JP2760612B2 - Roof-mounted solar cell and its installation method - Google Patents

Roof-mounted solar cell and its installation method

Info

Publication number
JP2760612B2
JP2760612B2 JP1306944A JP30694489A JP2760612B2 JP 2760612 B2 JP2760612 B2 JP 2760612B2 JP 1306944 A JP1306944 A JP 1306944A JP 30694489 A JP30694489 A JP 30694489A JP 2760612 B2 JP2760612 B2 JP 2760612B2
Authority
JP
Japan
Prior art keywords
roof
solar cell
frame
clamp member
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1306944A
Other languages
Japanese (ja)
Other versions
JPH03200376A (en
Inventor
正幸 岩本
浩二 南
俊彦 山置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1306944A priority Critical patent/JP2760612B2/en
Publication of JPH03200376A publication Critical patent/JPH03200376A/en
Application granted granted Critical
Publication of JP2760612B2 publication Critical patent/JP2760612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/50Arrangement of stationary mountings or supports for solar heat collector modules comprising elongate non-rigid elements, e.g. straps, wires or ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、屋根設置型太陽電池に係り、一般住宅の既
設屋根に設置可能な太陽電池とその設置方法に関する。
The present invention relates to a roof-mounted solar cell, and more particularly to a solar cell that can be installed on an existing roof of a general house and a method of installing the same.

(ロ)従来の技術 光エネルギーを直接電気エネルギーに変換する太陽電
池は、無尽蔵な太陽光を主たるエネルギー源としている
ために、エネルギー資源の枯渇が問題となる中で脚光を
浴びている。この太陽電池を家庭用電源として利用する
場合、通常の家庭の消費電力電力であれば、太陽電池の
変換効率が10%とすると30m2の受光面積があれば良い。
この太陽電池の受光面積は、通常の住宅の屋根などで十
分可能な面積である。
(B) Conventional technology Solar cells, which directly convert light energy into electric energy, use inexhaustible sunlight as a main energy source, and thus have been spotlighted in the face of the depletion of energy resources. When this solar cell is used as a household power source, if the power consumption is ordinary household power, it is sufficient if the conversion efficiency of the solar cell is 10% and the light receiving area is 30 m 2 .
The light-receiving area of this solar cell is an area that is sufficiently possible on the roof of an ordinary house or the like.

そこで、特開昭60−31259号公報等に開示されている
ように、瓦状の太陽電池装置が提案されている。この瓦
状の太陽電池装置は現存する屋根瓦に代わって敷設する
だけでよく、架台等の敷設設備を必要としない利点を有
している。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 60-31259 and the like, a tiled solar cell device has been proposed. This tile-shaped solar cell device only has to be laid instead of the existing roof tile, and has an advantage that laying equipment such as a gantry is not required.

しかしながら、上述の瓦状の太陽電池装置は既設の屋
根に敷設しようとすると、既に敷設されている屋根瓦を
取り外した後、その後に、瓦状の太陽電池装置の敷設工
事を行わなくてはならない。そのため、敷設工事に大変
手間がかかり、既設の屋根には好ましいものとは言えな
かった。
However, if the above-mentioned tiled solar cell device is to be laid on an existing roof, the roof tile already laid must be removed, and then the tiled solar cell device must be laid. . Therefore, laying work was very time-consuming, and was not suitable for the existing roof.

更に、太陽電池の基板として瓦状に曲がったガラス基
板を用いるため、その製造が困難であり、コストが高く
なると共に、曲面形状のため、照射角度によって光起電
力が変動することは否めない。
Further, since a glass substrate bent in a tile shape is used as a substrate of a solar cell, it is difficult to manufacture the glass substrate, and the cost is increased. Further, the photovoltaic power varies depending on the irradiation angle due to the curved shape.

一方、電力用に開発された平面型太陽電池パネルを屋
根上に設置する試みがなされている。この平面型太陽電
池パネルの従来の設置方法は、屋根材に直接ボルト等に
より太陽電池パネルを固定するものであった。
On the other hand, attempts have been made to install a flat solar panel developed for electric power on a roof. The conventional installation method of this flat type solar cell panel is to fix the solar cell panel directly to the roof material with bolts or the like.

(ハ)発明が解決しようとする課題 瓦状の太陽電池装置は屋根瓦に代わって敷設するだけ
で設置が可能であるが、前述したように、既設の屋根に
設置するには、手間も費用も嵩み好ましくない。
(C) Problems to be Solved by the Invention Tile-shaped solar cell devices can be installed simply by laying in place of roof tiles. However, as described above, installing them on an existing roof requires time and effort. Is also undesirably bulky.

また、平面型太陽電池パネルは、瓦状の太陽電池に比
して安価に製造できる利点を有する。前述したように、
従来のものでは、ボルト等で直接屋根材に固定して設置
している。
Further, the flat solar cell panel has an advantage that it can be manufactured at a lower cost than a tiled solar cell. As previously mentioned,
In the conventional one, it is directly fixed to the roof material with bolts or the like and installed.

ところで、屋根に設置した太陽電池パネルの表面温度
は真夏晴天時には、約70℃に上昇する。また、この時パ
ネルの下に位置する屋根の温度は約40℃程度となる。こ
の温度上昇により、太陽電池パネルは膨張する。特に、
パネルを固定している枠体はアルミが一般に用いられて
おり、このアルミの線膨張率と太陽電池自体の線膨張離
間および、屋根材の線膨張率とは相違するため、この部
材間で熱応力が発生し、アルミの枠体が歪んだり、屋根
部材が割れたりする可能性が高い。
By the way, the surface temperature of the solar cell panel installed on the roof rises to about 70 ° C. in midsummer sunny weather. At this time, the temperature of the roof located below the panel is about 40 ° C. Due to this temperature rise, the solar cell panel expands. Especially,
Aluminum is generally used for the frame for fixing the panel, and the linear expansion coefficient of this aluminum is different from the linear expansion separation of the solar cell itself and the linear expansion coefficient of the roofing material. There is a high possibility that stress is generated, the aluminum frame is distorted, and the roof member is cracked.

しかも、住宅用の電源として用いるためには耐用年数
としては15年以上望まれており、上述した設置方法で
は、耐久性にも問題がある。
In addition, a service life of 15 years or more is desired for use as a power source for a house, and the above-described installation method has a problem in durability.

本発明は上述した問題点を解消すべくなされたものに
して、既設の屋根に容易に設置できると共に、屋根を破
損せず且つ耐久性に優れた屋根設置型太陽電池を提供す
ることをその課題とする。
It is an object of the present invention to provide a roof-mounted solar cell which can be easily installed on an existing roof, does not damage the roof, and has excellent durability. And

(ニ)課題を解決するための手段 本発明の屋根設置型太陽電池は、少なくとも一つの太
陽電池モジュールを枠体内に組込んだ太陽電池パネルが
スペーサを介して屋根材上に移動自在に載置され、前記
太陽電池パネルの枠体と屋根の軒下部材とをワイヤを介
して取着することを特徴とする。
(D) Means for Solving the Problems A roof-mounted solar cell according to the present invention has a solar cell panel in which at least one solar cell module is incorporated in a frame, and is movably mounted on a roof material via a spacer. The frame body of the solar cell panel and the eaves under roof member are attached via a wire.

また、屋根の軒下部材に形状記憶合金製の略L字状の
クランプ部材を固定し、このクランプ部材と太陽電池パ
ネルの枠体とをワイヤを介して取着しても良い。
Alternatively, a substantially L-shaped clamp member made of a shape memory alloy may be fixed to a member under the eaves of the roof, and the clamp member and the frame of the solar cell panel may be attached via a wire.

更に、本発明の設置方法は、屋根材上に、太陽電池モ
ジュールが組込まれる枠体をスペーサを介して移動自在
に載置し、この枠体を屋根の軒下部材に取着した後、前
記枠体内に太陽電池モジュールを組込むことを特徴とす
る。
Furthermore, in the installation method of the present invention, the frame in which the solar cell module is incorporated is movably mounted on a roof material via a spacer, and the frame is attached to a roof eaves member. It is characterized by incorporating a solar cell module into the body.

(ホ)作用 太陽電池パネルがスペーサを介して屋根材上に移動自
在に載置され、パネルの枠体と軒下部材との間をワイヤ
で取着している。従って、真夏時等、太陽電池表面の温
度が上昇し、枠体が膨張しても、太陽電池パネルが屋根
材上を移動し、枠体の膨張を吸収し、熱応力による歪等
は発生せず、耐久性が向上すると共に、屋根の破損が防
止できる。
(E) Function The solar cell panel is movably mounted on the roofing material via the spacer, and the wire is attached between the panel frame and the eaves lower member. Therefore, even when the temperature of the surface of the solar cell rises and the frame expands, for example, in the middle of summer, the solar cell panel moves on the roofing material, absorbs the expansion of the frame, and generates distortion due to thermal stress. Not only improves durability but also prevents damage to the roof.

また、略L字状の形状記憶合金製クランプ部材の二辺
の角度が温度により変位し、温度変化による枠体並びに
ワイヤの膨張及び収縮を吸収する。従って、温度変化に
関係なく、枠体は常に適正な一定の張力が付与された状
態で取着できる。
In addition, the angles of two sides of the substantially L-shaped shape memory alloy clamp member are displaced by the temperature, and absorb the expansion and contraction of the frame and the wire due to the temperature change. Therefore, regardless of the temperature change, the frame can always be attached with an appropriate constant tension applied.

また、地震等の震動も枠体、ワイヤ、屋根間で互いに
逃がすので、耐久性も向上する。
In addition, vibrations such as earthquakes escape to each other between the frame, the wire, and the roof, so that durability is improved.

更に、本発明の設置方法によれば、枠体をまず屋根上
に組み、その後、太陽電池モジュールを組み込むので、
それぞれの部材の重量はあまり大きくならず、設置が容
易に行なえる。
Furthermore, according to the installation method of the present invention, the frame is first assembled on the roof, and then the solar cell module is incorporated.
The weight of each member is not so large, and installation is easy.

(へ)実施例 以下、本発明の実施例を図面に従い説明する。Embodiments of the present invention will be described below with reference to the drawings.

まず、本発明に用いられる太陽電池モジュールの一例
を第11図に従い説明する。
First, an example of a solar cell module used in the present invention will be described with reference to FIG.

(1)は強化ガラス等の透明性且つ絶縁性の材料から
なる基板、(2)(2)…は上記基板(1)の表面に一
定間隔で直接被着された光電変換領域である。上記光電
変換領域(2)(2)…は、例えば基板(1)側から、
酸化スズ、酸化インジウムスズ等の透明導電膜(3)
(3)…と、その内部に半導体接合を備えたアモルファ
スシリコンからなる半導体膜(4)(4)…と、半導体
膜(4)(4)…とオーミック接触するアルミニウム等
の裏面電極膜(5)(5)…と、が順次積層されたミク
ロンオーダの膜状を呈する。
(1) is a substrate made of a transparent and insulating material such as tempered glass, and (2), (2)... Are photoelectric conversion regions directly attached to the surface of the substrate (1) at regular intervals. The photoelectric conversion regions (2), (2)... Are, for example, from the substrate (1) side.
Transparent conductive films such as tin oxide and indium tin oxide (3)
(3) ..., a semiconductor film (4) (4) ... made of amorphous silicon having a semiconductor junction therein, and a back electrode film (5) made of aluminum or the like which makes ohmic contact with the semiconductor film (4) (4). ) (5)... Are sequentially laminated to form a micron-order film.

各半導体膜(4)(4)…は、その内部に例えば膜面
に平行なPIN接合を形成すべく受光面側から厚み50〜250
Å程度のP型層、4000〜7000Å程度のI型(真性)層及
び300〜600Å程度のN型層が順次積層被着され、従って
基板(1)及び透明導電膜(3)(3)…を透過して光
入射があると、主にI型層において自由状態の電子及び
正孔が発生し、係る電子及び正孔は上記各層が形成する
PIN接合電界に引かれて各透明導電膜(3)(3)…及
び裏面電極膜(5)(5)…に集電され、隣接する光電
変換領域(2)(2)…の透明導電膜(3)(3)…と
裏面電極膜(5)(5)…との重畳により電気的に相加
された電力が取り出される。
Each of the semiconductor films (4), (4),... Has a thickness of 50 to 250 from the light receiving surface side to form, for example, a PIN junction parallel to the film surface.
A P-type layer of about Å, an I-type (intrinsic) layer of about 4000 to 7000Å and an N-type layer of about 300 to 600Å are sequentially laminated and deposited, so that the substrate (1) and the transparent conductive films (3) (3) ... When light is transmitted through the substrate, electrons and holes in a free state are mainly generated in the I-type layer, and the electrons and holes are formed by the respective layers.
The transparent conductive films of the adjacent photoelectric conversion regions (2) (2) are collected by the PIN junction electric field and are collected by the transparent conductive films (3) (3) and the back electrode films (5) (5). (3) (3).. And the back electrode films (5) (5).

(6)はアルミニウムなどからなる外枠、(7)は光
電変換領域(2)(2)…を被覆する樹脂層である。
(6) is an outer frame made of aluminum or the like, and (7) is a resin layer covering the photoelectric conversion regions (2), (2).

次に、本発明の第1の実施例につき、図面を参照して
説明する。
Next, a first embodiment of the present invention will be described with reference to the drawings.

第1図は本発明装置を既設の屋根に設置した状態を示
す斜視図、第2図は同要部斜視図、第3図は夫々異なる
取着態様を示す側面図である。第4図は軒下部材への取
着態様を示す斜視図、第5図は本発明に用いられる枠体
の一例を示す斜視図である。第6図は枠体へ太陽電池モ
ジュールを組込む態様を示し、第6図(イ)は分解斜視
図、第6図(ロ)及び第6図(ハ)は側面図である。第
7図は各モジュール間の電気的接続例を示す斜視図であ
る。
FIG. 1 is a perspective view showing a state in which the apparatus of the present invention is installed on an existing roof, FIG. 2 is a perspective view of the same main part, and FIG. 3 is a side view showing different mounting modes. FIG. 4 is a perspective view showing a state of attachment to the eaves lower member, and FIG. 5 is a perspective view showing an example of a frame used in the present invention. FIG. 6 shows an embodiment in which the solar cell module is incorporated into the frame. FIG. 6 (a) is an exploded perspective view, and FIGS. 6 (b) and 6 (c) are side views. FIG. 7 is a perspective view showing an example of electrical connection between the modules.

本実施例に用いられる枠体につき第5図に従い説明す
る。
The frame used in this embodiment will be described with reference to FIG.

枠体(11)はアルミニウムなどから形成され、内部に
モジュール固定用のワイヤ(12)が必要数取着けられ
る。この枠体(11)の底部には複数の固定脚(13)(1
3)…が設けられており、この固定脚(13)の端部、即
ち、屋根材と当接する位置に、フッソゴム、木材等から
なるスペーサ部材(14)が設けられる。
The frame (11) is made of aluminum or the like, and has a required number of wires (12) for fixing the module inside. At the bottom of this frame (11) are a plurality of fixed legs (13) (1
3) are provided, and a spacer member (14) made of fluoro rubber, wood, or the like is provided at an end of the fixed leg (13), that is, at a position where it comes into contact with the roof material.

この枠体内(11)の構造としては、第5図(イ)に示
すように、アルミニウムパイプ、ステンレスパイプを折
曲して形成したもの、また第5図(ロ)に示すように、
アルミニウムの板体により形成したものなどがある。
As a structure of the frame body (11), as shown in FIG. 5 (a), an aluminum pipe and a stainless steel pipe are formed by bending, and as shown in FIG. 5 (b),
Examples include an aluminum plate body.

尚、この両者の実施例において、屋根材とモジュール
間の間隔は固定脚(13)とスペーサ部材(14)との双方
を合計した長さになる。
In both embodiments, the distance between the roof material and the module is the total length of both the fixed leg (13) and the spacer member (14).

前述した枠体(11)に第11図に示した太陽電池モジュ
ール(10)が少なくとも一つ組込まれる。枠体(11)に
組込まれた太陽電池モジュール(10)を屋根材に載置す
ると、太陽電池モジュール(10)と屋根材との間は、固
定脚(13)及びスペーサ(14)との長さの分だけ空隙が
生じる。この空隙により太陽電池モジュール(10)の放
熱が行なえる。
At least one solar cell module (10) shown in FIG. 11 is incorporated in the above-mentioned frame (11). When the solar cell module (10) incorporated in the frame (11) is placed on the roofing material, the distance between the solar cell module (10) and the roofing material is equal to the length of the fixed feet (13) and the spacer (14). A gap is generated by the amount of the gap. This gap allows heat radiation of the solar cell module (10).

本実施例においては、一つの枠体(11)に9つのモジ
ュール(10)が組込まれている。枠体(11)とモジュー
ル(10)との組込みは、例えば第6図に示すように、各
モジュール(10)の外枠(6)にZ型の設置金具(15)
を取付け、枠体(11)のワイヤ(12)に夫々設置金具
(15)を引掛けて取着する。
In the present embodiment, nine modules (10) are incorporated in one frame (11). The frame (11) and the module (10) are assembled by, for example, as shown in FIG. 6, by attaching a Z-shaped mounting bracket (15) to the outer frame (6) of each module (10).
And attach the mounting brackets (15) to the wires (12) of the frame (11), respectively.

各モジュール(10)(10)…間の電気的接続は、第7
図に示す如く、ワイヤ(12)に電気線を巻着するか、ワ
イヤ(12)自体を導電線にし、この電気線に圧着端子
(16)にて接続を行えば良い。このようにして、形成さ
れた太陽電池パネル(20)を既設の屋根の上にワイヤで
固定する。太陽電池パネル(20)の屋根上の設置につい
て、第1図ないし第4図に従い説明する。
The electrical connection between each module (10) (10)
As shown in the figure, an electric wire may be wound around the wire (12), or the wire (12) may be made a conductive wire and connected to the electric wire by a crimp terminal (16). The solar cell panel (20) thus formed is fixed on the existing roof with wires. The installation of the solar cell panel (20) on the roof will be described with reference to FIGS.

これらの図において、(21)は既設住宅の屋根(22)
は屋根瓦、(23)はむな瓦である。
In these figures, (21) is the roof of the existing house (22)
Is a roof tile and (23) is a waste tile.

南側に面している屋根(21)の屋根瓦(22)(22)…
上に太陽電池パネル(10)がスペーサ(13)を介して移
動自在に載置されている。この太陽電池パネル(20)の
枠体(11)と屋根(21)の母屋、鼻母屋、軒げた、合掌
などの軒下部材(24)とが複数本のワイヤ(25)…で連
結し、取着される。本実施例では、第4図に示すよう
に、軒下の母屋(24)にクランプ部材(26)をボルト
(27)等により固定し、このクランプ部材(26)に枠体
(11)に取着されたワイヤ(25)をターンバックル(2
8)を介して取着している。
Roof tiles (22) (22) of the roof (21) facing the south side ...
A solar cell panel (10) is movably mounted on the upper side via a spacer (13). The frame (11) of this solar cell panel (20) and the roof (21) purlins, nose purlins, eaves, eaves and other eaves members (24) are connected with multiple wires (25) ... Be worn. In this embodiment, as shown in FIG. 4, a clamp member (26) is fixed to a purlin (24) below the eaves with bolts (27) and the like, and the clamp member (26) is attached to a frame (11). Turn the buckled wire (25) (2
8) is attached via.

一方、屋根(21)の傾斜方向は第2図及び第3図に示
すように、とい(30)を越えて、軒下の垂木等に同様に
クランプ部材(26)をボルト等で固定し、このクランプ
部材(26)と枠体(11)に取着したワイヤ(25)とを連
結し、両者を取着する。
On the other hand, as shown in FIG. 2 and FIG. 3, the inclination direction of the roof (21) exceeds the torsion (30), and the clamp member (26) is similarly fixed to the rafters under the eaves with bolts and the like. The clamp member (26) and the wire (25) attached to the frame (11) are connected, and both are attached.

尚、(31)はクッション部材である。 Incidentally, (31) is a cushion member.

また、太陽電池パネル(20)の上方部の枠体(11)は
第3図(ロ)に示すように、むな瓦(23)上に固定金具
(32)を設け、こくの固定金具(32)にワイヤ(25)を
介して取着するようにしても良い。
As shown in FIG. 3 (b), the frame (11) above the solar cell panel (20) is provided with a fixing bracket (32) on a waste roof tile (23). 32) may be attached via a wire (25).

次に、第8図ないし第10図に従い本発明の第2の実施
例につき説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.

第8図は本発明装置に適用される形状記憶合金製のク
ランプ部材の形成方法の一例を示す側面図であり,第8
図(イ)は加熱時の逆変態開始温度でのクランプ部材の
成形状態、第8図(ロ)は冷却時の変態開始温度でのク
ランプ部材の曲げ加工を施した状態を夫々示す。
FIG. 8 is a side view showing an example of a method of forming a clamp member made of a shape memory alloy applied to the apparatus of the present invention.
FIG. 8A shows a state in which the clamp member is formed at the reverse transformation start temperature during heating, and FIG. 8B shows a state in which the clamp member is bent at the transformation start temperature during cooling.

任意の形状を予め記憶させておくと、低温相で変形を
加えても、加熱し高温相にすると変形前のもとの形状に
戻る形状記憶合金が知られている。
A shape memory alloy is known in which an arbitrary shape is stored in advance, and even if deformation is applied in a low-temperature phase, when heated to a high-temperature phase, the shape memory alloy returns to its original shape before deformation.

この形状記憶合金には、第1表に示すように、数多く
の種類が存在する。
As shown in Table 1, there are many types of shape memory alloys.

これらの中で最も実用材料として優れているのが、Ti
−Ni(nitinol)である。TiとNiの組成変化やCo、Feの
置換により、変態温度を低温側の任意の温度にもってい
くことができる。引張りも強さも23.92kg/mm2と十分強
い。
Of these, the most practical material is Ti
-Ni (nitinol). By changing the composition of Ti and Ni or replacing Co and Fe, the transformation temperature can be brought to any lower temperature. Pull even strength also 23.92kg / mm 2 and strong enough.

TiNiよりも安価で加工、製造の容易なCn−Zn−Al合金
も実用的な材料である。これもやはり組成をわずかに変
えるだけで、変態温度を−105〜380℃に調節することが
できる。第10図に組成比と変態温度の関係を示す。
A Cn-Zn-Al alloy, which is cheaper than TiNi and easy to process and manufacture, is also a practical material. Again, with a slight change in composition, the transformation temperature can be adjusted to -105 to 380C. FIG. 10 shows the relationship between the composition ratio and the transformation temperature.

さて、本実施例では、例えばTi−Ni、Cu−Zn−Al組成
の形状記憶合金を用いてクランプ部材(26)を形成す
る。形状記憶合金はAsが30℃、Msが5℃になるように組
成が調整されている。
In the present embodiment, the clamp member (26) is formed using a shape memory alloy having a composition of, for example, Ti-Ni, Cu-Zn-Al. The composition of the shape memory alloy is adjusted so that As is 30 ° C. and Ms is 5 ° C.

まず、本実施例におけるクランプ部材(26)は、板状
または棒状の形状記憶合金が用いられる。そして、この
形状記憶合金が30℃以上の温度で、第8図(イ)に示す
ように、略L字状に成形される。また、このとき、クラ
ンプ部材(26)の二辺(26a)(26b)間の角度は第8図
(イ)の如く、大きく設定している。
First, a plate-shaped or rod-shaped shape memory alloy is used for the clamp member (26) in this embodiment. Then, at a temperature of 30 ° C. or more, this shape memory alloy is formed into a substantially L-shape as shown in FIG. At this time, the angle between the two sides (26a) and (26b) of the clamp member (26) is set to be large as shown in FIG.

続いて、第8図(ロ)に示すように、5℃以下の温度
でクランプ部材(26)を曲げ、二辺(26a)(26b)間の
角度を小さくする。
Subsequently, as shown in FIG. 8 (b), the clamp member (26) is bent at a temperature of 5 ° C. or less to reduce the angle between the two sides (26a) (26b).

第8図(ロ)に示す如く変形された本実施例のクラン
プ部材(26)は、温度が上昇すると、第8図(イ)に示
す形状に復帰する。
When the temperature rises, the clamp member (26) of the present embodiment deformed as shown in FIG. 8 (b) returns to the shape shown in FIG. 8 (a).

次に、斯るクランプ部材(26)と枠体(11)との取着
態様を第9図に従い説明する。第9図(イ)は夏の時の
取着態様を示す斜視図、第9図(ロ)は冬の時の取着態
様を示す斜視図である。
Next, how the clamp member (26) is attached to the frame (11) will be described with reference to FIG. FIG. 9 (a) is a perspective view showing a mounting mode in summer, and FIG. 9 (b) is a perspective view showing a mounting mode in winter.

上述した本実施例のクランプ部材(26)を第9図に示
すように、軒下の母屋(24)にボルト(27)等により固
定する。そして、このクランプ部材(26)に枠体(11)
に取着されたワイヤ(25)をターンバックル(28)を介
して一定の張力を付与して取着する。
As shown in FIG. 9, the above-described clamp member (26) of the present embodiment is fixed to a purlin (24) below the eaves with a bolt (27) or the like. Then, a frame (11) is attached to the clamp member (26).
The wire (25) attached to is attached with a constant tension through a turnbuckle (28).

而して、夏の時には温度が上昇し、枠体(11)並びに
ワイヤ(25)等が熱膨張するが、クランプ部材(26)は
第9図(イ)に示すように、二辺(26a)(26b)間の角
度が大きくなる。従って、枠体(11)並びにワイヤ(2
5)の膨張はクランプ部材(26)の変位で吸収され、枠
体(11)等は適正な張力で取着された状態が維持され
る。
Thus, in summer, the temperature rises and the frame (11) and the wire (25) thermally expand. However, as shown in FIG. 9 (a), the clamp member (26) has two sides (26a). ) (26b) becomes large. Therefore, the frame (11) and the wire (2
The expansion of (5) is absorbed by the displacement of the clamp member (26), and the state in which the frame body (11) and the like are attached with appropriate tension is maintained.

一方、冬の時には温度が下がり、枠体(11)並びにワ
イヤ(25)等が収縮するが、クランプ部材(26)は第9
図(ロ)に示すように、二辺(26a)(26b)間の角度が
小さくなる。従って、枠体(11)並びにワイヤ(25)の
収縮はクランプ部材(26)の変位で吸収され、枠体(1
1)等は適正な張力で取着された状態が維持される。
On the other hand, in winter, the temperature decreases and the frame (11) and the wire (25) contract, but the clamp member (26)
As shown in FIG. 2B, the angle between the two sides (26a) (26b) becomes small. Accordingly, the contraction of the frame (11) and the wire (25) is absorbed by the displacement of the clamp member (26), and the frame (1)
1), etc. are maintained in a state where they are attached with appropriate tension.

さて、第12図は、太陽電池の日射量と温度の時刻によ
る変化を示した図である。この第12図から分かるよう
に、真夏の晴天時、太陽電池表面は70℃にも上昇する。
一方、屋根瓦(22)表面は40℃程度に上昇する。この温
度上昇により、各部材、即ち太陽電池モジュール(10)
のガラス基板(1)、枠体(11)のアルミニウム、屋根
瓦(22)として、例えばスレート瓦の夫々の有する線膨
張係数の違い及び温度の違いに応じて熱膨張の量が相違
する。例えば、10mの長手方向に対して、0℃の時に比
べて、ガラス7mm、アルミニウム16mm、スレート瓦は
(全体として考えた場合)4mm程度伸びる。
FIG. 12 is a diagram showing changes in the amount of solar radiation and temperature of the solar cell with time. As can be seen from FIG. 12, when the weather is fine in midsummer, the surface of the solar cell rises to 70 ° C.
On the other hand, the surface of the roof tile (22) rises to about 40 ° C. Due to this temperature rise, each member, that is, the solar cell module (10)
For example, as the glass substrate (1), the aluminum of the frame body (11), and the roof tile (22), the amount of thermal expansion differs according to the difference in linear expansion coefficient and the difference in temperature of each of the slate tiles. For example, the glass 7 mm, the aluminum 16 mm, and the slate roof tile (when considered as a whole) extend about 4 mm compared to the case of 0 ° C. in the longitudinal direction of 10 m.

ここで各線膨張率αは、 α(アルミニウム)=23×10-6(1/℃) α(ガラス) =10×10-6(1/℃) α(スレート) =10×10-6(1/℃) として計算した。Here, each linear expansion coefficient α is α (aluminum) = 23 × 10 −6 (1 / ° C.) α (glass) = 10 × 10 −6 (1 / ° C.) α (slate) = 10 × 10 −6 (1 / ° C).

前述したように、アルミの枠体(11)とスレート瓦の
屋根とは12mm程度の差が生じる。従って、枠体(11)と
屋根瓦(22)とを直接固定すると、屋根瓦(22)にずれ
が生じたり、両者間に熱応力が発生する。そのため、枠
体(11)に歪が発生したり、屋根瓦(22)が破損するお
それなどがあり、耐久性も良くない。しかし、本発明に
おいては、屋根瓦(22)と太陽電池パネル(20)は移動
自在に載置されているので、枠体(11)が延びても屋根
瓦(22)に対して応力がかかることはなく、屋根瓦(2
2)が破損するおそれはない。
As described above, there is a difference of about 12 mm between the aluminum frame (11) and the slate roof. Therefore, if the frame body (11) and the roof tile (22) are directly fixed, the roof tile (22) will be displaced or thermal stress will be generated between them. Therefore, there is a possibility that the frame body (11) may be distorted, the roof tile (22) may be damaged, and the durability is not good. However, in the present invention, since the roof tile (22) and the solar cell panel (20) are movably mounted, stress is applied to the roof tile (22) even when the frame (11) extends. Never the roof tiles (2
2) There is no risk of damage.

一方、枠体(11)と屋根(22)とはワイヤ(25)を介
して取着しているので、ワイヤ(25)の線膨張率もアル
ミニウムの枠体(11)と極めて近い値のため、このワイ
ヤ(25)も延びて枠体(11)の膨張は吸収される。しか
も、ワイヤ(25)の取着は、太陽電池パネル(20)が台
風、地震等の際に落下しないように取着するものであ
る。そのため、ワイヤ(25)による取着はボルトで直接
屋根に固定するのに比して、ある程度自由度を有する。
従って、枠体(11)の熱膨張による延びは十分に吸収可
能であり、枠体(11)に熱応力がかかることはなくな
り、歪など発生せず耐久性に優れる。また、太陽電池モ
ジュール(10)と枠体(11)の取着は前述したように、
枠体(11)に設けたワイヤに架設するように、この両者
間においても、ある程度自由度を持たせておけば、ガラ
スと枠体との延びの差は、両者の取着部分で吸収が可能
となり、熱応力等による劣化が防止できる。
On the other hand, since the frame (11) and the roof (22) are attached via the wire (25), the linear expansion coefficient of the wire (25) is very close to that of the aluminum frame (11). The wire (25) also extends to absorb the expansion of the frame (11). Moreover, the attachment of the wire (25) is performed so that the solar cell panel (20) does not drop in the event of a typhoon, earthquake, or the like. Therefore, attachment by the wire (25) has a certain degree of freedom as compared with fixing directly to the roof with bolts.
Therefore, the elongation due to the thermal expansion of the frame body (11) can be sufficiently absorbed, and no thermal stress is applied to the frame body (11). Also, the attachment of the solar cell module (10) and the frame (11) is as described above,
If a certain degree of freedom is provided between the two members, as in the case of the wire provided on the frame (11), the difference in the extension between the glass and the frame can be absorbed by the portion where they are attached. This makes it possible to prevent deterioration due to thermal stress and the like.

更に、前述したように、ある程度自由度を有して太陽
電池パネル(20)が屋根(21)上に設置されているた
め、地震等の震動も互いに逃がすので、耐久性が向上す
る。
Further, as described above, since the solar cell panel (20) is installed on the roof (21) with a certain degree of freedom, vibrations such as an earthquake are released from each other, so that durability is improved.

次に、太陽電池パネル(20)の重量について考えてみ
る。太陽電池モジュール(10)自体は14kg/m2であり、
枠体(11)は6kg/m2以内である。従って、家庭用電源と
して使用する場合、前述のように受光面積30m2必要であ
るので、全重量は420kg以上600kg以内になる。このよう
に、住宅用の屋根設置型太陽電池装置は極めて重量が大
きくなる。また、大きさも10×3mと大きなものになり、
これを完成した状態で屋根上に設置するとすると、クレ
ーン等大がかりな装置が必要となる。
Next, consider the weight of the solar cell panel (20). The solar cell module (10) itself is 14 kg / m 2 ,
The frame (11) is within 6 kg / m 2 . Therefore, when used as a household power source, the light receiving area is required to be 30 m 2 as described above, so that the total weight is not less than 420 kg and not more than 600 kg. As described above, the roof-mounted solar cell device for a house becomes extremely heavy. Also, the size will be as large as 10 × 3 m,
If this is installed on a roof in a completed state, a large-scale device such as a crane is required.

そこで、本発明の設置方法は、極めて簡単に屋根上に
屋根設置型太陽電池を設置する方法を提案するものであ
る。即ち、まず枠体(11)のみ、屋根上(21)の屋根瓦
(22)上にスペーサ(14)を介して移動自在に載置す
る。そして、この枠体(11)の設置についても、必要に
応じて分割した部材を屋根上に運び、屋根の上で組立て
るようにしてもよい。枠体(11)自体の重量は比較的軽
量であるので、簡単に屋根(21)の上に運び挙げること
ができ、人手以外特別な基材は必要としない。
Therefore, the installation method of the present invention proposes a method of installing a roof-mounted solar cell on a roof very easily. That is, first, only the frame body (11) is movably mounted on the roof tile (22) on the roof (21) via the spacer (14). And about the installation of this frame (11), you may carry out the member divided as needed on a roof, and may assemble it on a roof. Since the weight of the frame body (11) itself is relatively light, it can be easily carried on the roof (21) and requires no special base material other than manual labor.

次に、第2図に示すように、屋根(21)上に載置され
た枠体(11)を軒下部材(24)にワイヤ(25)を介して
連結し、両者を取着する。この軒下部材(24)との取着
は第4図または第9図に示すように、例えばクランプ部
材(26)を予め垂木、母屋等に固着し、このクランプ部
材(26)とワイヤ(25)とをターンバックル(28)を用
いて取着すれば良い。
Next, as shown in FIG. 2, the frame (11) placed on the roof (21) is connected to the eaves lower member (24) via a wire (25), and both are attached. As shown in FIG. 4 or FIG. 9, for example, a clamp member (26) is fixed to a rafter, a purlin or the like, and the clamp member (26) and the wire (25) are attached to the eaves under member (24). And the turnbuckle (28).

続いて、太陽電池モジュール(10)を一個づつ屋根
(21)上に運び、枠体(11)のワイヤ等に架設して順次
取り着け、互いの電気的接続を行って、設置が完了す
る。
Subsequently, the solar cell modules (10) are carried one by one on the roof (21), erected on wires or the like of the frame (11), and sequentially mounted, and electrically connected to each other to complete the installation.

このように、本発明の設置方法によれば、特別な機材
等を全く必要とせず、極めて簡単に屋根の上に太陽電池
装置を設置することができる。
As described above, according to the installation method of the present invention, the solar cell device can be extremely easily installed on the roof without any special equipment or the like.

尚、上述した本発明の実施例においては、複数の太陽
電池モジュールを組込んだ装置について説明したが、一
個の太陽電池モジュールで所望の出力が得られる場合に
は、一個で構成できることは言うまでもない。
In the above-described embodiment of the present invention, an apparatus incorporating a plurality of solar cell modules has been described. However, when a desired output can be obtained with one solar cell module, it is needless to say that one apparatus can be configured. .

更に、本実施例においては、太陽電池モジュールの外
枠とは別に枠体を用いたが、この外枠を枠体に兼用する
こともできる。
Furthermore, in this embodiment, a frame is used separately from the outer frame of the solar cell module, but this outer frame can also be used as the frame.

(ト)発明の効果 以上説明したように、本発明は、太陽電池パネルがス
ペーサを介して屋根材上に移動自在に載置され、本体の
軒下部材との間をワイヤで取着しているので、真夏時
等、太陽電池表面の温度が上昇し、枠体が膨張しても、
太陽電池パネルが屋根材上に移動して枠体の膨張を吸収
し、熱応力による歪等は発生せず、耐久性が向上すると
共に、屋根の破損が防止できる。
(G) Effect of the Invention As described above, in the present invention, the solar cell panel is movably mounted on the roofing material via the spacer, and is attached to the eaves lower member of the main body with the wire. Therefore, even when the temperature of the solar cell surface rises during midsummer and the frame expands,
The solar cell panel moves onto the roof material to absorb the expansion of the frame, and does not generate distortion or the like due to thermal stress, thereby improving durability and preventing damage to the roof.

更に、略L字状の形状記憶合金製クランプ部材を用い
ると、二辺の角度が温度により変位し、温度変化による
枠体並びにワイヤの膨張及び収縮が吸収されるので、温
度変化に関係なく、枠体は常に適正な一定の張力が付与
された状態で取着できる。
Furthermore, when a substantially L-shaped clamp member made of a shape memory alloy is used, the angles of the two sides are displaced by the temperature, and the expansion and contraction of the frame and the wire due to the temperature change are absorbed. The frame can always be attached with an appropriate constant tension applied.

また、地震等の震動も枠体、ワイヤ、屋根間で互いに
逃がすので、耐久性も向上する。
In addition, vibrations such as earthquakes escape to each other between the frame, the wire, and the roof, so that durability is improved.

更に、本発明の設置方法によれば、枠体をまず屋根上
に組み、その後、太陽電池モジュールを組み込むので、
それぞれの部材の重量はあまり大きくならず、特別な機
材も必要なく設置が容易に行える。
Furthermore, according to the installation method of the present invention, the frame is first assembled on the roof, and then the solar cell module is incorporated.
The weight of each member is not so large, and it can be easily installed without any special equipment.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明装置を既設の屋根に設置した状態を示す
斜視図、第2図は同要部斜視図、第3図は夫々異なる取
着態様を示す側面図である。第4図は軒下部材への取着
態様を示す斜視図、第5図は本発明に用いられる枠体の
一例を示す斜視図である。第6図は枠体へ太陽電池モジ
ュールを組込む態様を示し、第6図(イ)は分解斜視
図、第6図(ロ)及び第6図(ハ)は側面図である。第
7図は各モジュール間の電気的接続例を示す斜視図であ
る。 第8図は本発明装置に適用されるクランプ部材の形成方
法の一例を示す側面図、第9図は第8図のクランプ部材
を用いた軒下部材への取着態様を示す斜視図である。 第10図は形状記憶合金(Cu−Zn−Al)の組成比と変態温
度との関係を示す特製図である。 第11図は太陽電池モジュールを示す断面図、第12図は太
陽電池の日射量と温度の時刻の変化を示す図である。 10…太陽電池モジュール、11…枠体、13…固定脚、14…
スペーサ、20…太陽電池パネル、21…屋根、22…屋根
瓦、23…むな瓦、24…軒下部材、25…ワイヤ、26…クラ
ンプ部材。
FIG. 1 is a perspective view showing a state in which the apparatus of the present invention is installed on an existing roof, FIG. 2 is a perspective view of the same main part, and FIG. 3 is a side view showing different mounting modes. FIG. 4 is a perspective view showing a state of attachment to the eaves lower member, and FIG. 5 is a perspective view showing an example of a frame used in the present invention. FIG. 6 shows an embodiment in which the solar cell module is incorporated into the frame. FIG. 6 (a) is an exploded perspective view, and FIGS. 6 (b) and 6 (c) are side views. FIG. 7 is a perspective view showing an example of electrical connection between the modules. FIG. 8 is a side view showing an example of a method of forming a clamp member applied to the apparatus of the present invention, and FIG. 9 is a perspective view showing a state of attachment to an eaves lower member using the clamp member of FIG. FIG. 10 is a special chart showing the relationship between the composition ratio of the shape memory alloy (Cu-Zn-Al) and the transformation temperature. FIG. 11 is a cross-sectional view showing a solar cell module, and FIG. 12 is a diagram showing changes in the amount of solar radiation and temperature of the solar cell with time. 10… Solar cell module, 11… Frame, 13… Fixed legs, 14…
Spacer, 20 solar cell panel, 21 roof, 22 roof tile, 23 roof tile, 24 eaves lower member, 25 wire, 26 clamp member.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭62−70455(JP,U) 実開 昭63−87853(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 E04D 13/18 E04D 13/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Sho 62-70455 (JP, U) Japanese Utility Model Sho 63-87853 (JP, U) (58) Fields surveyed (Int. Cl. 6 , DB name) H01L 31/04 E04D 13/18 E04D 13/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一つの太陽電池モジュールを枠
体内に組込んだ太陽電池パネルがスペーサを介して屋根
材上に移動自在に載置され、前記枠体と屋根の軒下部材
とをワイヤを介して取着することを特徴とする屋根設置
型太陽電池。
1. A solar cell panel having at least one solar cell module incorporated in a frame is movably mounted on a roof material via a spacer, and the frame and a roof eaves member are connected to each other via a wire. A roof-mounted solar cell characterized in that it is attached by mounting.
【請求項2】前記スペーサは前記枠体に固定されている
ことを特徴とする請求項第1に記載の屋根設置型太陽電
池。
2. The roof-mounted solar cell according to claim 1, wherein said spacer is fixed to said frame.
【請求項3】前記屋根の軒下部材にクランプ部材が固着
され、このクランプ部材にワイヤを介して前記枠体が取
着されることを特徴とする請求項第1に記載の屋根設置
型太陽電池。
3. A roof-mounted solar cell according to claim 1, wherein a clamp member is fixed to a member under the eaves of the roof, and the frame is attached to the clamp member via a wire. .
【請求項4】前記クランプ部材は形状記憶合金で略L字
状に形成されると共に、低温時より高温時に前記クラン
プ部材の二辺の角度が大きくなるように構成され、前記
枠体並びにワイヤの温度変化による膨張及び収縮を前記
クランプ部材の変形で吸収し、前記枠体を一定の張力を
付与してワイヤで取着することを特徴とする請求項第3
に記載の屋根設置型太陽電池。
4. The clamp member is formed in a substantially L-shape with a shape memory alloy, and is configured such that an angle between two sides of the clamp member becomes larger at a higher temperature than at a low temperature, 4. The structure according to claim 3, wherein expansion and contraction due to a temperature change are absorbed by deformation of the clamp member, and the frame is attached to the frame with a constant tension.
A roof-mounted solar cell according to 1.
【請求項5】屋根材上に、太陽電池モジュールが組込ま
れる枠体をスペーサを介して移動自在に載置し、この枠
体を屋根の軒下部材に取着した後、前記枠体内に太陽電
池モジュールを組込むことを特徴とする屋根設置型太陽
電池の設置方法。
5. A frame in which a solar cell module is to be assembled is movably mounted on a roofing material via a spacer, and the frame is attached to a roof eaves member. A method for installing a roof-mounted solar cell, comprising incorporating a module.
JP1306944A 1989-10-06 1989-11-27 Roof-mounted solar cell and its installation method Expired - Fee Related JP2760612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1306944A JP2760612B2 (en) 1989-10-06 1989-11-27 Roof-mounted solar cell and its installation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26232689 1989-10-06
JP1-262326 1989-10-06
JP1306944A JP2760612B2 (en) 1989-10-06 1989-11-27 Roof-mounted solar cell and its installation method

Publications (2)

Publication Number Publication Date
JPH03200376A JPH03200376A (en) 1991-09-02
JP2760612B2 true JP2760612B2 (en) 1998-06-04

Family

ID=26545501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306944A Expired - Fee Related JP2760612B2 (en) 1989-10-06 1989-11-27 Roof-mounted solar cell and its installation method

Country Status (1)

Country Link
JP (1) JP2760612B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2779134B2 (en) * 1994-02-22 1998-07-23 住友電設株式会社 Roof-mounted solar cell device
US5505788A (en) * 1994-06-29 1996-04-09 Dinwoodie; Thomas L. Thermally regulated photovoltaic roofing assembly
US5746839A (en) * 1996-04-08 1998-05-05 Powerlight Corporation Lightweight, self-ballasting photovoltaic roofing assembly
US6061978A (en) * 1997-06-25 2000-05-16 Powerlight Corporation Vented cavity radiant barrier assembly and method
US6148570A (en) * 1998-02-05 2000-11-21 Powerlight Corporation Photovoltaic building assembly with continuous insulation layer
EP1079442A1 (en) * 1999-08-26 2001-02-28 Schneider Leichtbausysteme Method of fastening an energy generating element, and curtain wall with removable panel
US6495750B1 (en) 2001-07-10 2002-12-17 Powerlight Corporation Stabilized PV system
US6570084B2 (en) 2001-07-10 2003-05-27 Powerlight Corporation Pressure equalizing photovoltaic assembly and method
US6617507B2 (en) 2001-11-16 2003-09-09 First Solar, Llc Photovoltaic array
US6959517B2 (en) 2003-05-09 2005-11-01 First Solar, Llc Photovoltaic panel mounting bracket
DE102007045554B3 (en) * 2007-09-24 2009-03-19 Solarworld Ag Stackable flat roof / floor frame for solar panels

Also Published As

Publication number Publication date
JPH03200376A (en) 1991-09-02

Similar Documents

Publication Publication Date Title
JP3937654B2 (en) SOLAR CELL MODULE, ITS INSTALLATION METHOD, AND SOLAR POWER GENERATOR AND ROOF USING THE SAME
US6291761B1 (en) Solar cell module, production method and installation method therefor and photovoltaic power generation system
US6063996A (en) Solar cell module and hybrid roof panel using the same
US5849107A (en) Solar battery module and passive solar system using same
US20100325976A1 (en) Solar shingle system
US20120060902A1 (en) System and method for frameless laminated solar panels
EP0828036A2 (en) Horizontal-roofing roof and mounting method thereof
JP2760612B2 (en) Roof-mounted solar cell and its installation method
US6342669B1 (en) Solar electric power apparatus, solar module, and installation method of solar modules
WO2007111959A2 (en) Non-equatorial photovoltaic module
JPH11222991A (en) Fixing structure of natural lighting body
JP3106835B2 (en) Solar power house
JP3507126B2 (en) Horizontal roof unit with solar cells
US20110174365A1 (en) System and method for forming roofing solar panels
JP2006278536A (en) Installation structure of solar cell element
JP2586865B2 (en) Roof material integrated solar cell and solar cell installation method
JP3985837B2 (en) Photovoltaic power generation apparatus and installation method thereof
JP2760599B2 (en) Roof-mounted solar cells
JP2760600B2 (en) Roof-mounted solar cells
JP2798762B2 (en) Roof-mounted solar cell device
JP2000252510A (en) Solar cell module, manufacture and installation method thereof, and photovoltaic power generation system
JP2698200B2 (en) How to install rooftop solar cells
JPH09210472A (en) Solar energy collection panel and passive solar system
JP2777444B2 (en) Installation method of roof-mounted solar cell device
CN202509696U (en) Solar energy standard tile for roof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees