostatic shielding plate. , A more effective lightning resistance effect can be obtained.

【0016】本発明に適用される耐雷変圧器は、上述し
た従来技術によるものと同一構造のものでも適用可能で
あり、本発明の耐雷方法に最も適するように改良するこ
とができるが基本的には同一機能を持ったものである。
本発明による増設接地工事を必要としない重要な特長の
他に遙かに優れた耐雷効果をもたらす理由は次の点にあ
る。
The lightning proof transformer applied to the present invention can be applied to a lightning proof transformer having the same structure as that of the above-mentioned prior art, and can be improved to be most suitable for the lightning proof method of the present invention. Have the same function.
In addition to the important features that do not require additional grounding work according to the present invention, the reason for providing a far superior lightning resistance effect is as follows.

【0017】配電線の柱上変圧器の低圧巻線から耐雷変
圧器の入力巻線、その静電遮蔽板に到るまでの間で、従
来の方法では入力巻線側の静電遮蔽板の接地点と柱上変
圧器における第2種接地点とは位置が異なり、その間の
電位差により耐雷変圧器の対地避雷器と第2種接地点間
に電位差があり、これらの間に雷の大地電流の分流が流
れ込み種々のトラブルを発生する可能性があった。本発
明においては柱上変圧器の外凾、低圧巻線から耐雷変圧
器の入力巻線ならびにその静電遮蔽板に到るまで、第2
種接地点における電位での同電位、一点接地が達成され
る利点がある。
According to the conventional method, from the low voltage winding of the pole transformer on the distribution line to the input winding of the lightning proof transformer to the electrostatic shielding plate thereof, the conventional method uses the electrostatic shielding plate on the input winding side. The position of the grounding point is different from the type 2 grounding point on the pole transformer, and there is a potential difference between the grounding arrester of the lightning proof transformer and the type 2 grounding point due to the potential difference between them. There was a possibility that the diverted flow would flow, causing various troubles. In the present invention, from the outer casing of the pole transformer, from the low voltage winding to the input winding of the lightning proof transformer and the electrostatic shielding plate thereof, the second step is performed.
There is an advantage that the same potential at the seed ground point and the single-point ground are achieved.

【0018】外見上は些細な相違であるのに較べ、大き
な耐雷効果とノイズ障害防止効果にまで期待の持てるま
でに到ったのは、特開昭57−149713号公報に提案の発明
から本発明に到るまでの耐雷手法に対する思想の本質に
ついての向上に所以する。すなわち、特開昭57−149713
号公報の発明を提案した頃は雷サージは電源から入って
くるものを主点とし、雷サージの負荷側への移行率を多
層シールドによる指数関数的に激減できることを主眼と
している。その後、雷の直撃を受ける確率が高い無線中
継所においても被害の絶無を目指し特開平 3− 86017号
公報に明示しているように耐雷変圧器の出力巻線から負
荷設備までを極小容積化したファラデーケージで包み込
む局部同電位化方式にまで発展させ、これにより、特に
年に10回程度雷の直撃を受ける冬季雷地域の多数の無線
中継所、ならびにそれに供給する配電線の雷被害を絶無
にしている卓越した効果がある。そして、近年情報化社
会の急速な発展でサージに極めて弱い半導体が多く使わ
れ出したことと、必須条件として少なくも1箇所の増設
接地を要した欠点をなくすため、本発明は次のような耐
雷思想に発展させその耐雷思想を完すべくつくり上げた
もので、本発明に係る請求項1または2記載の発明でも
凡その役目を果たすが請求項3記載の発明は理想に近い
目的を達成し得るものである。
Compared to the seemingly insignificant difference, the fact that a great lightning protection effect and a noise interference prevention effect can be expected is based on the invention proposed in JP-A-57-149713. This is to improve the essence of the concept of the lightning protection method up to the invention. That is, JP-A-57-149713
At the time when the invention of the publication was proposed, the main point was that the lightning surge came from a power source, and the main purpose was to be able to exponentially reduce the rate of lightning surge transfer to the load side exponentially with a multilayer shield. After that, in order to eliminate damage even at radio relay stations that are likely to be directly hit by lightning, the volume from the output winding of the lightning proof transformer to the load equipment was minimized as specified in JP-A-3-86017. Developed a local equipotentialization system wrapped in a Faraday cage, thereby eliminating many lightning stations in winter lightning areas, especially in winter, where direct lightning strikes about 10 times a year, as well as lightning damage to distribution lines that supply them. There are outstanding effects. In recent years, the rapid development of the information-oriented society has led to the use of many semiconductors that are extremely vulnerable to surges, and to eliminate the drawback of requiring at least one additional ground as an essential condition. The invention was developed to complete the lightning proof concept, and the invention described in claim 1 or 2 according to the present invention also fulfills the general role. However, the invention described in claim 3 achieves a near ideal purpose. What you get.

【0019】金属で覆われたファラデーケージはいくら
高電位になっても内部の電界強度はゼロである。しかし
このことが言えるのは金属が全部均一な高電位化された
後のことで、それまでは内部に急峻な強い電界が生じて
いる。理想としてはケージ自体に電流が流れないことが
必要である。また、この高電位になったファラデーケー
ジから外部に出入りする線路があれば、ここから電流が
流れ出してファラデーケージの効果をなくしてしまう。
これを防止するためにはこの外部に通じる線路をファラ
デーケージ内部の電気系統と絶縁化する必要がある。
No matter how high the potential of the Faraday cage covered with metal is, the electric field strength inside is zero. However, this can be said after all the metals have been uniformly raised to a high potential. Until then, a sharp strong electric field has been generated inside. Ideally, no current should flow through the cage itself. In addition, if there is a line that enters and exits from the high potential Faraday cage, a current flows out of the line and the effect of the Faraday cage is lost.
To prevent this, it is necessary to insulate the line leading to the outside from the electric system inside the Faraday cage.

【0020】本発明は上記の2つの条件を全うすべくな
されたものである。初めの条件を満たすため、負荷設備
の主接地点の電位に固定したファラデーケージの多層化
を計るとともに、後の条件を満たすためには柱上変圧器
の第2種接地点の電位に固定した外部につながる別個の
ファラデーケージを構成させ、その両ファラデーケージ
を耐雷変圧器によって絶縁化せしめるものである。
The present invention has been made to satisfy the above two conditions. In order to satisfy the first condition, the Faraday cage fixed at the potential of the main ground point of the load equipment was multilayered, and to satisfy the later condition, the potential was fixed at the second type ground point of the pole transformer. A separate Faraday cage connected to the outside is constructed, and both Faraday cages are insulated by a lightning proof transformer.

【0021】図1は上記作用の概要を図解したものであ
る。1は建造物の鉄骨により構成された第1のファラデ
ーケージで、雷電流の通路距離の相違等により特に波頭
部ではこのファラデーケージの各部は同電位でない。
FIG. 1 illustrates the outline of the above operation. Reference numeral 1 denotes a first Faraday cage constituted by a steel frame of a building. Due to a difference in a lightning current passage distance or the like, especially at a wave front, each part of the Faraday cage is not at the same potential.

【0022】2は中間静電遮蔽板7と主接地8に到る第
2のファラデーケージで、細線で示すように包むために
はシース付ケーブル配線を収納する金属管、ダクト、遮
蔽室等によるが通常この細線部分に到るまでの対策をす
る必要はない場合が多い。
Reference numeral 2 denotes a second Faraday cage reaching the intermediate electrostatic shielding plate 7 and the main ground 8, and as shown by a thin line, depends on a metal tube, a duct, a shielding room or the like for accommodating a cable wiring with a sheath. Usually, it is often not necessary to take measures until reaching this thin line portion.

【0023】3は最終である第3のファラデーケージ
で、耐雷変圧器9の出力巻線側静電遮蔽板10、金属管、
ダクト、負荷設備の外凾により構成されたものであり、
4で示した耐雷変圧器9の出力巻線から負荷設備までの
電気回路、ならびにそこに到る屋内配線までを最小容積
で包んだ局部同電位化が達成される。なお、図示省略す
る負荷設備は内部で電源変圧器が使用されることが多
く、その入力端子のところ11でその1線を主接地8に接
続して耐雷変圧器9の出力巻線に到るまで全て主接地8
の電位で安定せしめる。
Reference numeral 3 denotes a final third Faraday cage, which is an electrostatic shielding plate 10 on the output winding side of the lightning proof transformer 9, a metal tube,
It consists of a duct and an outer box of load equipment,
4, the electric circuit from the output winding of the lightning proof transformer 9 to the load facility, and the indoor wiring to the electric circuit, are wrapped in a minimum volume to achieve local potential equalization. A load transformer (not shown) often uses a power transformer internally. One of the input terminals 11 is connected to the main ground 8 at the input terminal to reach the output winding of the lightning proof transformer 9. All the main ground up to 8
Stabilize at potential.

【0024】6は耐雷変圧器9の入力巻線、低圧引込
線、柱上変圧器12の低圧巻線に到るまでの回路を示した
もので、これを包むように柱上変圧器12の外凾13、なら
びに必要によってはシース付ケーブルを架空線にした引
込線と、耐雷変圧器9の入力巻線側静電遮蔽板14により
構成されるファラデーケージ5を電源の電気回路6と共
に第2種接地15によりその位置の大地の電位に固定した
1点接地を形成せしめる。
Reference numeral 6 denotes a circuit up to the input winding of the lightning proof transformer 9, the low voltage drop wire, and the low voltage winding of the pole transformer 12. The outer casing of the pole transformer 12 is wrapped around the circuit. 13 and, if necessary, a Faraday cage 5 composed of a drop-in wire made of a cable with a sheath and an electrostatic shield plate 14 on the input winding side of the lightning proof transformer 9, together with an electric circuit 6 of a power supply, and a second-type ground 15. As a result, a single point ground fixed to the ground potential at that position is formed.

【0025】このように負荷設備の主接地8の電位にし
た負荷設備の電気回路4およびこれを取り囲むファラデ
ーケージ群1,2,3と、第2種接地点15の電位に固定
された入力電源回路6とそれを囲むファラデーケージ5
の二つの群に分離され、その間を耐雷変圧器9における
中間静電遮蔽板7と入力巻線側静電遮蔽板14間の絶縁物
により雷電流の通路を遮断させる。但し、その間の静電
容量により主として峻度の高い波頭部では16で示したよ
うな電流が流れるがこれは入力巻線側の静電遮蔽板14を
経て入力電源線のゼロ電位線、ならびにケーブルシース
を通り第2種接地点15を通って大地に放流されるので無
害である。このように第2のファラデーケージ2に波頭
部のみであり、且つ波尾が非常に小さくなった電流16が
流れることにより内部の同電位は僅か崩れ、従って第3
のファラデーケージ3に微小な電流が流れる。これによ
りノイズ程度の電流が負荷回路から第3のファラデーケ
ージ3に流れることがあるが、負荷設備の電源入力端子
のところ11で1線接地があり、その大部分は主接地から
屋内配線を経て供給されるため半導体回路に流れる電流
は実用上ゼロとなる。
The electric circuit 4 of the load equipment thus set to the potential of the main ground 8 of the load equipment, the Faraday cage groups 1, 2, 3 surrounding the electric circuit 4 and the input power supply fixed to the electric potential of the second type ground point 15 Circuit 6 and its surrounding Faraday cage 5
The lightning current path is cut off by an insulator between the intermediate electrostatic shielding plate 7 and the input winding side electrostatic shielding plate 14 in the lightning proof transformer 9 therebetween. However, the current shown by 16 mainly flows at the wave front having a high steepness due to the capacitance in the meantime, but this flows through the electrostatic shield plate 14 on the input winding side, the zero potential line of the input power supply line, and It is harmless because it is discharged to the ground through the second type grounding point 15 through the cable sheath. As described above, the current 16 inside the second Faraday cage 2 having only the crest and having a very small crest is caused to flow, so that the same potential inside is slightly collapsed.
A small current flows through the Faraday cage 3. As a result, a current as much as noise may flow from the load circuit to the third Faraday cage 3, but there is a single-wire ground at the power supply input terminal 11 of the load equipment, and most of the ground passes from the main ground through the indoor wiring. Since it is supplied, the current flowing in the semiconductor circuit becomes practically zero.

【0026】負荷設備の電源入力端子のところ11で1線
接地しているのは、通常負荷設備の内部には変圧器が使
用されていることが多く、従って耐雷変圧器9の出力巻
線から負荷設備に到る屋内配線の電位が不定になること
を防ぎ主接地8の電位に固定させるためのものである。
The reason why one line is grounded at the power supply input terminal 11 of the load equipment is that a transformer is usually used inside the load equipment, and therefore, the output winding of the lightning proof transformer 9 is used. This is to prevent the potential of the indoor wiring reaching the load equipment from becoming unstable and to fix it to the potential of the main ground 8.

【0027】ここで、完全に電気回路を囲むべく不用意
に長い距離のケーブルを使用するとファラデーケージ間
の静電容量を大きくする悪影響を及ぼすことがあり、強
いて細線で示したファラデーケージ部分は解放した方が
好結果となることが多い。また、雷サージが電源線側か
ら入ってきたときはその勢力は遙かに小さいばかりでな
く、入力巻線側静電遮蔽板14から遮蔽板間の静電容量を
通してそのまま主接地8に流れ出し完全に保護すること
ができる。
Here, if a cable of a long distance is used carelessly to completely enclose an electric circuit, the capacitance between the Faraday cages may be adversely affected, and the Faraday cage portion indicated by thin lines is released. It is often better to do it. Further, when a lightning surge enters from the power line side, not only the power is much smaller, but also the power flows from the electrostatic shielding plate 14 on the input winding side to the main ground 8 as it flows through the capacitance between the shielding plates. Can be protected.

【0028】なお、上記図1は中間静電遮蔽板7を備え
る耐雷変圧器9を例に挙げて説明したが、中間静電遮蔽
板7を省略し第2のファラデーケージ2を省略したもの
であってもよく、この場合、ここに通る電流程度のもの
が負荷設備の電気回路4と出力巻線側静電遮蔽板10間に
流れることになるが、格別弱い半導体でなければ充分と
は言い難いがある程度の効果が期待できる。
Although FIG. 1 has been described by taking as an example a lightning proof transformer 9 having an intermediate electrostatic shielding plate 7, the intermediate electrostatic shielding plate 7 is omitted and the second Faraday cage 2 is omitted. In this case, an electric current of about this amount flows between the electric circuit 4 of the load equipment and the output-winding-side electrostatic shield plate 10, but it is not sufficient unless the semiconductor is exceptionally weak. Although difficult, some effects can be expected.

【0029】[0029]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図2は、本発明に係る無線中継所等の耐雷装置の
概要を示す電気結線図である。21は耐雷変圧器、22は無
線中継所の負荷設備、23は避雷針、24は柱上変圧器を示
す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is an electrical connection diagram showing an outline of a lightning protection device such as a wireless relay station according to the present invention. Reference numeral 21 denotes a lightning proof transformer, 22 denotes a load facility of a radio relay station, 23 denotes a lightning rod, and 24 denotes a pole transformer.

【0030】耐雷変圧器21は、入力巻線25と出力巻線26
のそれぞれに静電遮蔽板27,28を備えると共に入力巻線
25の線間に避雷器29が設けられ、負荷設備22に隣接させ
て無線中継所内に設備されている。そして、入力巻線25
には柱上変圧器24からの外部電源線30が接続され、また
出力巻線26には負荷設備22が接続されている。
The lightning proof transformer 21 has an input winding 25 and an output winding 26.
Each of which has an electrostatic shielding plate 27, 28 and an input winding
A lightning arrester 29 is provided between the 25 lines, and is installed in the radio relay station adjacent to the load equipment 22. And the input winding 25
Is connected to an external power supply line 30 from the pole transformer 24, and the output winding 26 is connected to a load facility 22.

【0031】また、静電遮蔽板27は、柱上変圧器24にお
いて第2種接地31されたゼロ電位の線30a に接続されて
いる。また静電遮蔽板28は、負荷設備22、出力巻線26と
共に主接地32に接続されている。
The electrostatic shielding plate 27 is connected to the zero-potential line 30a of the pole transformer 24, which is grounded to the second type 31. The electrostatic shielding plate 28 is connected to the main ground 32 together with the load equipment 22 and the output winding 26.

【0032】避雷針23は、無線中継所の建造物の鉄骨を
含め主接地32に接続され、雷撃の際に避雷針23ならびに
建造物の鉄骨を含めファラデーケージ33を形成するよう
に構成されている。
The lightning rod 23 is connected to the main ground 32 including the steel structure of the building of the radio relay station, and is configured to form a Faraday cage 33 including the lightning rod 23 and the steel structure of the building during a lightning strike.

【0033】なお、図において、符号34は架空地線、35
は柱上変圧器24の高圧側に設けられた避雷器36の接地を
示す。
In the figure, reference numeral 34 denotes an imaginary ground wire, 35
Indicates the grounding of the lightning arrester provided on the high voltage side of the pole transformer.

【0034】次に、上記構成において、避雷針23に雷の
直撃を受けた場合と電源側から雷サージが侵入した場合
のそれぞれを例に説明する。
Next, a description will be given of a case where the lightning rod 23 is directly hit by lightning and a case where a lightning surge enters from the power supply side in the above configuration.

【0035】避雷針23に雷の直撃を受けた場合、図3に
示すように雷の直撃電流X1はアンテナ鉄塔、建造物の鉄
骨を通って主接地32より大地に流れ去る。しかし、波頭
部では主接地32と第2種接地31の両地点の電位差によっ
て27, 28の両静電遮蔽板間の静電容量を通して破線X2の
電流が流れる。これが引込み電源のゼロ電位線30a を通
って第2種接地31より大地に流れる電流X3と架空地線34
に流れる電流X4とに分流される。避雷器36の接地点35か
らは雷電流によるその点の上昇した電位によって、避雷
器36を逆放電して高圧配電線の方にX5で示す電流が流れ
出すが、これは雷の主電流の極く僅かな分流成分である
ので被害を受けることはない。
When a lightning strike is received by the lightning rod 23, as shown in FIG. 3, the lightning strike current X1 flows from the main ground 32 to the ground through the antenna tower and the steel frame of the building. However, at the wave front, a current indicated by a broken line X2 flows through the capacitance between the two electrostatic shielding plates 27 and 28 due to the potential difference between the two points of the main ground 32 and the second type ground 31. This is the current X3 flowing to the ground from the second type ground 31 through the zero potential line 30a of the incoming power supply and the overhead ground wire 34.
Shunted to the current X4. From the grounding point 35 of the lightning arrester 36, due to the increased potential at that point due to the lightning current, the lightning arrester 36 is reverse-discharged and a current indicated by X5 flows toward the high-voltage distribution line. Since it is a divergent component, it is not damaged.

【0036】静電遮蔽板27, 28の両接地板の間の絶縁強
度は、第2種接地31、主接地32の両接地点間の電位差に
充分耐えるように設計されているので、破線で示したX
2, X3, X4の電流は無くなってしまう。しかし第2種接
地31の大地の電位は高いので実線X6で示す雷電流の分流
成分は架空地線34に流れる。
The insulation strength between the grounding plates of the electrostatic shielding plates 27 and 28 is indicated by a broken line because it is designed to sufficiently withstand the potential difference between the grounding points of the second type grounding 31 and the main grounding 32. X
2, The current of X3, X4 disappears. However, since the potential of the ground of the second type ground 31 is high, the shunt component of the lightning current indicated by the solid line X6 flows to the overhead ground wire 34.

【0037】図4は、電源側から雷サージが侵入した場
合を示すもので、この場合、従来の接地方式とは相違す
るもののほぼ同様の働きが得られ、これにより、電位変
化の急峻な波頭部の電流のみが破線矢印で示すように流
れ負荷設備22とは全く関係のないところを通るので、無
線中継所の負荷設備22が損傷を受けることはない。
FIG. 4 shows a case in which a lightning surge enters from the power supply side. In this case, almost the same function as that of the conventional grounding method is obtained, and thus, a steep wave of potential change is obtained. Since only the head current flows as indicated by the dashed arrow and passes through a place completely unrelated to the load equipment 22, the load equipment 22 of the radio relay station is not damaged.

【0038】なお、上記実施例は、入力巻線25と出力巻
線26のそれぞれに静電遮蔽板27,28を備える耐雷変圧器
21を例に説明したが、図5に示すように静電遮蔽板27と
28の間に中間静電遮蔽板37を設けた構成としてもよい。
この場合には静電遮蔽板27と28の間の絶縁強度がさらに
高まり、避雷針23に雷の直撃を受けた場合には、前記図
1を基に段落番号〔0025〕に説明したと同じ作用に
より、主として峻度の高い波頭部の電流のみが流れるが
これは入力巻線25側の静電遮蔽板27を経て入力電源線30
のゼロ電位線30a を通り第2種接地点31を通って大地に
放流されるので無害である。また、電源側から雷サージ
が侵入した場合は、上記図4を基に段落番号〔003
7〕に説明したと同様に、電位変化の急峻な波頭部の電
流のみが負荷設備22とは全く関係のないところを通り、
しかもそのエネルギーは上記実施例の場合に比較して1
乃至2桁も小さいので、無線中継所の負荷設備22が損傷
を受けることはまずない。
In the above embodiment, the lightning transformer is provided with the electrostatic shielding plates 27 and 28 on the input winding 25 and the output winding 26, respectively.
Although the example has been described with reference to FIG. 21, as shown in FIG.
A configuration in which an intermediate electrostatic shielding plate 37 is provided between 28 may be adopted.
In this case, the insulation strength between the electrostatic shielding plates 27 and 28 is further increased, and when the lightning rod 23 is directly hit by lightning, the same operation as described in the paragraph [0025] based on FIG. Therefore, only the current of the wave front having a high steepness mainly flows, but this flows through the electrostatic shielding plate 27 on the side of the input winding 25 and the input power supply line 30.
It is harmless because it is discharged to the ground through the second type grounding point 31 through the zero potential line 30a of FIG. Also, when a lightning surge enters from the power supply side, the paragraph number [003
As described in [7], only the current at the crest where the potential change is steep passes through a place that is completely unrelated to the load equipment 22,
Moreover, the energy is 1 compared with the case of the above embodiment.
Since it is less than two orders of magnitude, the load equipment 22 of the radio relay station is unlikely to be damaged.

【0039】また、上記実施例は、単相2線式の場合で
あって、予め第2種接地31がなされ電位がゼロである線
が確認されている場合を例としたが、電位ゼロの確認の
有無に関係なく線30a, 30b間に避雷器(図示せず)を設
け、線30a または30b のいずれか一方の線に入力巻線25
の静電遮蔽板27を接続しても、上記実施例と同様の作用
効果を奏し無線中継所の負荷設備22の損傷を防止するこ
とができる。
In the above-described embodiment, the case of the single-phase two-wire system, in which the line of the second kind is made in advance and the line having the zero potential has been confirmed, has been described. A lightning arrestor (not shown) should be provided between the wires 30a and 30b regardless of the confirmation, and the input winding 25 should be connected to either wire 30a or 30b.
Even if the electrostatic shield plate 27 is connected, the same operation and effect as those of the above embodiment can be obtained, and the damage to the load equipment 22 of the wireless relay station can be prevented.

【0040】また、単相3線式や3相3線式等の場合に
おいても、第2種接地されたゼロ電位線に入力巻線25の
静電遮蔽板27を接続することで、あるいは電源入力線の
選別をせずそのいずれか1本の線に入力巻線25の静電遮
蔽板27を接続する場合には、各線間に避雷器を設けるこ
とで、上記実施例と同様の作用効果を奏し無線中継所の
負荷設備22の損傷を防止することができる。
In the case of a single-phase three-wire system, a three-phase three-wire system, or the like, the electrostatic shielding plate 27 of the input winding 25 is connected to the second-type grounded zero potential line, When the electrostatic shielding plate 27 of the input winding 25 is connected to any one of the input lines without selecting the input line, the same operation and effect as in the above embodiment can be obtained by providing a lightning arrestor between each line. The damage to the load equipment 22 of the radio relay station can be prevented.

【0041】[0041]

【発明の効果】以上説明したように、本発明に係る耐雷
変圧器による耐雷方法によれば、入力巻線側の静電遮蔽
板の接地極を増設工事することなく、入力巻線と出力巻
線との間に少なくともこれら巻線各々に互いに絶縁され
独立した静電遮蔽板を有する耐雷変圧器を使用して、半
導体を含む各種の情報化システムの負荷設備の雷撃に対
する損傷を防止することができる。
As described above, according to the lightning proofing method using the lightning proof transformer according to the present invention, the input winding and the output winding can be formed without increasing the grounding of the electrostatic shielding plate on the input winding side. It is possible to use a lightning proof transformer having an independent electrostatic shielding plate insulated from each other in at least each of these windings to prevent damage to lightning of load equipment of various information systems including semiconductors. it can.

【0042】そして特に、敷地面積が狭く、また山頂等
で耐雷対策のための増設接地工事の施行が困難であり、
且つ、雷撃を受ける確率の高い各種無線中継所、送電線
用航空標識灯等の施設に適用することにより、これら施
設の半導体を含む各種の情報化システムの負荷設備を経
済的に且つ効果的に雷撃から保護し得る。
In particular, the site area is small, and it is difficult to carry out additional grounding work for lightning protection at a mountaintop or the like.
In addition, by applying to facilities such as various radio relay stations and air traffic signposts for transmission lines that are highly likely to be subjected to lightning strikes, it is possible to economically and effectively load equipment for various information systems including semiconductors in these facilities. Can protect against lightning strikes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る作用の概要を図解した説明図であ
る。
FIG. 1 is an explanatory diagram illustrating an outline of an operation according to the present invention.

【図2】本発明に係る無線中継所等の耐雷装置の概要を
示す電気結線図である。
FIG. 2 is an electrical connection diagram showing an outline of a lightning proof device such as a wireless relay station according to the present invention.

【図3】図2において避雷針に雷の直撃を受けた場合の
雷サージ電流の流れを示す説明図である。
FIG. 3 is an explanatory diagram showing a flow of a lightning surge current when a lightning rod is directly hit by a lightning arrester in FIG. 2;

【図4】図2において入力電源側から侵入した場合の雷
サージ電流の流れを示す説明図である。
FIG. 4 is an explanatory diagram showing a flow of a lightning surge current when the light enters from the input power supply side in FIG. 2;

【図5】本発明の別の実施例に係る無線中継所等の耐雷
装置の概要を示す電気結線図である。
FIG. 5 is an electrical connection diagram showing an outline of a lightning proof device such as a wireless relay station according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:第1のファラデーケージ 2:第2のファラ
デーケージ 3:第3のファラデーケージ 4:電気回路 5:ファラデーケージ 6:電気回路 7:中間静電遮蔽板 8, 32:主接地 9, 21:耐雷変圧器 10, 28:出力巻線
側静電遮蔽板 11:入力端子の接点 12:柱上変圧器 13:柱上変圧器の外凾 14, 27:入力巻線
側静電遮蔽板 15, 31:第2種接地 16:波頭部のみで波尾が非常に小さくなった電流 22:無線中継所の負荷設備 23:避雷針 24:柱上変圧器 25:入力巻線 26:出力巻線 29:避雷器 30, 30a, 30b:外部電源線 33:ファラデーケ
ージ X1:雷の直撃電流 X2〜X6:雷のサー
ジ電流の流れ
1: First Faraday Cage 2: Second Faraday Cage 3: Third Faraday Cage 4: Electric Circuit 5: Faraday Cage 6: Electric Circuit 7: Intermediate Electrostatic Shield 8, 32: Main Ground 9, 21: Lightning proof transformer 10, 28: Output winding side electrostatic shielding plate 11: Input terminal contact 12: Pole transformer 13: Outer pole of pole transformer 14, 27: Input winding side electrostatic shielding plate 15, 31: Class 2 grounding 16: Current with very small wave tail only at the crest 22: Load facilities at radio relay stations 23: Lightning rod 24: Pole transformer 25: Input winding 26: Output winding 29 : Lightning arrester 30, 30a, 30b: External power line 33: Faraday cage X1: Direct lightning current of lightning X2 to X6: Surge current flow of lightning

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負荷設備に接続する入力電源線と負荷設
備の間に入力巻線と出力巻線の各々に互いに絶縁され独
立した静電遮蔽板を有する耐雷変圧器を設け、この耐雷
変圧器の出力巻線側の静電遮蔽板を負荷設備の主接地に
接続する一方、入力巻線側の静電遮蔽板を入力電源線の
ゼロ電位線に接続したことを特徴とする耐雷変圧器によ
る耐雷方法。
1. A lightning proof transformer having an independent electrostatic shielding plate insulated from each of an input winding and an output winding between an input power supply line connected to the load equipment and the load equipment, wherein the lightning proof transformer is provided. The electrostatic shield plate on the output winding side is connected to the main ground of the load equipment, while the electrostatic shield plate on the input winding side is connected to the zero potential line of the input power line. Lightning protection method.
【請求項2】 負荷設備に接続する入力電源線と負荷設
備の間に入力巻線と出力巻線の各々に互いに絶縁され独
立した静電遮蔽板を有する耐雷変圧器を設け、この耐雷
変圧器の出力巻線側の静電遮蔽板を負荷設備の主接地に
接続する一方、入力巻線側の静電遮蔽板を入力電源線の
内のいずれかの一線に接続するとともに、入力電源線に
線間避雷器を設けてなる耐雷変圧器による耐雷方法。
2. A lightning proof transformer having independent electrostatic shielding plates insulated from each other on an input winding and an output winding between an input power supply line connected to the load equipment and the load equipment, wherein the lightning proof transformer is provided. Connect the electrostatic shield plate on the output winding side to the main ground of the load equipment, connect the electrostatic shield plate on the input winding side to any one of the input power lines, and connect A lightning protection method using a lightning protection transformer equipped with line arresters.
【請求項3】 請求項1または2記載の耐雷変圧器によ
る耐雷方法において、入力巻線と出力巻線の各々の静電
遮蔽板の間に相互に絶縁された中間静電遮蔽板を設け、
この中間静電遮蔽板を、出力巻線側の静電遮蔽板あるい
は直接負荷設備の主接地に接続してなる耐雷変圧器によ
る耐雷方法。
3. A lightning proofing method using a lightning proof transformer according to claim 1 or 2, wherein a mutually insulated intermediate electrostatic shielding plate is provided between each of the electrostatic shielding plates of the input winding and the output winding.
A lightning protection method using a lightning protection transformer in which the intermediate electrostatic shielding plate is connected to the electrostatic shielding plate on the output winding side or directly to the main ground of the load equipment.
JP6161662A 1994-07-14 1994-07-14 Lightning protection method using lightning transformer Expired - Fee Related JP2764008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161662A JP2764008B2 (en) 1994-07-14 1994-07-14 Lightning protection method using lightning transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6161662A JP2764008B2 (en) 1994-07-14 1994-07-14 Lightning protection method using lightning transformer

Publications (2)

Publication Number Publication Date
JPH0831668A JPH0831668A (en) 1996-02-02
JP2764008B2 true JP2764008B2 (en) 1998-06-11

Family

ID=15739453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161662A Expired - Fee Related JP2764008B2 (en) 1994-07-14 1994-07-14 Lightning protection method using lightning transformer

Country Status (1)

Country Link
JP (1) JP2764008B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443619B2 (en) * 2001-05-15 2003-09-08 音羽電機工業株式会社 Lightning protection system for electrical facilities
JP4748673B2 (en) * 2006-04-07 2011-08-17 株式会社昭電 Grounding system
JP2007300744A (en) * 2006-05-01 2007-11-15 Shoden Corp Flashover protective arrester
JP6222738B2 (en) * 2014-05-29 2017-11-01 東北電力株式会社 Backflow lightning protection device
CN104882868B (en) * 2015-05-22 2018-06-01 东阳市天齐科技有限公司 A kind of video anti-lightening protector
CN108494269A (en) * 2018-04-17 2018-09-04 全球能源互联网研究院有限公司 A kind of converter valve module built in arrester

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677063A (en) * 1992-03-04 1994-03-18 Otowa Denki Kogyo Kk Lighting-resistant transformer

Also Published As

Publication number Publication date
JPH0831668A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP2764008B2 (en) Lightning protection method using lightning transformer
Van der Laan et al. Reliable protection of electronics against lightning: Some practical applications
JP3143882B2 (en) Lightning protection method for electrical facilities
JP2007312466A (en) Thunder protection communication system
JP3399523B2 (en) Lightning protection method for electrical facilities
JP4103259B2 (en) Lightning protection lead and lightning protection system
JP2008130986A (en) Lightning protection method for electric facility
JP2002320319A (en) Protection method against thunder damage
JP4748673B2 (en) Grounding system
JP4050929B2 (en) Lightning protection method for electrical facilities having terminal units
JP4054700B2 (en) Device for reducing lightning damage in buildings
JP6222738B2 (en) Backflow lightning protection device
WO2009145249A1 (en) Discharge noise absorbing element, discharge gap-type arrester utilizing the element, discharge bouncing wave avoiding circuit, and noise avoiding box
JPH10285794A (en) Distribution line thunderproof system
JPS61164414A (en) Lightning method of transmission line
CN210123838U (en) DC combined electrical apparatus
JP3127187B2 (en) Grounding wiring method in the building
JP2002345146A (en) Lightning protection system for electric facility
JPH0119561Y2 (en)
JPH0789712B2 (en) Lightning protection method for electronic devices
JPH0677063A (en) Lighting-resistant transformer
SU913518A1 (en) High-voltage substation
JPH09154231A (en) Power transmission system using gas insulated pipeline
Tsuge Design and performance of external gap type line arrester
JPH04150721A (en) Steep wave voltage relieving system at surge impedance transition point

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees