JP2763102B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2763102B2
JP2763102B2 JP63041875A JP4187588A JP2763102B2 JP 2763102 B2 JP2763102 B2 JP 2763102B2 JP 63041875 A JP63041875 A JP 63041875A JP 4187588 A JP4187588 A JP 4187588A JP 2763102 B2 JP2763102 B2 JP 2763102B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
type
laser device
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63041875A
Other languages
Japanese (ja)
Other versions
JPH01217986A (en
Inventor
光弘 櫛部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63041875A priority Critical patent/JP2763102B2/en
Publication of JPH01217986A publication Critical patent/JPH01217986A/en
Application granted granted Critical
Publication of JP2763102B2 publication Critical patent/JP2763102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、二重ヘテロ接合構造を用いた長波長光通信
用半導体レーザ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a semiconductor laser device for long wavelength optical communication using a double hetero junction structure.

(従来の技術) 一般に二重ヘテロ接合構造を用いた注入型半導体レー
ザ素子においては、活性層を挟むp−型半導体層から活
性層中に正孔を注入し活性層を挟むn−型半導体層と活
性層の価電子帯不連続を障壁として正孔を活性層中に蓄
積する。一方活性層を挟むn−型半導体層から電子を活
性層中に注入し活性層を挟むp−型半導体層と活性層の
伝導帯不連続を障壁として活性層中に電子を蓄積する。
活性層中で正孔と電子が再結合して発光する。光は活性
層の活性領域と活性領域の上下左右の結晶の屈折率差に
より活性領域近傍に集中される。通常の構造の半導体レ
ーザ素子では活性領域を挟むn−型半導体層とp−型半
導体層の材料が同一物質であるために、活性領域とp−
型半導体層の伝導帯不連続と活性領域とn−型半導体層
の伝導帯不連続は同一であり、活性領域とn−型半導体
層の価電子帯不連続と活性領域とp−型半導体層の価電
子帯不連続は同一であった。このため活性領域からp−
型半導体層へ電子のオーバーフローあるいは活性領域か
らn−型半導体層へ正孔のオーバーフローが起こり活性
層への電流閉じ込め効率が悪かった。特に活性領域クラ
ッド層との伝導帯不連続の小さいInP系の半導体レーザ
域は活性層厚を数百オングストローム以下にした半導体
レーザに於てこの傾向が顕著であった。
(Prior Art) In general, in an injection type semiconductor laser device using a double heterojunction structure, holes are injected into an active layer from a p− type semiconductor layer sandwiching an active layer, and an n− type semiconductor layer sandwiches an active layer. Then, holes are accumulated in the active layer using the valence band discontinuity of the active layer as a barrier. On the other hand, electrons are injected into the active layer from the n− type semiconductor layer sandwiching the active layer, and electrons are accumulated in the active layer using the conduction band discontinuity between the p− type semiconductor layer sandwiching the active layer and the active layer as a barrier.
Holes and electrons recombine in the active layer to emit light. Light is concentrated in the vicinity of the active region due to the difference in the refractive index between the active region of the active layer and the upper, lower, left and right crystals of the active region. In a semiconductor laser device having a normal structure, the material of the n-type semiconductor layer and the material of the p-type semiconductor layer sandwiching the active region are the same, so that the active region is
The conduction band discontinuity of the n-type semiconductor layer, the conduction band discontinuity of the active region and the n-type semiconductor layer are the same, and the valence band discontinuity of the active region and the n-type semiconductor layer, the active region and the p-type semiconductor layer Have the same valence band discontinuity. Therefore, p-
The overflow of electrons into the semiconductor layer or the overflow of holes from the active region to the n − -type semiconductor layer occurred, resulting in poor current confinement efficiency in the active layer. In particular, in the InP-based semiconductor laser region where the conduction band discontinuity with the active region cladding layer is small, this tendency is remarkable in a semiconductor laser having an active layer thickness of several hundred angstroms or less.

(発明が解決しようとする課題) 本発明は以上述べたように活性層からp−型半導体層
へ電子のオーバーフロー域は活性領域からn−型半導体
層への正孔のオーバーフローを減らし、活性領域へ正孔
と電子と光を効率よく閉じ込め集中行える良好な半導体
レーザ素子の提供を目的としている。
(Problems to be Solved by the Invention) As described above, in the present invention, the overflow area of electrons from the active layer to the p − type semiconductor layer reduces the overflow of holes from the active area to the n − type semiconductor layer, It is an object of the present invention to provide a good semiconductor laser device in which holes, electrons and light can be efficiently confined and concentrated.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明の半導体レーザ素子においては2つのクラッド
層の組成が異なるのでp−型の導電性を有するクラッド
層と活性領域との伝導帯不連続と上記2つのクラッド層
のうちn−型の導電性を有するクラッド層と上記活性領
域との価電子帯不連続とを独立に決めることができる。
即ちp−型の導電性を有するクラッド層と活性領域との
伝導帯不連続による電子に対するエネルギー障壁と価電
子帯不連続による正孔に対するエネルギー障壁とを独立
に決めることができる。
(Means for Solving the Problems) In the semiconductor laser device of the present invention, since the compositions of the two cladding layers are different, the conduction band discontinuity between the cladding layer having p-type conductivity and the active region and the two cladding layers are different. The valence band discontinuity between the cladding layer having n-type conductivity and the active region among the layers can be determined independently.
That is, the energy barrier for electrons due to the conduction band discontinuity between the cladding layer having p-type conductivity and the active region and the energy barrier for holes due to the valence band discontinuity can be determined independently.

2つのクラッド層のうちp−型の導電性を有するクラ
ッド層と活性領域との伝導帯不連続を2つのクラッド層
のうちn−型の導電性を有するクラッド層と活性領域と
の伝導帯不連続よりも大きく取ることにより、活性領域
とp−型の導電性を有するクラッド層とのエネルギー障
壁を、n−型の導電性を有するクラッド層よりn−型の
導電性を有するクラッド層と活性領域との伝導帯不連続
分のエネルギーを持って活性領域中に注入される電子の
エネルギーに対して充分大きく取れる。
The conduction band discontinuity between the active region and the cladding layer having p-type conductivity of the two cladding layers is determined by the conduction band discontinuity between the cladding layer having n-type conductivity and the active region among the two cladding layers. By making the active region larger than the continuous region, the energy barrier between the active region and the cladding layer having p-type conductivity can be made more active with the cladding layer having n-type conductivity than the cladding layer having n-type conductivity. The energy can be sufficiently large with respect to the energy of electrons injected into the active region with the energy of the conduction band discontinuity with the region.

半導体レーザを形成する半導体基板がInPであり、且
つp−型クラッド層がInAlAs或はInGaAlAsであり且つn
−型クラッド層がInPであれば、各層を基板の半導体と
ほぼ格子整合させて形成できる。
The semiconductor substrate forming the semiconductor laser is InP, the p-type cladding layer is InAlAs or InGaAlAs, and n
If the -type cladding layer is InP, each layer can be formed so as to be substantially lattice-matched with the semiconductor of the substrate.

有機金属気相成長法で形成すればInP,InAlAs,InGaAlA
sの各層は良好な結晶が形成でき且つ急峻且つ良好なヘ
テロ接合界面を形成できる。
InP, InAlAs, InGaAlA if formed by metal organic chemical vapor deposition
Each layer of s can form a good crystal and form a steep and good heterojunction interface.

(作 用) 本発明の半導体レーザ素子においては電子に対するエ
ネルギー障壁と正孔に対するエネルギー障壁を独立に大
きく設定できるので、活性層中に電子を良好に蓄積でき
る。
(Operation) In the semiconductor laser device of the present invention, since the energy barrier for electrons and the energy barrier for holes can be set independently large, electrons can be favorably accumulated in the active layer.

n−型の導電性を有するクラッド層から活性領域に注
入された電子のエネルギーに対して、活性領域からp−
型クラッド層に進入する際のエネルギー障壁を大きく取
れば活性層中に電子を良好に蓄積できる。
In response to the energy of electrons injected from the cladding layer having n-type conductivity into the active region, p-
If the energy barrier at the time of entering the mold cladding layer is made large, electrons can be favorably accumulated in the active layer.

p−型の導電性を有するクラッド層から活性領域に注
入された正孔のエネルギーに対して、活性領域からn−
型クラッド層に進入する際のエネルギー障壁を大きく取
れば活性層中に正孔を良好に蓄積できる。
For the energy of holes injected from the cladding layer having p-type conductivity into the active region, n-
By taking a large energy barrier when entering the mold cladding layer, holes can be favorably accumulated in the active layer.

p−型クラッド層としてInAlAs或はInAlGaAsを用いn
−型クラッド層としてInPを用いればInP基板に格子整合
した結晶を形成できるので半導体レーザ素子の各層は良
好な結晶により形成できる。
InAlAs or InAlGaAs is used as the p-type cladding layer and n
If InP is used as the negative type cladding layer, crystals that are lattice-matched to the InP substrate can be formed, so that each layer of the semiconductor laser device can be formed of good crystals.

有機金属気相成長法で形成して半導体レーザ素子の各
層及び各ヘテロ接合界面が良好に形成されていれば活性
層への電子及び正孔の閉じ込め効率が向上する。
If each layer and each heterojunction interface of the semiconductor laser device are formed favorably by metal organic chemical vapor deposition, the efficiency of confining electrons and holes in the active layer is improved.

(実施例) 次に本発明の実施例について詳細に説明する。第1図
は本発明の半導体レーザ素子の構造断面図である。本発
明の半導体レーザ素子は先ずn−型(100)InP基板1上
にSeドープのn−型InPクラッド層(2μm厚)2、ア
ンドープInGaAsP活性層(0.15μm厚)3、Znドープの
p−型InAlAsクラッド層(1.5μm厚)4、アンドープ
のInGaAsキャップ層(0.5μm厚)を順次有機金属気相
成長法により形成した。その後SiO2CVD膜を形成した。
次に通常のフォトリソグラフィーによりレジストマスク
をストライプ方向が<011>方向となるように約2μm
幅で形成して、弗酸(6%)+弗化アンモニウム(30
%)溶液でエッチングすることによりSiO2のストライプ
を形成した。次にSiO2をマスクとして過酸化水素+硫酸
系の溶液でInGaAsキャップ層を除去し、塩酸でエッチン
グしてp−InAlAsクラッド層4を除去し、過酸化水素+
硫酸系の溶液でInGaAsP活性層3を除去し、塩酸+燐酸
+水の溶液でn−InPクラッド層2を1.5μm除去した。
その後有機金属気相成長法によりFeドープの半絶縁性In
P埋め込み層5を3μm形成した。(ここでSiO2上にはI
nPは成長しない。)次に弗酸(6%)+弗化アンモニウ
ム(30%)溶液でSiO2マスクを取り除いた。その後有機
金属気相成長法によりZnドープのp−型InGaAsコンタク
ト層(0.5μm厚)6を形成した。この後Au−Ge合金に
よりn−側オーミック電極7を形成した。Au−Zn合金に
よりp−側オーミック電極8を形成した。
(Example) Next, an example of the present invention will be described in detail. FIG. 1 is a structural sectional view of a semiconductor laser device of the present invention. First, a semiconductor laser device of the present invention comprises an n-type (100) InP substrate 1, a Se-doped n-type InP cladding layer (2 μm thick) 2, an undoped InGaAsP active layer (0.15 μm thickness) 3, and a Zn-doped p-type substrate. A type InAlAs cladding layer (1.5 μm thick) 4 and an undoped InGaAs cap layer (0.5 μm thickness) were sequentially formed by metal organic chemical vapor deposition. Thereafter, an SiO 2 CVD film was formed.
Next, a resist mask is formed by normal photolithography so that the stripe direction is about 2 μm so that the stripe direction is the <011> direction.
Formed in width, hydrofluoric acid (6%) + ammonium fluoride (30%
%) To form a stripe of SiO 2 by etching with a solution. Next, the InGaAs cap layer is removed with a solution of hydrogen peroxide + sulfuric acid using SiO 2 as a mask, and the p-InAlAs cladding layer 4 is removed by etching with hydrochloric acid.
The InGaAsP active layer 3 was removed with a sulfuric acid-based solution, and the n-InP cladding layer 2 was removed with a solution of hydrochloric acid + phosphoric acid + water 1.5 μm.
After that, Fe-doped semi-insulating In was grown by metalorganic chemical vapor deposition.
The P buried layer 5 was formed at 3 μm. (I here on the SiO 2
nP does not grow. Next, the SiO 2 mask was removed with a solution of hydrofluoric acid (6%) + ammonium fluoride (30%). Thereafter, a Zn-doped p-type InGaAs contact layer (0.5 μm thick) 6 was formed by metal organic chemical vapor deposition. Thereafter, an n-side ohmic electrode 7 was formed with an Au-Ge alloy. A p-side ohmic electrode 8 was formed from an Au-Zn alloy.

このようにして形成した半導体レーザ素子は1.55μm
で発振し、p−InAlAs層のみをp−InPで置き換えた半
導体レーザ素子と比較して、特性温度がおよそ2倍にな
った。また光出力の最大値はおよそ1.8倍になった。
The semiconductor laser device thus formed is 1.55 μm
And the characteristic temperature was about twice as high as that of a semiconductor laser device in which only the p-InAlAs layer was replaced with p-InP. Also, the maximum value of the light output was increased about 1.8 times.

本発明は上記実施例に限定されるものではなく、例え
ば半導体基板はp−型でもよい。その際は基板側のクラ
ッド層をp−InAlAs層にし、コンタクト層側のクラッド
層をn−InP層にし、コンタクト層の導電型をn−型に
すればよい。またInAlAs/InGaAsP/InP系以外の材料系に
ついても本発明の適用が可能である。
The present invention is not limited to the above embodiments, and for example, the semiconductor substrate may be p-type. In that case, the cladding layer on the substrate side may be a p-InAlAs layer, the cladding layer on the contact layer side may be an n-InP layer, and the conductivity type of the contact layer may be n-type. The present invention is also applicable to material systems other than the InAlAs / InGaAsP / InP system.

〔発明の効果〕〔The invention's effect〕

以上のように本発明の半導体レーザ素子によれば活性
層に注入された電子と正孔のオーバーフローを防ぐこと
が出来、注入電流を有効に変換できる。それ故特性温
度、光出力の最大値といった半導体レーザの基本特性を
高めることができ、高出力化に適した半導体レーザ素子
を提供できる。
As described above, according to the semiconductor laser device of the present invention, it is possible to prevent the electrons and holes injected into the active layer from overflowing, and to effectively convert the injected current. Therefore, the basic characteristics of the semiconductor laser such as the characteristic temperature and the maximum value of the optical output can be improved, and a semiconductor laser device suitable for high output can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる半導体レーザ素子の構成断面図
である。 1……InP基板、2……n−型InPクラッド層 3……InGaAsP活性層、4……p−型InAlAsクラッド層 5……Feドープ半絶縁性InP埋め込層 6……p−型InGaAsコンタクト層 7……n−側オーミック電極 8……p−側オーミック電極
FIG. 1 is a sectional view showing the configuration of a semiconductor laser device according to the present invention. DESCRIPTION OF SYMBOLS 1 ... InP substrate, 2 ... n-type InP cladding layer 3 ... InGaAsP active layer, 4 ... p-type InAlAs cladding layer 5 ... Fe-doped semi-insulating InP buried layer 6 ... p-type InGaAs Contact layer 7 n-side ohmic electrode 8 p-side ohmic electrode

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発光及びレーザ発振に寄与する活性層が、
これよりも禁制帯幅が広く、一方がp−型他の一方がn
−型の導電性を有する上下2つのクラッド層で挟まれた
二重ヘテロ接合構造の半導体レーザ素子において、上記
2つのクラッド層が異なる化合物半導体により形成され
ていることを特徴とする半導体レーザ素子。
1. An active layer that contributes to light emission and laser oscillation,
The bandgap is wider than this, one is p-type and the other is n-type.
What is claimed is: 1. A semiconductor laser device having a double heterojunction structure sandwiched between two upper and lower cladding layers having negative conductivity, wherein said two cladding layers are formed of different compound semiconductors.
【請求項2】2つのクラッド層のうちp−型の導電性を
有するクラッド層と活性領域との伝導帯不連続が2つの
クラッド層のうちn−型の導電性を有するクラッド層と
上記活性領域との伝導帯不連続よりも大きいことを特徴
とする請求項1記載の半導体レーザ素子。
2. A cladding layer having p-type conductivity and a conduction band discontinuity between an active region and a cladding layer having n-type conductivity among two cladding layers. 2. The semiconductor laser device according to claim 1, wherein said semiconductor laser device is larger than a conduction band discontinuity with said region.
【請求項3】2つのクラッド層のうちn−型の導電性を
有するクラッド層と活性領域との価電子帯不連続が2つ
のクラッド層のうちp−型の導電性を有するクラッド層
と上記活性領域との価電子帯不連続よりも大きいことを
特徴とする請求項1記載の半導体レーザ素子。
3. A cladding layer having p-type conductivity, wherein the valence band discontinuity between the cladding layer having n-type conductivity and the active region is two of the two cladding layers. 2. The semiconductor laser device according to claim 1, wherein the distance is larger than a valence band discontinuity with the active region.
JP63041875A 1988-02-26 1988-02-26 Semiconductor laser device Expired - Lifetime JP2763102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041875A JP2763102B2 (en) 1988-02-26 1988-02-26 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041875A JP2763102B2 (en) 1988-02-26 1988-02-26 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH01217986A JPH01217986A (en) 1989-08-31
JP2763102B2 true JP2763102B2 (en) 1998-06-11

Family

ID=12620442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041875A Expired - Lifetime JP2763102B2 (en) 1988-02-26 1988-02-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2763102B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751752A (en) * 1994-09-14 1998-05-12 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2009059916A (en) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd Optical semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260181A (en) * 1984-06-06 1985-12-23 Fujitsu Ltd Semiconductor luminescent device

Also Published As

Publication number Publication date
JPH01217986A (en) 1989-08-31

Similar Documents

Publication Publication Date Title
US7701993B2 (en) Semiconductor optical device and a method of fabricating the same
JP3484394B2 (en) Optical semiconductor device and method of manufacturing the same
EP0273726A2 (en) A semiconductor laser device
US6821801B1 (en) Manufacturing method of semiconductor laser diode
US6287884B1 (en) Buried hetero-structure InP-based opto-electronic device with native oxidized current blocking layer
US6574258B2 (en) Semiconductor laser having an active layer provided between two different conduction types of semiconductor layers, and optical modules and communication systems formed therewith
US5335241A (en) Buried stripe type semiconductor laser device
JP2763102B2 (en) Semiconductor laser device
US20050123018A1 (en) Ridge type distributed feedback semiconductor laser
Kasahara et al. Monolithically integrated high-speed light source using 1.3-µm wavelength DFB-DC-PBH laser
KR920005132B1 (en) Rib-wave guide type light emitted semiconductor device
JPH05102600A (en) Semiconductor laser
JP2812273B2 (en) Semiconductor laser
JPH0697592A (en) Semiconductor laser and manufacture thereof
JP4983791B2 (en) Optical semiconductor element
US5170404A (en) Semiconductor laser device suitable for optical communications systems drive
US6350629B1 (en) Optical semiconductor device having active layer and carrier recombination layer different from each other
JPH1027941A (en) Normal radiation semiconductor laser device and method of fabricating the same
US20040136427A1 (en) Semiconductor optical device
JP3202985B2 (en) Semiconductor laser device
JP3241360B2 (en) Optical semiconductor device
JPH03174793A (en) Semiconductor laser
JP2716717B2 (en) Semiconductor laser device
JP2865325B2 (en) Semiconductor laser device
JPS6237557B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term