JP2762300B2 - Manufacturing method of carbon container - Google Patents
Manufacturing method of carbon containerInfo
- Publication number
- JP2762300B2 JP2762300B2 JP1125425A JP12542589A JP2762300B2 JP 2762300 B2 JP2762300 B2 JP 2762300B2 JP 1125425 A JP1125425 A JP 1125425A JP 12542589 A JP12542589 A JP 12542589A JP 2762300 B2 JP2762300 B2 JP 2762300B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- carbon
- temperature
- prepreg
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素容器の製造方法、とくに反応用ルツボ
や熱処理用容器のような耐熱・耐食性が要求される用途
に有用な高強度の炭素容器を製造するための方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a carbon container, and particularly to a high-strength carbon useful for applications requiring heat resistance and corrosion resistance, such as a reaction crucible and a heat treatment container. A method for manufacturing a container.
〔従来の技術〕 炭素物質(黒鉛を含む)が本来的に優れた耐熱性およ
び耐食性を有するため、金属やセラミックスの熱処理容
器、金属溶解用のルツボ、各種溶融塩を収容するための
容器等に汎用されている。[Prior art] Since carbon materials (including graphite) inherently have excellent heat resistance and corrosion resistance, they are used in heat treatment containers for metals and ceramics, crucibles for dissolving metals, containers for holding various molten salts, etc. It is widely used.
これらの容器は、一般に炭素材の成形ブロックを切削
加工するか、熱硬化性樹脂を容器形状に成形硬化したの
ち炭素化する方法によって製造されている。These containers are generally manufactured by cutting a molded block of a carbon material, or forming and curing a thermosetting resin into a container shape and then carbonizing the same.
ところが、成形ブロックを加工する炭素容器において
は、強度上ある程度以上の厚みを必要とするため高重量
となるうえ、切削加工に伴う材料のロスが多い欠点があ
る。However, a carbon container for processing a molded block has a drawback that it requires a certain thickness or more in terms of strength, is heavy, and has a large loss of material due to cutting.
一方、熱硬化性樹脂を成形・炭素化して炭素容器を得
る方法による場合は、ガラス状炭素からなるガス不透過
性のものが得られる反面、脆弱でトレイのような箱型形
状体を作成することが難しい問題点がある。On the other hand, in the case of a method in which a thermosetting resin is molded and carbonized to obtain a carbon container, a gas-impermeable one made of glassy carbon is obtained, but a box-shaped body such as a tray is made fragile. There are difficult issues.
このような問題点を解決するために、熱硬化性樹脂を
含浸したセルロース質のシートを容器状に積層成形し、
これを炭素化する炭素容器の製造法(特公昭53-43343号
公報)が提案されている。In order to solve such problems, a cellulosic sheet impregnated with a thermosetting resin is laminated and formed into a container shape,
A method for producing a carbon container for carbonizing the carbon has been proposed (Japanese Patent Publication No. 53-43343).
前記公報記載の方法によれば大型で軽量の炭素容器を
製造することが期待できるが、セルロース質の積層シー
トは焼成時に大きな炭化収縮を起こすため容器の厚さや
寸法をコントロールすることが難しく、またセルロース
繊維は炭化により強度低下を生じる難点がある。According to the method described in the publication, it is expected to produce a large and lightweight carbon container, but it is difficult to control the thickness and dimensions of the container because the cellulosic laminated sheet causes large carbonization shrinkage during firing, and Cellulose fibers have a disadvantage in that strength is reduced by carbonization.
本発明の目的は、上記の問題点を解消し、強度の高い
薄肉軽量な炭素容器の製造方法を提供するところにあ
る。An object of the present invention is to solve the above problems and to provide a method for manufacturing a thin, lightweight carbon container having high strength.
上記の目的を達成するため本発明による炭素容器の製
造方法は、炭素繊維に熱硬化性樹脂を含浸または塗布し
て形成したプリプレグを成形型内に引張りながら積層し
て貼りつけ、1〜30Kg/cm2に加圧した状態で50〜100℃
の温度に加熱硬化し容器状に成形し、成形型から離型後
さらに150〜300℃の温度で硬化処理したのち非酸化性雰
囲気中で焼成することを構成上の特徴とする。In order to achieve the above object, a method for producing a carbon container according to the present invention comprises laminating and applying a prepreg formed by impregnating or applying a thermosetting resin to carbon fibers in a molding die, and bonding the prepreg with 1 to 30 kg / g. 50 to 100 ° C. in a pressurized state in cm 2
The composition is characterized in that the composition is heated and cured at a temperature of, formed into a container, released from the mold, cured at a temperature of 150 to 300 ° C., and then fired in a non-oxidizing atmosphere.
炭素繊維としては、ポリアクリルニトリル系、ピッチ
系、レーヨン系などによる平織り、朱子織りのようなク
ロスが用いられるが、性状的に繊維が密に存在する薄手
のものが望ましく、製造する容器の使用温度に応じて高
強度タイプもしくは高弾性率のものを選択使用する。As the carbon fiber, a cloth such as a plain weave or a satin weave made of polyacrylonitrile, pitch, rayon or the like is used, but a thin fiber in which the fibers are densely present is desirable. Select and use a high-strength type or a high-modulus type according to the temperature.
熱硬化性樹脂としては、残炭率45%以上のフェノール
樹脂あるいはフラン樹脂を用いることが好適で、残炭率
が前記値未満の炭化収率が低い樹脂では十分な強度を付
与することが困難となる。As the thermosetting resin, it is preferable to use a phenol resin or a furan resin having a residual carbon ratio of 45% or more, and it is difficult to impart sufficient strength to a resin having a residual carbon ratio of less than the above value and a low carbonization yield. Becomes
これらの樹脂は、例えばアセトン、エタノール等の揮
発性溶媒で希釈して粘度を20℃で50cp以下、望ましくは
10内20cpに調整した溶液状態で炭素繊維クロスに含浸ま
たは塗布する。このような低粘度の樹脂溶液を使用する
理由は、微細な空隙にも樹脂を円滑に充填させて気密性
の高い複合体を得るためである。These resins are diluted with a volatile solvent such as acetone or ethanol to have a viscosity of 50 cp or less at 20 ° C., preferably
Impregnate or apply to carbon fiber cloth in a solution state adjusted to 20 cp in 10. The reason for using such a low-viscosity resin solution is to obtain a highly airtight composite by smoothly filling the resin into the fine voids.
ついで、風乾して溶媒成分を除去したのち、70〜90℃
の温度に加熱して樹脂を硬化初期段階に半硬化(プリプ
レグ化)させる。このプリプレグシートを容器を成形形
体に合わせて切断し、金属、プラスチック、木材等の適
宜な材料で作られた成形型を用いて積層成形する。成形
時、プリプレグを成形型内に皺が寄らないように引張り
ながら数層(通常は2〜3層)を積層して貼りつけ、押
え板により1〜30kg/cm2に加圧した状態で50〜100℃の
温度で加熱硬化する条件を設定する。このように半硬化
の状態でプリプレグ中の炭素繊維に張力を与えながら加
圧・硬化を進行させることによって炭素繊維に乱れが生
じることがなくなって繊維相互の界面接着性が改善さ
れ、同時に硬化時における気泡の発生も抑えられて複合
欠陥のない組織を得ることができる。Then, after air drying to remove the solvent components, 70 ~ 90 ℃
To a semi-cured state (prepreg formation) in the initial stage of curing. The prepreg sheet is cut in accordance with the shape of the container in the form of a container, and is laminated and formed using a forming die made of an appropriate material such as metal, plastic, or wood. At the time of molding, several layers (usually 2 to 3 layers) are laminated and adhered while pulling the prepreg in the mold so as not to wrinkle, and the prepreg is pressed to 1 to 30 kg / cm 2 by a pressing plate. The conditions for heating and curing at a temperature of ~ 100 ° C are set. By applying pressure and curing while applying tension to the carbon fibers in the prepreg in a semi-cured state, the carbon fibers are not disturbed and the interfacial adhesion between the fibers is improved. In this case, the generation of bubbles is also suppressed, and a structure free of compound defects can be obtained.
加熱硬化した成形物は成形型から離型し、成形体の側
壁部が変形しないようにジグで固定し、150〜300℃まで
5〜20℃/hrの昇温速度で加熱して更に硬化処理をおこ
なう。The heat-cured molded product is released from the molding die, fixed with a jig so that the side wall of the molded product is not deformed, and heated at 150 to 300 ° C at a heating rate of 5 to 20 ° C / hr to further cure. Perform
完全に硬化した容器成形体は、常法により非酸化雰囲
気中で焼成し炭素化する。焼成の温度は使用時の温度を
考慮して1000〜2000℃の範囲とし、この温度域までの昇
温速度は100℃/hr以下に設定することが好ましい 〔作用〕 上記のプロセスによれば、成形段階で成形体中に占め
る炭素繊維の体積含有率が高くなるため成形体の熱的な
膨張・収縮などは炭素繊維成分に支配される。このた
め、焼成時の変形は効果的に抑制され寸法変化が生じる
ことがなくなる。また、容器の表面層は実質的にガラス
状のハードカーボンにより構成されているから、黒鉛容
器のように収容物を汚染する現像も起らない。The completely cured container molded body is fired and carbonized in a non-oxidizing atmosphere by an ordinary method. The firing temperature is set in the range of 1000 to 2000 ° C. in consideration of the temperature at the time of use, and it is preferable to set the heating rate up to this temperature range to 100 ° C./hr or less. Since the volume content of the carbon fiber in the molded article increases in the molding step, the thermal expansion and contraction of the molded article is controlled by the carbon fiber component. For this reason, deformation during firing is effectively suppressed, and no dimensional change occurs. Further, since the surface layer of the container is substantially made of glassy hard carbon, there is no occurrence of development that contaminates the contained material unlike the graphite container.
以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.
実施例1 ポリアクリルニトリル系の炭素繊維クロス〔東邦レー
ヨン(株)製、W6101〕フェノール樹脂〔大日本インキ
工業(株)製、P5900〕をアセトンで希釈して粘度を20C
P(20℃)に調節した溶液を塗布し、80℃で1時間半硬
化処理してプリプレグを形成した。Example 1 A polyacrylonitrile-based carbon fiber cloth [W6101 manufactured by Toho Rayon Co., Ltd.] and a phenol resin [P5900 manufactured by Dainippon Ink Industries, Ltd.] were diluted with acetone to a viscosity of 20C.
A solution adjusted to P (20 ° C.) was applied and cured at 80 ° C. for one and a half hours to form a prepreg.
このプリプレグを容器成形形状に切断して200mm角の
木型に2槽引張りながら貼りつけ、押え板により15kg/c
m2で加圧しながら80℃に5時間加熱して樹脂成分を硬化
させた。Cut this prepreg into the shape of a container, paste it on a 200mm square wooden mold while pulling two tanks, and use a holding plate to apply 15kg / c.
The resin component was cured by heating at 80 ° C. for 5 hours while applying a pressure of m 2 .
ついで、木型から成形体を離型し、側壁部を内ジグで
固定した状態で8℃/hrの昇温温度により250℃まで温度
を上げて更に後硬化処理をおこなったのち、窒素ガス雰
囲気に保持された炉内に移し昇温温度100℃/hrで2000℃
なで加熱し、焼成炭化した。Then, the molded body was released from the wooden mold, and the temperature was raised to 250 ° C. at a heating temperature of 8 ° C./hr while the side wall was fixed with an inner jig. Transferred to a furnace held at 2000 ℃ at a heating temperature of 100 ℃ / hr
Heating was performed and calcined.
このようにして得られた炭素容器の特性を測定し、結
果を第1表に示した。なお、比較のために黒鉛ブロック
〔東海カーボン(株)製、G347〕から切削加工して作成
した炭素容器の特性を併せて第1表に示した。The properties of the carbon container thus obtained were measured, and the results are shown in Table 1. For comparison, Table 1 also shows the characteristics of carbon containers prepared by cutting from a graphite block (G347, manufactured by Tokai Carbon Co., Ltd.).
第1表の対比から、本発明による炭素容器は総ての特
性が従来品より優っていることが認められる。 From the comparison in Table 1, it is recognized that the carbon container according to the present invention is superior in all properties to the conventional product.
実施例2 実施例1と同工程によって製造した縦横200mm、高さ5
0mmの炭素容器と、同等の曲げ強さの厚さをもつ黒鉛容
器の容器性能を対比させて第2表に示した。Example 2 Length and width 200 mm, height 5 manufactured by the same process as in Example 1
Table 2 compares the performance of a 0 mm carbon container with that of a graphite container having a thickness of equivalent bending strength.
〔発明の効果〕 本発明によれば炭素容器が実質的に炭素繊維強化炭素
複合材で構成されているから、高強度で薄肉化が可能で
あり、高靱性で機械的、熱的衝撃に強い軽量タイプの性
能を有する容器を提供することができる。したがって、
高熱を伴う処理容器として有用性が頗る高い。 [Effects of the Invention] According to the present invention, since the carbon container is substantially made of carbon fiber reinforced carbon composite material, it can be thinned with high strength, and has high toughness and is resistant to mechanical and thermal shock. A container having a lightweight type performance can be provided. Therefore,
Very useful as a processing vessel with high heat.
Claims (1)
して形成したプリプレグを成形型内に引張りながら積層
して貼りつけ、1〜30Kg/cm2に加圧した状態で50〜100
℃の温度に加熱硬化して容器状に成形し、成形型から離
型後さらに150〜300℃の範囲で硬化処理したのち非酸化
性雰囲気中で焼成することを特徴とする炭素容器の製造
方法。A prepreg formed by impregnating or coating a carbon fiber with a thermosetting resin is laminated and adhered to a molding die while being pulled, and is pressed under a pressure of 1 to 30 kg / cm 2 to 50 to 100 kg / cm 2.
A method for producing a carbon container, comprising heating and curing at a temperature of ℃ to form a container, releasing from a mold, further curing in the range of 150 to 300 ℃, and then firing in a non-oxidizing atmosphere. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1125425A JP2762300B2 (en) | 1989-05-18 | 1989-05-18 | Manufacturing method of carbon container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1125425A JP2762300B2 (en) | 1989-05-18 | 1989-05-18 | Manufacturing method of carbon container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02307816A JPH02307816A (en) | 1990-12-21 |
JP2762300B2 true JP2762300B2 (en) | 1998-06-04 |
Family
ID=14909784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1125425A Expired - Fee Related JP2762300B2 (en) | 1989-05-18 | 1989-05-18 | Manufacturing method of carbon container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2762300B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59102880A (en) * | 1982-12-02 | 1984-06-14 | 東レ株式会社 | High temperature heat resistant material |
-
1989
- 1989-05-18 JP JP1125425A patent/JP2762300B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02307816A (en) | 1990-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4659624A (en) | Hybrid and unidirectional carbon-carbon fiber reinforced laminate composites | |
US3462289A (en) | Process for producing reinforced carbon and graphite bodies | |
US4321298A (en) | Carbon fabrics sequentially resin coated with (1) a metal-containing composition and (2) a boron-containing composition are laminated and carbonized | |
US3936535A (en) | Method of producing fiber-reinforced composite members | |
EP0714869B1 (en) | Carbon fiber-reinforced carbon composite material and process for the preparation thereof | |
US5336522A (en) | Method of manufacturing parts made of ceramic matric composite material | |
US4101354A (en) | Coating for fibrous carbon material in boron containing composites | |
JPS631265B2 (en) | ||
JP2762300B2 (en) | Manufacturing method of carbon container | |
WO2021206168A1 (en) | C/c composite and method for producing same, and heat-treatment jig and method for producing same | |
JPS6360155A (en) | Manufacture of carbon/carbon composite material from nonwoven cloth as raw material | |
GB2112827A (en) | Carbon fiber materials | |
JP2002255664A (en) | C/c composite material and production method therefor | |
JPH06501232A (en) | Carbon-carbon composite material | |
JP2001181062A (en) | Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same | |
JP3109928B2 (en) | Method for producing carbon fiber reinforced carbon composite material | |
US4164601A (en) | Coating for fibrous carbon material in boron containing composites | |
JPH08245273A (en) | Production of carbon fiber reinforced carbon composite material | |
JP4420371B2 (en) | Manufacturing method of screw member made of C / C material | |
JP3957229B2 (en) | Method for producing carbon fiber reinforced carbon composite material | |
KR940010099B1 (en) | Process for producing carbon/carbon composite using coaltar-phenol resin | |
JP3345437B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JPH03115173A (en) | Production of high strength carbonaceous composite material | |
JP2003012374A (en) | Method of manufacturing carbon fiber reinforcing carbon material | |
JPH06157138A (en) | Production of carbon fiber reinforced carbon composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |