JP2761001B2 - Molten salt electrolytic bath - Google Patents

Molten salt electrolytic bath

Info

Publication number
JP2761001B2
JP2761001B2 JP63233156A JP23315688A JP2761001B2 JP 2761001 B2 JP2761001 B2 JP 2761001B2 JP 63233156 A JP63233156 A JP 63233156A JP 23315688 A JP23315688 A JP 23315688A JP 2761001 B2 JP2761001 B2 JP 2761001B2
Authority
JP
Japan
Prior art keywords
molten salt
electrolytic bath
corrosion
bath
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63233156A
Other languages
Japanese (ja)
Other versions
JPH0280588A (en
Inventor
英雄 玉村
忠敬 下岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63233156A priority Critical patent/JP2761001B2/en
Publication of JPH0280588A publication Critical patent/JPH0280588A/en
Application granted granted Critical
Publication of JP2761001B2 publication Critical patent/JP2761001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶融塩電解法により希土類金属又はその合金
を製造する装置に係り、特に最近、高性能磁石として注
目されているNd−Fe−B系磁石用原料のNd金属及びNd−
Fe合金の製造に好適な溶融塩電解装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an apparatus for producing a rare earth metal or an alloy thereof by a molten salt electrolysis method, and in particular, Nd—Fe—B which has recently attracted attention as a high-performance magnet. Nd metal and Nd-
The present invention relates to a molten salt electrolysis apparatus suitable for producing an Fe alloy.

(従来の技術及び解決しようとする課題) 希土類金属又はその合金を製造する方法の1つとし
て、溶融塩電解法が知られており、これには塩化物電解
浴を用いる方法と弗化物電解浴を用いる方法がある。
(Prior Art and Problems to be Solved) As one of methods for producing a rare earth metal or an alloy thereof, a molten salt electrolysis method is known, which includes a method using a chloride electrolytic bath and a method using a fluoride electrolytic bath. Is used.

一方、溶融塩電解装置に関しては、従来より、LiFを
主体としてこれに希土類化合物を加えて溶融塩とし、電
気分解によりNd金属又はNd−Fe合金を製造する場合の耐
浴材料として、不活性雰囲気で黒鉛を用いる方法(E・
モーリス他著「U.S.Bur.Min.Rep.Invest」No.6957、196
7年)と、鉄を用いる方法(特開昭61−87888号公報等)
が知られている。
On the other hand, regarding a molten salt electrolysis apparatus, conventionally, LiF is mainly used, a rare earth compound is added thereto to form a molten salt, and an inert atmosphere is used as a bath-resistant material when producing Nd metal or Nd-Fe alloy by electrolysis. Method using graphite in E
Maurice et al., USBur.Min.Rep.Invest, Nos. 6957, 196
7 years) and a method using iron (JP-A-61-87888, etc.)
It has been known.

しかし、このような溶解塩電解法においては電解浴槽
の腐食の問題があり、溶融塩による腐食箇所は、大別す
ると、接触する相手が液体状態(浴中部分)と液体と気
体の界面(浴面部分)と気体状態(浴上部)の3つの部
分での腐食がある。
However, in such a dissolved salt electrolysis method, there is a problem of corrosion of an electrolytic bath, and a portion to be corroded by a molten salt is roughly classified into a liquid state (part in a bath) and an interface between a liquid and a gas (bath). There is corrosion in three parts, the surface part) and the gaseous state (upper part of the bath).

また、本発明者は、安価にNd−Fe合を製造する方法と
して酸化性雰囲気での電解法を先に提案した(特願昭62
−204879号)が、この条件では不活性雰囲気と比較して
一段と腐食条件が厳しくなるという問題がある。
The inventor has previously proposed an electrolysis method in an oxidizing atmosphere as a method of producing an Nd-Fe alloy at low cost (Japanese Patent Application No.
However, under these conditions, there is a problem that the corrosion conditions are more severe than in an inert atmosphere.

そこで、このような腐食に耐え得る材料であり、か
つ、製品品位を向上させる材料として、本発明者は、前
述したような耐浴材料(黒鉛、鉄)に代えて、安価で加
工性及び施工が簡単な材料であり、しかも、生産した製
品の品位を悪化させずに、且つ耐久性のある材料として
オーステナイト系ステンレス鋼を使用することを提案し
た(特願昭61−233697号)。
Therefore, as a material capable of withstanding such corrosion and improving the quality of the product, the present inventor replaces the above-mentioned bath-resistant materials (graphite, iron) with a low cost, workability and workability. Has proposed that austenitic stainless steel be used as a durable material without deteriorating the quality of the produced product (Japanese Patent Application No. 61-233697).

しかし乍ら、前述した溶融塩による腐食のうち接触す
る相手が気体状態(浴上部)にあるときの腐食性は特に
強く、浴槽全体の寿命を考えた場合、気体状態による腐
食により浴槽上部が優先的に腐食を起こし、ひいては浴
槽全体の寿命を縮めることになり、工業的規模の生産設
備の場合、寿命短縮による設備費の増大、浴槽を交換す
るための生産の停止による生産量の低下を招き、製品を
安価に且つ安定的に生産する上での障害となることか
ら、更に大きな耐食性を示す材料の開発が強く望まれて
いた。
However, of the corrosion caused by the molten salt, the corrosiveness is particularly strong when the contacting partner is in a gaseous state (upper part of the bath), and considering the life of the entire bathtub, the upper part of the bathtub is preferentially corroded by the gaseous state. Corrosion will eventually occur and the life of the bathtub as a whole will be shortened.In the case of an industrial-scale production facility, the equipment cost will increase due to the shortening of the service life, and the production volume will decrease due to the stoppage of the production for replacing the bathtub. Therefore, there is a strong demand for the development of a material exhibiting even greater corrosion resistance because it is an obstacle to inexpensive and stable production of products.

本発明は、かゝる要請に応えるべくなされたものであ
って、溶融塩電解法で希土類金属又はその合金を製造す
るための電解浴槽において、気体と接する浴槽部分が溶
融塩による腐食に十分耐え得る構成の電解浴槽を提供す
ることを目的とするものである。
The present invention has been made in order to meet such a demand, and in an electrolytic bath for producing a rare earth metal or an alloy thereof by a molten salt electrolysis method, a bathtub portion in contact with a gas is sufficiently resistant to corrosion by molten salt. It is an object of the present invention to provide an electrolytic bath having a configuration that can be obtained.

(課題を解決するための手段) 前述の如く、溶融塩電解法で希土類金属又はその合金
を製造するための電解浴槽においては、溶融塩による腐
食には、大別すると、接触する相手が液体状態(浴中部
分)と液体と気体の界面(浴面部分)と気体状態(浴上
部)の3つの部分での腐食があるが、気体状態(浴上
部)にある時の腐食が最も厳しく、特に浴面より僅かに
上方にある部分が最も厳しい腐食を受ける。
(Means for Solving the Problems) As described above, in an electrolytic bath for producing a rare earth metal or an alloy thereof by a molten salt electrolysis method, corrosion caused by a molten salt is roughly classified into a state in which a contacting partner is in a liquid state. There are three types of corrosion: (in the bath), the interface between liquid and gas (the bath surface), and gas (the upper part of the bath). Corrosion is most severe when in the gaseous state (the upper part of the bath). The part slightly above the bath surface suffers the most severe corrosion.

この現象については、浴中部分或いは液体と気体の界
面(浴面部分)においては溶融塩が液体の状態にあり、
溶融塩そのものの温度は高いが、溶融塩自身の活性がそ
れほど高くなく、逆に浴面より離れた部分では、溶融塩
は気体状態でそれ自身の活性は高いが、腐食を起こすの
に充分な温度がない。一方、浴面より僅かに上方にある
部分においては、溶融塩は気体状態にあってそれ自身の
活性も高く、また温度も充分にあることから、浴槽の他
の部分に比較して厳しい腐食を受けるものと考えられ
る。
Regarding this phenomenon, the molten salt is in a liquid state at the part in the bath or at the interface between the liquid and gas (bath surface part),
Although the temperature of the molten salt itself is high, the activity of the molten salt itself is not so high.On the other hand, in the part away from the bath surface, the molten salt is in a gaseous state and its activity is high, but it is not enough to cause corrosion. No temperature. On the other hand, in the part slightly above the bath surface, the molten salt is in a gaseous state, has a high activity of itself, and has a sufficient temperature. It is considered to receive.

このため、浴槽を保温するために浴槽上部に蓋を被せ
た場合や、浴面を極端に下げた場合には腐食を起こし易
い温度分布をもつ範囲が変化し、腐食される部分も変化
することになる。
For this reason, if the lid is placed on top of the bathtub to keep the bathtub warm, or if the bath surface is lowered extremely, the range of temperature distribution where corrosion is likely to occur will change, and the corroded part will also change. become.

本発明者は、このような腐食に対して強い耐食性を示
す材料を見出すべく、種々の材料について鋭意研究を重
ねた。その結果、Niを主体とした合金が気体状態にある
溶融塩に対し、他の材料に比較して大きな耐食性を示す
ことを見い出し、ここに本発明をなしたものである。
The present inventor has conducted intensive studies on various materials in order to find a material exhibiting strong corrosion resistance against such corrosion. As a result, the present inventors have found that an alloy mainly composed of Ni exhibits greater corrosion resistance to a molten salt in a gaseous state than other materials, and the present invention has been made here.

すなわち、本発明は、溶融塩電解法で希土類金属又は
その合金を製造するための電解浴槽において、少なくと
も該浴槽の電解浴面上方部分を、Ni:50〜80wt%及びMo:
10〜30wt%を含む合金で構成することを特徴とする溶融
塩電解浴槽を要旨とするものである。
That is, the present invention relates to an electrolytic bath for producing a rare earth metal or an alloy thereof by a molten salt electrolysis method, wherein at least the upper part of the electrolytic bath surface of the bath is Ni: 50 to 80 wt% and Mo:
A molten salt electrolytic bath characterized by being composed of an alloy containing 10 to 30% by weight.

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

上記のように、電解浴槽の電解浴面上方部分は他の部
分に比較して激しい腐食を受ける部分であり、この部分
をNiを主体とした合金(以下、「Ni基合金」という)、
具体的には、Niを50〜80wt%、Moを10〜30wt%含む合金
で構成するのである。このような合金は通称“ハステロ
イ”として知られているNi基合金が代表的なものであ
り、例えば、20.0Mo−20.0Fe−残Niからなる組成、28.0
Mo−5.0Fe−残Niからなる組成、16.5Cr−17.0Mo−5.0Fe
−4.5W−残Niからなる組成、5.0Cr−24.5Mo−5.5Fe−残
Niからなる組成などを挙げることができる。勿論、Ni及
びMoを上記範囲で含む限り、Fe、Cr、W、Si、Cu等々の
他の元素が含まれていても支障はない。
As described above, the upper part of the electrolytic bath surface of the electrolytic bath is a part that is subject to severe corrosion compared to other parts, and this part is mainly composed of Ni (hereinafter, referred to as “Ni-based alloy”),
Specifically, it is composed of an alloy containing 50 to 80 wt% of Ni and 10 to 30 wt% of Mo. Such alloys are typically Ni-based alloys commonly known as "Hastelloy", for example, a composition of 20.0Mo-20.0Fe-remaining Ni, 28.0
Mo-5.0Fe-composition consisting of residual Ni, 16.5Cr-17.0Mo-5.0Fe
-4.5W-Ni-composition, 5.0Cr-24.5Mo-5.5Fe-
Examples of the composition include Ni. Of course, other elements such as Fe, Cr, W, Si, and Cu may be included as long as Ni and Mo are included in the above range.

しかし、Ni含有量が50wt%よりも低い場合には腐食を
受け易くなり、またNi含有量が80wt%より高い場合には
低い場合ほどではないがやはり腐食を受け易くなるので
好ましくない。望ましくは、Niを60〜78wt%、Moを15〜
25wt%含む合金が適している。また、Mo含有量が10wt%
よりも低い場合には耐食性が不充分となり、また30wt%
よりも高い場合には耐食性に対する効果は飽和し、不経
済となり、好ましくない。
However, when the Ni content is lower than 50 wt%, corrosion is liable to occur, and when the Ni content is higher than 80 wt%, corrosion is susceptible to corrosion, though not so much as low. Desirably, Ni is 60 to 78 wt% and Mo is 15 to
Alloys containing 25wt% are suitable. In addition, Mo content is 10wt%
If it is lower than this, the corrosion resistance will be insufficient and 30wt%
If it is higher than this, the effect on corrosion resistance saturates and becomes uneconomical, which is not preferable.

なお、上記Ni基合金で構成すべき電解浴面上方部分と
しては、浴の界面近傍の腐食がはげしい部分のみで良
く、通常の設計界面から100mm下まであれば良い。浴槽
の上端から設計界面位置下100mmまでの範囲にNi基合金
を内張りし、異材溶接により浴槽本体に固定しておく。
勿論、電解浴面が上下に変動することを予想して構成し
ておくことは云うまでもない。また、電解浴面上方部分
以外の浴面側部分の構成材料としては特に制限されず、
同一の材料で構成したり或いは他のNi基合金で構成して
もよく、オーステナイト系ステンレス鋼などで構成する
こともできる。
The upper portion of the electrolytic bath surface to be composed of the above-mentioned Ni-based alloy may be only the portion where the corrosion is severe near the bath interface, and may be 100 mm below the normal design interface. A Ni-based alloy is lined from the upper end of the bathtub to 100 mm below the design interface position, and fixed to the bathtub body by dissimilar material welding.
Of course, it is needless to say that the electrolytic bath surface is expected to fluctuate up and down. Further, the constituent material of the bath surface side portion other than the upper portion of the electrolytic bath surface is not particularly limited,
It may be made of the same material or another Ni-based alloy, or may be made of austenitic stainless steel.

上記Ni基合金で電解浴面上方部分を構成した電解浴槽
は、どのような溶融塩電解法でも適用することができ
る。例えば、LiF−NdF3系、或いはこれに安価なNd2O3
混合させたLiF−NdF3−Nd2O3系があり、更にはこれにBa
F2、CaF2等を適宜加えた溶融塩でも良い。NdF3に代えて
NdCl3を使用することもできる。
The electrolytic bath in which the upper portion of the electrolytic bath surface is made of the Ni-based alloy can be applied to any molten salt electrolysis method. For example, LiF-NdF 3 system, or this may LiF-NdF 3 -Nd 2 O 3 system obtained by mixing an inexpensive Nd 2 O 3, more in this Ba
A molten salt to which F 2 , CaF 2 or the like is appropriately added may be used. Instead of NdF 3
NdCl 3 can also be used.

また、雰囲気に関しては、酸化性雰囲気、特に大気中
で電解しても充分な耐食性が得られる。勿論、非酸化性
雰囲気でも可能である。
Regarding the atmosphere, sufficient corrosion resistance can be obtained even when electrolysis is performed in an oxidizing atmosphere, particularly in the air. Of course, a non-oxidizing atmosphere is also possible.

本発明者は、溶融塩を保持する浴槽材料として、各種
材料について大気中での腐食試験を実施した。以下にそ
の結果の一例を示す。
The present inventor conducted a corrosion test in the air on various materials as bathtub materials for holding a molten salt. An example of the result is shown below.

第1図は溶融塩での各種材料の腐食試験に用いた装置
を示し、第2図はその結果を示したものである。
FIG. 1 shows an apparatus used for a corrosion test of various materials with a molten salt, and FIG. 2 shows the results.

まず、第1図に示すように、溶融塩2に各種材料10を
入れて溶融塩中と溶融塩と大気5の界面と溶融塩上部に
またがる部分の腐食量の合計を経日毎に調査し、その結
果を第2図に示した。
First, as shown in FIG. 1, various materials 10 are put in the molten salt 2, and the total corrosion amount of the molten salt, the interface between the molten salt and the atmosphere 5, and the portion extending over the molten salt upper part is investigated every day. The results are shown in FIG.

実験条件は、大気中で、第2図に示した種々の材料で
作成した浴槽8を用いて通電せずに浴温880℃で保持し
たものである。
The experimental conditions were as follows. The bath temperature was maintained at 880 ° C. in the atmosphere using the bath 8 made of various materials shown in FIG.

溶融塩2としては、LiF80mol%−NdF320mol%のLiF−
NdF3系と、LiF80mol%−NdF320mol%にNd2O3を2wt%添
加したLiF−NdF3−Nd2O3系の2種類を用いたが、同じ傾
向の結果を示した。
The molten salt 2, the LiF80mol% -NdF 3 20mol% LiF-
Two types of the NdF 3 system and the LiF-NdF 3 -Nd 2 O 3 system in which 2 wt% of Nd 2 O 3 was added to 20 mol% of LiF 80 mol% -NdF 3 were used, and the results showed the same tendency.

第2図に示した結果より、普通鋼と、本発明者の先の
提案(特願昭61−233697号)に係るオーステナイト系ス
テンレス鋼であるSUS−310Sと、本発明に係るNi基合金
(27.5wt%Mo−67.5wt%Ni)とについて、それぞれの腐
食量を比較すると、普通鋼よりもオーステナイト系ステ
ンレス鋼の方が耐食性が改善されているが、Ni基合金を
使用した場合の方が更に優れた耐食性を有することが判
る。
From the results shown in FIG. 2, it can be seen that ordinary steel, SUS-310S, which is an austenitic stainless steel according to the earlier proposal (Japanese Patent Application No. 61-233697), and a Ni-based alloy ( 27.5wt% Mo-67.5wt% Ni), comparing the amount of corrosion with each other, the corrosion resistance of austenitic stainless steel is better than that of ordinary steel, but the case of using a Ni-based alloy is better. It turns out that it has more excellent corrosion resistance.

また陰極材料に関しては、希土類金属を製造する場合
には黒鉛製電極を使用し、希土類合金を製造する場合に
は鉄等の材料からなる陰極を使用すればよい。
As for the cathode material, a graphite electrode may be used when manufacturing a rare earth metal, and a cathode made of a material such as iron may be used when manufacturing a rare earth alloy.

次ぎに本発明の実施例を示す。 Next, examples of the present invention will be described.

(実施例) 第3図に示す電解槽を使用して溶融塩電解法によりNd
−Fe合金を製造する連続運転実験を行った。
(Example) Nd by molten salt electrolysis using the electrolytic cell shown in FIG.
A continuous operation experiment for producing an Fe alloy was performed.

電解槽は、第3図に示すように、溶融塩2を入れる深
さ80cmの電解浴槽8の上部に、Ni基合金(通称“ハステ
ロイB")(Mo:28wt%、Fe:5wt%、Ni:残部)9にて槽上
端から30cmの深さまで厚さ5mmで内張りし、この内張り
部分より底部までと底部をオーステナイト系ステンレス
鋼SUS−310Sで内張りした。またメタル受け器6はタン
タル板11で内張りした。
As shown in FIG. 3, an electrolytic cell is provided with an Ni-based alloy (commonly called "Hastelloy B") (Mo: 28 wt%, Fe: 5 wt%, Ni: : Remaining part) At 9, a lining of 5 mm in thickness was formed from the upper end of the tank to a depth of 30 cm, and the lining to the bottom and the bottom were lined with austenitic stainless steel SUS-310S. The metal receiver 6 was lined with a tantalum plate 11.

電解に際しては、鉄製陰極4と黒鉛製陽極3を配置し
て通電すると、電気分解されたNdは陰極4と反応しNd−
Fe合金液滴7となってメタル受け器6の中に収容され、
Nd−Fe合金1として析出する。なお、電気分解は大気中
5で行った。
In the electrolysis, when the iron cathode 4 and the graphite anode 3 are arranged and energized, the electrolyzed Nd reacts with the cathode 4 and Nd-
Fe alloy droplets 7 are stored in the metal receiver 6,
Precipitates as Nd-Fe alloy 1. The electrolysis was performed in air 5.

また、電解浴としては2種類のもの、すなわち、LiF8
0mol%−NdF320mol%のLiF−NdF3系と、Lif80mol%−Nd
F320mol%に2wt%Nd2O3を添加したLiF−NdF3−Nd2O3
のものを使用し、いずれも880℃の電解温度で操業した
が、電解浴組成による大きな変化は認められなかった。
There are also two types of electrolytic baths, namely LiF8
And 0mol% -NdF 3 20mol% of LiF-NdF 3 system, Lif80mol% -Nd
Using the F 3 things 20 mol% of 2wt% Nd 2 O 3 LiF- NdF 3 -Nd 2 O 3 system to which added was operated at an electrolytic temperature of either 880 ° C., observed significant change by electrolysis bath composition I couldn't.

以上の実験結果を第1表に示す。なお、同表におい
て、連続使用日数とは、電解槽の槽上端から30cmの深さ
に使用した材料(厚さ5mm)が運転日数が経過するに従
い薄くなるので、電解浴が流出する危険が生ずる程度ま
で薄くなった日数をもって表わした。
Table 1 shows the above experimental results. In the same table, the number of days of continuous use means that the material (thickness 5 mm) used at a depth of 30 cm from the top of the electrolytic cell becomes thinner as the number of days of operation elapses, so there is a risk that the electrolytic bath will flow out. It is expressed by the number of days when it became thin to the extent.

第1表より、本発明例に示すように電解槽の少なくと
も電解浴面上方部分をNi基合金で内張りしたことによ
り、連続使用可能日数が大幅に増加していることがわか
る。
From Table 1, it can be seen that, as shown in the examples of the present invention, by lining at least the upper part of the electrolytic bath surface of the electrolytic bath with a Ni-based alloy, the number of days of continuous use is greatly increased.

(発明の効果) 以上詳述しようたに、本発明によれば、溶融塩電解法
により希土類金属又はその合金を製造するに際して、耐
電解浴材料として電解浴槽の電解浴面上方部分にNiを主
体とした合金を内張りする構成にしたので、電解槽の使
用日数を大幅に増加させることが可能となり、維持費を
低減できると共に腐食による溶融塩の流出に伴うトラブ
ルを著減できる。したがって、高品位の希土類金属及び
その合金を安価に且つ安定して得ることができるので、
特に希土類磁石用原料の製造に適している。
(Effects of the Invention) As described above in detail, according to the present invention, when a rare earth metal or an alloy thereof is produced by a molten salt electrolysis method, Ni is mainly contained in an upper portion of the electrolytic bath surface of the electrolytic bath as an electrolytic bath material. Since the alloy is made to be lined, the number of days of use of the electrolytic cell can be greatly increased, maintenance costs can be reduced, and troubles caused by the outflow of molten salt due to corrosion can be significantly reduced. Therefore, high-grade rare earth metals and their alloys can be obtained inexpensively and stably.
In particular, it is suitable for producing raw materials for rare earth magnets.

【図面の簡単な説明】[Brief description of the drawings]

第1図は腐食実験に用いた装置を示す断面図、 第2図は腐食実験において用いた各種材料の腐食量と経
日を示す図、 第3図は実施例において溶融塩電解に使用した装置を示
す断面図である。 1…生成合金、2…溶融塩、3…黒鉛製陽極、4…鉄製
陰極、5…大気、6…メタル受け器、7…生成合金液
滴、8…電解浴槽、9…Ni合金、10…試験片、11…タン
タル板。
FIG. 1 is a cross-sectional view showing an apparatus used in a corrosion test, FIG. 2 is a view showing the amount of corrosion of various materials used in the corrosion test and the time, and FIG. 3 is an apparatus used for molten salt electrolysis in Examples. FIG. DESCRIPTION OF SYMBOLS 1 ... Production alloy, 2 ... Molten salt, 3 ... Graphite anode, 4 ... Iron cathode, 5 ... Atmosphere, 6 ... Metal receiver, 7 ... Drop of produced alloy, 8 ... Electrolytic bath, 9 ... Ni alloy, 10 ... Specimen, 11 ... Tantalum plate.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融塩電解法で希土類金属又はその合金を
製造するための電解浴槽において、少なくとも該浴槽の
電解浴面上方部分を、Ni:50〜80wt%およびMo:10〜30wt
%を含む合金で構成することを特徴とする溶融塩電解浴
槽。
1. An electrolytic bath for producing a rare earth metal or an alloy thereof by a molten salt electrolysis method, wherein at least an upper portion of the electrolytic bath surface of the bath is Ni: 50 to 80 wt% and Mo: 10 to 30 wt%.
%, Characterized in that the molten salt electrolytic bath is made of an alloy containing 0.1% or less.
【請求項2】前記電解浴槽における電解浴面上方部分以
外の部分をオーステナイト系ステンレス鋼で構成する請
求項1に記載の溶融塩電解浴槽。
2. The molten salt electrolytic bath according to claim 1, wherein a portion of the electrolytic bath other than an upper portion of the electrolytic bath surface is made of austenitic stainless steel.
JP63233156A 1988-09-17 1988-09-17 Molten salt electrolytic bath Expired - Fee Related JP2761001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233156A JP2761001B2 (en) 1988-09-17 1988-09-17 Molten salt electrolytic bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233156A JP2761001B2 (en) 1988-09-17 1988-09-17 Molten salt electrolytic bath

Publications (2)

Publication Number Publication Date
JPH0280588A JPH0280588A (en) 1990-03-20
JP2761001B2 true JP2761001B2 (en) 1998-06-04

Family

ID=16950597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233156A Expired - Fee Related JP2761001B2 (en) 1988-09-17 1988-09-17 Molten salt electrolytic bath

Country Status (1)

Country Link
JP (1) JP2761001B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188711A (en) * 1991-04-17 1993-02-23 Eveready Battery Company, Inc. Electrolytic process for making alloys of rare earth and other metals
CN103243355B (en) * 2013-05-02 2015-07-29 西安建筑科技大学 A kind of totally-enclosed liquid cathode rare earth molten salt electrolytic
CN113122884B (en) * 2016-12-10 2023-02-17 包头稀土研究院 Preparation method of rare earth intermediate alloy for hydrogen storage alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270384A (en) * 1985-05-24 1986-11-29 Sumitomo Light Metal Ind Ltd Method and apparatus for manufacturing lanthanum-nickel alloy
JPS63169397A (en) * 1986-12-29 1988-07-13 Asahi Chem Ind Co Ltd Production of rare earth metal

Also Published As

Publication number Publication date
JPH0280588A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
US3957600A (en) Method of and anodes for use in electrowinning metals
US6692631B2 (en) Carbon containing Cu-Ni-Fe anodes for electrolysis of alumina
JP2761001B2 (en) Molten salt electrolytic bath
US4966662A (en) Process for preparing praseodynium metal or praseodymium-containing alloy
US10711359B2 (en) Iron-based anode for obtaining aluminum by the electrolysis of melts
US2033172A (en) Process for the manufacture of alloys containing boron
US3640700A (en) Process for producing an ingot of chromium metal or chromium-base alloy
JP2596976B2 (en) Method for producing neodymium or neodymium alloy
JPH0317887B2 (en)
JPH0357200B2 (en)
EP0509846A1 (en) Electrolytic process for making alloys of rare earth and other metals
JPH0621303B2 (en) Method for producing low oxygen Ti alloy
JPH0715777U (en) Molten salt electrolyzer
US3503857A (en) Method for producing magnesium ferrosilicon
US3126327A (en) Electrolytic method for extracting the chromium
JP2639950B2 (en) Insoluble anode material
JPS6312947B2 (en)
JPH05295583A (en) Manufacture of samarium metal or samarium alloy
JP4323891B2 (en) Anode for electrolytic refining of iron and electrolytic refining system of iron
JP2964649B2 (en) Method for producing terbium alloy
JPS63266086A (en) Production of rare earth metal or alloy thereof
JPH0696787B2 (en) Method for producing high-purity metal or alloy
JP2908873B2 (en) Method for producing Nd metal
JPH0541715B2 (en)
JP2611399B2 (en) Anode case

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees